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Analysis of exact vertex function for improving on the GW� scheme for first-principles calculation
of electron self-energy
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In order to propose a sophisticated scheme for the self-consistent calculation of the electron self-energy �,
a detailed analysis of the analytical structure of the three-point vertex function � is made with full respect for
the Ward identity from the perspective of Fermi-liquid theory. Our scheme may be regarded as an improvement
on the gauge-invariant self-consistent approximation to the exact theory for obtaining � as a fixed point of the
self-energy revision operatorF , indicating an intrinsically nonperturbative approach applicable to both Fermi and
Tomonaga-Luttinger liquids in a unified manner, but it may also be considered as providing a general framework
for constructing an accurate functional form for � in the GW� method for the first-principles calculation of �.
Our result on the momentum distribution function in the homogeneous electron gas is compared with the one
recently obtained by the reptation Monte Carlo method.
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I. INTRODUCTION

The electron self-energy �(k,ω) is a fundamental quantity
in the Green’s function approach to the many-electron problem
in solids. It is directly related to the one-electron spectral
function A(k,ω) that can be observed experimentally by angle-
resolved photoemission spectroscopy (ARPES). Accurate
information on �(k,ω) in a wide range of momentum k and
energy ω is useful not only for elucidating the detailed Fermi-
liquid properties in usual metals but also for discussing the non-
Fermi-liquid behavior inherent to the Tomonaga-Luttinger
liquid (TLL) in systems with one spatial dimension.1,2

In 1965, Hedin formulated a formally rigorous framework
to determine the exact self-energy �exact by deriving a closed
set of equations (Hedin’s equations) to connect � with the
one-electron Green’s function G, the dynamically screened
interaction W , the polarization function �, and the three-point
vertex function �.3 In practice, however, we cannot faithfully
implement this formulation, because we cannot obtain the
electron-hole irreducible interaction Ĩ , a key quantity in the
Bethe-Salpeter equation to give the exact vertex function �exact,
through its original definition using a functional derivative,
Ĩ ≡ δ�/δG. Under this circumstance, Hedin considered a
perturbation expansion in terms of W and advocated the
usefulness of its lowest order term or the GW approximation
(GWA) to �, in which � is taken as unity.

This GWA is a conserving approximation in the Baym-
Kadanoff’s sense,4,5 obeying the conservation laws of the
macroscopic quantities such as the total electron number, but
because of the omission of all vertex corrections it does not
satisfy the Ward identity (WI),6,7 an exact relation between
� and � due to gauge invariance representing the local
electron-number conservation. Under the violation of the
WI, we cannot expect to obtain an accurate enough � in
Fermi-liquid metals.8,9 In TLL metals, the situation about the
GWA becomes even worse, because a perturbative approach to
Hedin’s theory is inappropriate from the outset for describing
the nonperturbative features of the TLL.

In 1995, one of the authors (Y.T.) demonstrated that Hedin’s
equations could be solved nonperturbatively by introducing

“the self-energy revision operator” F .10,11 This operator F is
so defined as to operate on an arbitrary input self-energy �input

to produce an output self-energy �output as

�output = F[�input], (1)

in which we include � as a solution to the Bethe-Salpeter
equation with the integral kernel Ĩinput ≡ δ�input/δG, which
is not the same as the exact Ĩ , so that this �, the central
quantity in the definition of F , satisfies the WI in conjunction
with not �exact but �input. Then it is proved that the exact
self-energy �exact is characterized as a “fixed point” of this
revision operator F , i.e., �exact = F[�exact], indicating that an
iterative algorithm is very useful in obtaining �exact in this
self-energy revision operator theory. Here we emphasize that
this is not a procedure to make diagram-by-diagram inclusion
of higher order terms in � but an algorithm in which by simply
operating F repeatedly on an initial �input (which we may
give at our disposal), all higher order terms are automatically
and appropriately included without the problem of double
counting, as clearly discussed in Ref. 10 as the most prominent
feature of this theory.

Contrary to the exact Ĩ , Ĩinput can be calculated exactly, as
long as �input is concretely specified as a functional of G, but
for making actual implementation of the iterative algorithm
feasible, we had better avoid determining � by explicitly
solving the Bethe-Salpeter equation with Ĩinput under a given
�input at each iteration step. It is, rather, recommended to
employ a predetermined functional for �, �[�input], which is
a functional of �input and possibly along with other quantities
such as G that are easily derived from �input. Thus it is the crux
in our iterative algorithm to develop an accurate enough, if not
exact, �[�input] for an arbitrary �input. In this development, it
is natural to think of exploiting the exact relation of the WI
between � and �input. In fact, as early as 1993, the simplest
approximate form for �[�input] with use of only the WI
was proposed and named the gauge-invariant self-consistent
(GISC) method.12 This GISC scheme, however, does not work
very well in metals due primarily to the insufficient treatment
of the so-called q limit in the Fermi-liquid theory.10,13,14
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In pursuing a further developed functional form beyond the
GISC scheme, we should keep in mind that �exact will be well
approximated by �[�exact], if �[�input] is actually obtained
as an appropriate one for an arbitrary �input. Putting it in
a reverse way, we should recognize that the functional form
will never be very much improved without a detailed study
of the analytical structure of �exact. Thus in this paper, from
the perspective of Fermi-liquid theory, we shall do such an
analysis as the main issue with a view to constructing a good
functional form for �[�input]. This functional turns out to be
valid for both Fermi-liquid and TLL metals.

Incidentally, if we obtain a good �[�] for � in the
“neighborhood” of �exact in the abstract space of self-energy
functions {�} on which F operates, we can avail ourselves of
the same functional in the GW� scheme for the first-principles
calculation of the electron self-energy. The GW� scheme is
not necessarily couched on the self-energy revision operator
theory and in fact a few different versions have been proposed
so far.8,15,16 Among them, the WI is satisfied only in the one
proposed in Ref. 8, in which a rather good form for �[�] has
been proposed with the introduction of the concept of “the ratio
function” and successfully applied to the three-dimensional
(3D) homogeneous electron gas at metallic densities. This
version of the GW� scheme, however, encounters a serious
problem in the electron gas with densities lower than the
metallic ones: Convergent results for � are not obtained,
if its density specified by the dimensionless parameter rs is
larger than 5.25 where there appears the dielectric catastrophe
associated with the divergence of the compressibility κ at
rs = 5.25 and concomitantly that of the static polarization
function � in the long-wavelength limit.17–19

In view of the above-mentioned success and failure, we
shall revise the GW� scheme not only by giving �[�] better
than that in Ref. 8 but also by modifying the scheme itself into
one free from the difficulty originating from the dielectric
catastrophe. Furthermore, we shall propose a scheme for
obtaining � alternative to the GW� one on the condition
that an accurate piece of information is available for � by
other calculations or experiments. The proposal of these kinds
of revisions and improvements constitutes another important
issue of this paper.

This paper is organized as follows: In Sec. II we begin with
specifying the Hamiltonian H for a translationally invariant
system with which we are mainly concerned here. Then we
concretely write down Hedin’s equations, together with the WI
and related exact relations, pertinent to the system described
by H . In Sec. III we analyze the analytical structure of the
exact vertex function for small transferred momentum and
frequency from the viewpoint of Fermi-liquid theory. Based
on this analysis we propose a rather general functional form
for the vertex function valid for both Fermi and Tomonaga-
Luttinger liquids. In Sec. IV we extrapolate the functional form
thus derived for the small momentum-frequency transfer to
the one appropriate in the whole momentum-frequency space.
Then we employ it in the GW� scheme to obtain its improved
version, in which the iteration loop is modified into the one
dubbed the GW̃�WI scheme. As an example to illustrate the
power of this GW̃�WI scheme, the results are given for both
A(k,ω) and the momentum distribution function n(k) in the
low-density electron gas with rs up to 8. Before concluding

this section, we make several comments on various aspects,
including the comparison of our result for n(k) with the one
recently obtained by the reptation Monte Carlo method20 and
an interesting piece of crossover behavior of the quasiparticle
effective mass m∗ in comparison with the bare one m with
the increase of the quasiparticle momentum k in the electron
gas at rs = 8. In Sec. V an alternative to the GW� scheme is
proposed, if � is accurately known by some other methods.
The results obtained in this paper are summarized in Sec. VI.
We shall employ units in which h̄ = kB = 1.

II. PRELIMINARIES

A. Hamiltonian

The algorithm we shall propose can be applied equally
well to both fermions and bosons. It can also be used for
inhomogeneous as well as homogeneous systems. We can
employ it even for the electron-phonon systems, but for
simplicity we confine ourselves to treating a homogeneous gas
of n electrons in a unit volume interacting with one another
through a two-body potential in this paper.

In these circumstances, the Hamiltonian we consider is
written in second quantization as

H = H0 + V, (2)

with

H0 =
∑
k,σ

εkc
†
kσ ckσ (3)

and

V = 1

2

∑
q

∑
k,σ

∑
k′,σ ′

V (q)c†k+qσ c
†
k′−qσ ′ck′σ ′ckσ , (4)

where ckσ is the annihilation operator of an electron with
momentum k and spin σ whose single-particle energy is given
by εk ≡ k2/2m with the mass of an electron m and V (q)
is the Fourier transform of a two-body interaction potential.
No specific form is needed for V (q), but in considering the
application to the electron gas in Sec. IV, V (q) will be taken as
4πe2/q2. In principle, no restrictions are imposed on spatial
dimensions, but we study three-dimensional systems in this
paper. (One- and two-dimensional systems will be discussed
elsewhere.)

B. Hedin’s equations

Let us start with recapitulating the exact relations for
interacting-electron systems with translational symmetry in
which momentum is a good quantum number. The Dyson
equation relates the one-electron thermal Green’s function
G(K) with the self-energy �(K) through

G(K) = 1

iωk + μ − εk − �(K)
, (5)

where μ is the chemical potential, K ≡ {k,ωk} is a combined
notation of momentum k and fermion Matsubara frequency
ωk defined at a temperature T .
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The Bethe-Salpeter equation determines the proper nondi-
mensional three-point vertex function �ν(K,K + Q) in a
charge channel as

�ν(K,K + Q) = γ ν(K,K + Q)

+2
∑
K ′

Ĩ (K,K + Q; K ′,K ′ + Q)

×G(K ′)G(K ′ + Q)�ν(K ′,K ′ + Q), (6)

for ν = 0 (scalar part) and ν = 1 (longitudinal vector part),
where Q ≡ {q,ωq} is a notation combining momentum q and
boson Matsubara frequency ωq ,

∑
K ′ is a shorthand notation

for the sum over ωk′ and the integral over k′, namely,
∑

K ′ =
T

∑
ωk′

∫
d3k′/(2π )3, the factor 2 in front of the sum takes care

of the spin degree of freedom, and Ĩ (K,K + Q; K ′,K ′ + Q)
is the electron-hole irreducible four-point interaction in the
charge channel. The bare three-point vertex for the scalar
part is defined as γ 0(K,K + Q) = 1, while the one for
the longitudinal vector part in the nondimensional form is
introduced as γ 1(K,K + Q) = (q/q) · [(k + q/2)/m]/vF =
(εk+q − εk)/vFq with q ≡ |q| and the Fermi velocity vF ≡
kF/m ≡ |kF|/m, where kF is the Fermi momentum, related to
the electron number density n through n = k3

F/3π2.
In terms of these three-point vertex functions, we may

define the polarization function �νν ′
(Q) by

�νν ′
(Q) = −2

∑
K

γ ν(K,K + Q)

×G(K)G(K + Q)�ν ′
(K + Q,K). (7)

It is easy to confirm a symmetric relation �01(Q) = �10(Q)
from Eqs. (6) and (7), which may be recognized as one of the
Onsager relations.

Once the polarization function �00(Q) is known, the
dynamically screened interaction W (Q) is obtained as

W (Q) = V (q) − V (q)�00(Q)W (Q)

= V (q)/[1 + V (q)�00(Q)]. (8)

By using W (Q), together with G and �0, we can write down
the equation to determine the self-energy �(K) as

�(K) = −
∑
Q

W (Q)�0(K + Q,K)G(K + Q), (9)

where
∑

Q denotes the sum over the variable Q; i.e.,
∑

Q ≡
T

∑
ωq

∑
q = T

∑
ωq

∫
d3q/(2π )3.

The above five equations, Eqs. (5)–(9), constitute Hedin’s
closed set of equations to determine the self-consistent electron
self-energy �(K). Since both G and Ĩ (=δ�/δG) may be
considered as functionals of �, �ν in Eq. (6) is regarded as
a functional of � as well, allowing us to write �ν[�]. With
a good knowledge of �0[�], Hedin’s set of equations can
actually be solved numerically to give a concrete form of
�(K). The simplest form for this functional is, of course,
�0[�] = 1, as is the case in the GWA, but the main purpose
of this paper is to propose a much systematically improved
functional form for �0[�] by the consideration of its analytical
structure.

C. Ward identity and related exact relations

The electron density operator ρ(r,t) is directly related to the
electron current density operator j(r,t) through the continuity
equation, ∂ρ(r,t)/∂t + ∇ · j(r,t) = 0, representing the local
conservation of electron number. With use of this relation,
we can derive the Ward identity (WI) to connect the vertex
functions, �0(K,K + Q) and �1(K,K + Q), with the one-
electron Green’s function as

iωq�
0(K,K + Q) − vFq�1(K,K + Q)

= G−1(K + Q) − G−1(K). (10)

Note that �1(K,K + Q) is normalized in units of vF here.
By substituting Eq. (10) into Eq. (7), we obtain a couple of

equations for �νν ′
(Q) as

iωq�
00(Q) − vFq�01(Q)

= −2
∑

k

[n(k) − n(k + q)] = 0, (11a)

iωq�
10(Q) − vFq�11(Q)

= −2
∑

k

εk+q + εk−q − 2εk

vFq
n(k) = −DF

3
vFq, (11b)

where n(k) is the interacting-electron momentum distri-
bution function, given by n(k) = T

∑
ωk

G(K)eiωk0+
, and

DF = mkF/π
2 (=3n/mv2

F) is the density of states of the
noninteracting system at its Fermi energy εF. If we put ωq = 0
in Eq. (11b), we find an exact result for �11(q,ωq) at ωq = 0
as

�11(q,0) = DF

3
. (12)

In the interacting-electron system with translational sym-
metry, the total charge current (or the total momentum)
is conserved; namely, (∂/∂t)

∫
d3r j(r,t) = 0. This global

velocity conservation law allows us to derive an identity for
�1(K,K + Q) in the limit of vFq/ωq → 0 as

�1(K,K + Q)

γ 1(K,K + Q)
= G−1(K + Q)−G−1(K)

iωq

[
1+O

(
vFq

ωq

)]
.

(13)

By substituting Eq. (13) into Eq. (7), we can easily find another
exact result for �11(q,ωq) at q = 0 as

�11(0,ωq) = 0. (14)

We can combine Eq. (13) with Eq. (10) to obtain an identity
for �0(K,K + Q) in the limit of vFq/ωq → 0 as

�0(K,K + Q) = G−1(K + Q) − G−1(K)

iωq

×
[

1 + εk+q − εk

iωq

+ O

(
v2

Fq
2

ω2
q

)]
. (15)

By substituting the above equation into Eq. (7), we find an
exact result for �00(q,ωq) as

�00(q,ωq) = DF

3

q2v2
F

ω2
q

+ O

(
v3

Fq
3

ω3
q

)
, (16)
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in the limit of vFq/ωq → 0. This behavior of �00(q,ωq) is
known as the frequency sum rule.

At q = ωq = 0, Eq. (15) does not hold; it is replaced by

�0(K,K) = ∂G−1(K)

∂μ
, (17)

as one can convince oneself by considering the one-to-one cor-
respondence of each Feynman diagram representing �0(K,K)
with the one obtained by the differentiation of an arbitrary G

line in each Feynman diagram for � with respect to μ. Then,
by putting Eq. (17) into Eq. (7) and using ∂G−1(K)/∂μ =
−G−1(K)[∂G(K)/∂μ]G−1(K), we find another exact result
for �00(q,ωq) at q = ωq = 0 as

�00(0,0) = dn

dμ
, (18)

where the total electron number density n is given by n =
2
∫

d3k n(k)/(2π )3. The relation in Eq. (18) is known as the
compressibility sum rule.

III. PERSPECTIVE FROM FERMI-LIQUID THEORY

A. Quasiparticles on and near the Fermi surface

In configuring a successful functional form for �0[�],
we presume that the exact results in Eqs. (15) and (17)
provide invaluable boundary conditions. Thus, with the aim
of constructing a good interpolation formula for �0(K,K +
Q) satisfying these two conditions exactly, we shall begin
with revisiting the Fermi-liquid theory that is conventionally
formulated at T = 0.

In order to extract the physical results from G(K) obtained
on the imaginary axis iωk , we need to make its analytic
continuation to the real axis on the upper-ωk plane. Then,
a pole of G(K) on the lower-ωk plane describes the excitation
energy of a quasiparticle. For an isotropic system, G(K) may
be considered as a function of two variables, εk and ωk ,
i.e., G(K) = G(εk,ωk), and its inverse vanishes on the Fermi
surface as

G−1(εk = εF,ωk = 0) = 0, (19)

where εF ≡ εkF is the free-electron chemical potential at T =
0, which should be distinguished from the interacting-electron
chemical potential μ. We can expand G−1(εk,ωk) with respect
to εk − εF and ωk as

G(K) = z

iωk − (m/m∗)(εk − εF)
+ · · · , (20)

where the residue z and the effective mass m∗ of the
quasiparticle at the Fermi level are, respectively, related to
the derivatives of G−1(εk,ωk) as

∂G−1(K)

∂iωk

∣∣∣∣
K=KF

= ∂G−1(εF,ωk)

∂iωk

∣∣∣∣
ωk=0

= 1

z
, (21a)

∂G−1(K)

∂εk

∣∣∣∣
K=KF

= ∂G−1(εk,0)

∂εk

∣∣∣∣
εk=εF

= −1

z

m

m∗ , (21b)

with KF ≡ {kF,ωk = 0} denoting K at the Fermi level.
Incidentally, it should be noted that G(K) depends not only

on its arguments, εk and ωk , but also on εF. By the total
differentiation of Eq. (19) with respect to εF, however, we find

that ∂G−1(K)/∂εF is actually equal to −∂G−1(K)/∂εk on the
Fermi surface, leading us to another important relation as

∂G−1(K)

∂εF

∣∣∣∣
K=KF

= ∂G−1(εk,0)

∂εF

∣∣∣∣
εk=εF

= 1

z

m

m∗ . (22)

B. Reduction to the zero-temperature formalism

At first glance, it might be thought to be possible to obtain an
integral equation to determine �ν(K,K + Q) at T = 0 easily
by just replacing the sum over ωk′ in Eq. (6) by an integral
over ωk′ as

T
∑
ωk′

· · · −→
∫ ∞

−∞

dωk′

2π
· · · , (23)

but it is not always the case. In fact, Eq. (6) contains a
product of two Green’s functions, G(K ′)G(K ′ + Q), each
of which possesses a quasiparticle’s pole. The two simple
poles merge into a single second-order one of G2(K ′) at
q = ωq = 0, providing an extra term of the derivative of the
Fermi distribution function, which is reduced to a negative
δ function at T = 0. Thus we should adopt the replacement
scheme prescribed by

T
∑
ωk′

· · · G2(K ′)

−→
∫ ∞

−∞

dωk′

2π
· · ·

[
G2(K ′) − 2πz2 m∗

m
δ(εk′ − εF)δ(ωk′)

]
,

(24)

instead of Eq. (23). Note that the δ-function term in Eq. (24)
corresponds to the anomalous term that was found by Kohn
and Luttinger in their study of the ground-state energy of an
interacting Fermi gas.21

For finite but small q and ωq , we need to modify Eq. (24)
a little bit further by changing the product of two Green’s
functions as

G(K ′)G(K ′ + Q) −→ G2(K ′) − δ

(
εk′+q + εk′

2
− εF

)

× δ(ωk′)
2πz2(εk′+q − εk′)

(m/m∗)(εk′+q − εk′) − iωq

,

(25)

which reduces to the replacement scheme in Eq. (24) in the
so-called q limit (q → 0 with ωq = 0). Thus the three-point
vertex function in this limit �ν

q (K), appearing in Fermi-liquid
theory, directly connects with �ν(K,K), such as the one in
Eq. (17), in the finite-temperature formalism.

On the other hand, Eq. (25) reduces to G2(K ′) in the so-
called ω limit (ωq → 0 with q = 0), indicating that the simple
replacement scheme in Eq. (23) applies to Eq. (6) in obtaining
the three-point vertex function in Fermi-liquid theory in this
limit �ν

ω(K), which is determined by

�ν
ω(K) = γ ν(K) + 2

∫
d4K ′

(2π )4
Ĩ (K,K ′)G2(K ′)�ν

ω(K ′), (26)

with the definitions of γ ν(K) ≡ γ ν(K,K), Ĩ (K,K ′) ≡
Ĩ (K,K; K ′,K ′), and

∫
d4K ′ ≡ ∫

dωk′
∫

d3k′.
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Now in Fermi-liquid theory, it is useful to treat the physical
quantities as a function of εF rather than μ. In fact, because of
dεF/dμ = κ/κF with κ and κF being the interacting-electron
compressibility and the free-electron one, respectively, we can
easily transform the argument from μ into εF to obtain the
identity for �0

q(K) as

�0
q(K) = ∂G−1(K)

∂μ
= ∂G−1(K)

∂εF

κ

κF
, (27)

from Eq. (17).
Since our system has rotational symmetry, the three-point

vertex functions behave in the ω and q limits as

�ν
ω(K) = ην

ω(εk,ωk) cos νθkq, (28)

�ν
q (K) = ην

q(εk,ωk) cos νθkq, (29)

where θkq denotes the angle between k and q. The functions
ην

ω(εk,ωk) and ην
q(εk,ωk) are given as

η0
ω(εk,ωk) = ∂G−1(K)

∂iωk

, (30a)

η0
q(εk,ωk) = ∂G−1(K)

∂εF

κ

κF
, (30b)

η1
ω(εk,ωk) = ∂G−1(K)

∂iωk

k

kF

, (30c)

η1
q(εk,ωk) = −∂G−1(K)

∂εk

k

kF

, (30d)

with reference to the results in Sec. II C. On the Fermi surface,
with use of the results in Sec. III A, these functions are reduced
to

η0
ω(εF,0) = 1

z
, (31a)

η0
q(εF,0) = 1

z(m∗/m)

κ

κF
, (31b)

η1
ω(εF,0) = 1

z
, (31c)

η1
q(εF,0) = 1

z(m∗/m)
. (31d)

We can also make a similar argument on the polarization
function �νν ′

(Q) in each limit; in the ω limit, �νν ′
(Q) → �νν ′

ω

with �νν ′
ω = 0 from global charge and velocity conservation

laws, while in the q limit, �νν ′
(Q) → �νν

q δν,ν ′ with

�00
q = DF

κ

κF
, (32a)

�11
q = DF

3
. (32b)

Employing the replacement scheme prescribed by Eq. (23)
with Eq. (25), together with the relation of v∗

Fq cos θk′q =
(m/m∗)(εk′+q/2 − εk′−q/2) with v∗

F ≡ kF/m∗ being the velocity
of the quasiparticle, we can reduce Eq. (6) to the zero-
temperature Bethe-Salpeter equation to determine the three-
point vertex function �ν(K; Q) ≡ �ν(K − Q/2,K + Q/2)

for small q and ωq as

�ν(K; Q) = �ν
ω(K) − 2

∫
d4K ′

(2π )4
Ĩω(K,K ′)�ν(K ′; Q)

× 2πz2v∗
Fq cos θk′q

v∗
Fq cos θk′q − iωq

m∗

m
δ(εk′ − εF)δ(ωk′),

(33)

where Ĩω(K,K ′) the four-point vertex function in the ω limit
satisfies the following integral equation:

Ĩω(K,K ′) = Ĩ (K,K ′) + 2
∫

d4K ′′

(2π )4
Ĩ (K,K ′′)

×G2(K ′′)Ĩω(K ′′,K ′). (34)

Similarly, we can reduce Eq. (7) to the equation to determine
the polarization function �νν ′

(Q) at T = 0 for small q and ωq

as

�νν ′
(Q) = �νν ′

ω + 2
∫

d4K

(2π )4
�ν

ω(K)�ν(K; Q)

× 2πz2v∗
Fq cos θkq

v∗
Fq cos θkq − iωq

m∗

m
δ(εk − εF)δ(ωk), (35)

in which �νν ′
ω = 0 in our present system.

C. Spherical-harmonics expansion

The central quantity in Fermi-liquid theory is the Landau
interaction f (kF,k′

F), which is defined on the Fermi surface
as f (kF,k′

F) ≡ z2Ĩω(KF,K
′
F). This quantity is just enough for

the proper description of �νν ′
(Q), but we find it necessary

to extend its definition so as to include the information
on its momentum-frequency dependence for the adequate
description of �ν(K; Q).

The extension can be done straightforwardly by expanding
Ĩω(K,K ′) in terms of the spherical harmonics. More specifi-
cally, by virtue of the spherical symmetry of our system, it is
expanded as

Ĩω(K,K ′) =
∞∑

�=0

Ĩω,�(εk,ωk; εk′ ,ωk′)P�(cos θkk′), (36)

where P�(cos θkk′) are the Legendre polynomials of cos θkk′

with θkk′ being the angle between k and k′. A similar expansion
can be made for the Landau interaction, and its �’s component,
fl(εk,ωk), may be defined as

fl(εk,ωk) ≡ z2Ĩω,�(εk,ωk; εF,0). (37)

Note that the standard Landau-interaction harmonics, fl ,
defined on the Fermi surface is given by fl = fl(εF,0).

We can use this expansion to rewrite Eq. (35) as

�νν ′
(Q) = �νν ′

ω + z2ην
ω(εF,0)�∗

νν ′ (Q)ην ′
ω (εF,0), (38)

for small q and ωq , where �∗
��′(Q) is the dynamical Fermi-

surface susceptibility defined for arbitrary nonnegative inte-
gers �,�′ � 0, the q limit of which quantifies the “softness” of
a Fermi surface,22,23 and it is determined by

�∗
��′(Q) = �

∗(0)
��′ (Q) −

∞∑
�′′=0

�
∗(0)
��′′ (Q)f�′′�∗

�′′�′(Q), (39)
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with

�
∗(0)
��′ (Q) ≡ DF

2

m∗

m

∫ 1

−1
dx P�(x)P�′ (x)

v∗
Fqx

v∗
Fqx − iωq

. (40)

Using Eqs. (31a) and (31c) and noting �νν ′
ω = 0 in our system,

we find �νν ′
(Q) = �∗

νν ′ (Q), but in general the following
relation holds:

�νν ′
(Q) − �νν ′

ω

�νν
q − �νν

ω

= �∗
νν ′(Q)

�∗
q,νν

ην ′
ω (εF,0)

ην
ω(εF,0)

, (41)

where �∗
q,νν ≡ �∗

νν(q,ωq = 0) represents �∗
νν(Q) in the q

limit. Because the velocity conservation law relates m∗ to f1

through m∗ = m/(1 − DFf1/3), Eq. (39) implies that �νν ′
(Q)

can be determined completely only by fl’s.
Since our main interest is in �νν ′

(Q) for ωq/v
∗
Fq � 1 and

ωq/v
∗
Fq � 1, we shall neglect the contribution of fl’s with

� � 2 which becomes important only for ωq/v
∗
Fq ∼ 1. Then

we obtain

�00(Q) =
[

1

�00
q

+ 1

�11
q

ω2
q

v2
Fq

2
+ c(|ωq |/v∗

Fq)

ρ

|ωq |
vFq

]−1

,

(42a)

�01(Q) = �10(Q) = iωq

vFq
�00(Q), (42b)

�11(Q) = �11
q − ω2

q

v2
Fq

2
�00(Q), (42c)

where c(x) is a function defined by

c(x) ≡ arctan(1/x)

1 − x arctan(1/x)
− 3x, (43)

and it behaves as c(x) = π/2 + O(x) for x � 1 and c(x) =
O(x−1) for x � 1. Thus we see that �νν ′

(Q) depends weakly
on m∗/m, if it does.

D. Functional form for vertex functions

We shall expand �ν(K; Q) in a similar way as

�ν(K; Q) =
∞∑

�=0

�ν
� (εk,ωk; Q)P�(cos θkq), (44)

and put this equation into Eq. (33), together with Eqs. (28)
and (36), to obtain �ν

� (εk,ωk; Q) for small q and ωq as

�ν
� (εk,ωk; Q) = δ�νη

ν
ω(εk,ωk)

−f�(εk,ωk)�∗
�ν(Q)ην

ω(εF,0). (45)

This clearly indicates that the knowledge of (not simply
fl’s but) f�(εk,ωk)’s is needed to determine both scalar and
longitudinal-vector vertex functions for small momentum-
frequency transfer.

For the same reason as we mentioned in Sec. III C, we
shall neglect f�(εk,ωk)’s with � � 2 and try to derive useful
formulas for the vertex functions that are asymptotically exact
for both ωq/v

∗
Fq � 1 and ωq/v

∗
Fq � 1 with q, ωq → 0. For

this purpose, we first take the q limit in Eq. (45) to find

fν(εk,ωk) = 1

�∗
q,νν

ην
ω(εk,ωk) − ην

q(εk,ωk)

ην
ω(εF,0)

, (46)

for ν = 0 and 1. Notice that this constitutes an exact functional
form for fν(εk,ωk). Substituting Eq. (46) back into Eq. (45)
and using Eq. (41), we can derive

�ν
ν ′(εk,ωk; Q) = δν ′νη

ν
ω(εk,ωk) + [

ην ′
q (εk,ωk) − ην ′

ω (εk,ωk)
]

× �ν ′ν(Q) − �ν ′ν
ω

�ν ′ν ′
q − �ν ′ν ′

ω

. (47)

By neglecting the contributions with � � 2 in Eq. (44), we
obtain

�ν(K; Q) = ην
ω(εk,ωk) cos νθkq

+
1∑

ν ′=0

[
ην ′

q (εk,ωk) − ην ′
ω (εk,ωk)

]

×�ν ′ν(Q) − �ν ′ν
ω

�ν ′ν ′
q − �ν ′ν ′

ω

cos ν ′θkq. (48)

The results in Eq. (48) provide general formulas for the scalar
and longitudinal-vector vertex functions for small momentum-
frequency transfer not only in 3D but also in 2D isotropic
systems. It turns out that they also give exact formulas even
for 1D systems except for K = KF, if appropriate ην

ω, ην
q , and

�νν ′
are used. (This will not be shown explicitly in this paper,

but it will be elsewhere.)
In our system, all the quantities appearing on the right-hand

side of Eq. (48) are already known in Eqs. (30), (32), and
(42). Substituting those quantities into Eq. (48), we finally
obtain asymptotically exact functional forms for the scalar
and longitudinal-vector vertex functions, respectively, as

�0(K; Q) = ∂G−1(K)

∂iωk

[1 − Īxc�
00(Q)]

−
[
∂G−1(K)

∂iωk

− ∂G−1(K)

∂εF

]
1

DF
�00(Q)

−
[
∂G−1(K)

∂iωk

+ ∂G−1(K)

∂εk

]

× εk+q/2 − εk−q/2

DFvFq/3
�10(Q) (49)

and

�1(K; Q) = ∂G−1(K)

∂iωk

[
εk+q/2 − εk−q/2

vFq
− Īxc�

01(Q)

]

−
[
∂G−1(K)

∂iωk

− ∂G−1(K)

∂εF

]
1

DF
�01(Q)

−
[
∂G−1(K)

∂iωk

+ ∂G−1(K)

∂εk

]

× εk+q/2 − εk−q/2

DFvFq/3
�11(Q). (50)

Here we have introduced Īxc ≡ D−1
F (κF/κ − 1) for use in the

next section.

IV. IMPROVED GW� SCHEME

A. Extrapolation with use of the ratio function

The result given in Eq. (49) for the scalar vertex
function �0(K,K + Q) must be accurate for arbitrary
incoming-electron momentum and frequency K as long as
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the momentum-frequency transfer Q is small. But in order to
obtain an accurate result for �(K) through Eq. (9), we should
know a good functional form for �0(K,K + Q) defined
in the whole momentum-frequency space, necessitating an
adequate extrapolation of �0(K,K + Q) from the small-Q
region to the entire space. We can make such an extrapolation
by exploiting the concept of “the ratio function” which was
introduced in Ref. 8 to provide �0(K,K + Q) automatically
satisfying the WI.

The ratio function R(K,K + Q) is defined as

R(K,K + Q) ≡ �0(K,K + Q)

�1(K,K + Q)

γ 1(K,K + Q)

γ 0(K,K + Q)
. (51)

Combining this definition with Eq. (10), we obtain the exact
expressions for �0(K,K + Q) and �1(K,K + Q) as

�0(K,K + Q) = G−1(K + Q) − G−1(K)

iωq − (εk+q − εk)/R(K,K + Q)
, (52a)

�1(K,K + Q) = γ 1(K,K + Q)

× G−1(K + Q) − G−1(K)

iωqR(K,K + Q) − (εk+q − εk)
, (52b)

respectively.
Now it is a very important point to note here that Eqs. (11a)

and (11b) hold along with the WI in Eq. (10), if both
�0(K,K + Q) and �1(K,K + Q) are determined at the same
time through Eqs. (52a) and (52b) with use of the same
form of R(K,K + Q), whatever approximation is employed
for R(K,K + Q). Then, our strategy for providing a good
extrapolation scheme for �0(K,K + Q) is to approximate
R(K,K + Q) in Eq. (51) by adopting Eqs. (49) and (50) for
�0(K,K + Q) and �1(K,K + Q), respectively.

In the course of the adoption of those equations, we find it
better to regard Īxc as not just a constant but a function of some
variables. Its actual function form is not known very well at
this stage, but at least it must be a function of arbitrary values
of q and ωq as

Īxc −→ Īxc(Q) = Īxc(q,ωq), (53)

with the asymptotic behavior of Īxc(Q) → D−1
F (κF/κ − 1) in

the q limit.
Since �ν and �νν ′

are trivially related to �0 and �00,
respectively, through Eqs. (10), (11a), and (11b), we shall be
concerned with only �0 and �00 hereafter and thus suppress
their superscripts for simplicity; namely, �(K,K + Q) ≡
�0(K,K + Q) and �(Q) = �(q,ωq) ≡ �00(Q).

In the present extrapolation scheme, the functional form for
�(K,K + Q) is cast into the product of two components as

�(K,K + Q) = �(a)(K,K + Q)�(b)(K,K + Q), (54)

with

�(a)(K,K + Q) = G−1(K + Q) − G−1(K)

iωq − (εk+q − εk)η̃1(εk+q/2,ωk)
, (55a)

�(b)(K,K + Q) = 1 − Īxc(Q)�(Q) − [1 − η̃1(εk+q/2,ωk)]

× iωq(εk+q − εk)

v2
Fq

2/3

1

DF
�(Q)

− [1 − η̃2(εk+q/2,ωk)]
1

DF
�(Q), (55b)

where the two new functions, η̃1(εk,ωk) and η̃2(εk,ωk), have
been defined as

η̃1(εk,ωk) ≡ −∂G−1(εk,ωk)

∂εk

/
∂G−1(εk,ωk)

∂iωk

, (56a)

η̃2(εk,ωk) ≡ ∂G−1(εk,ωk)

∂εF

/
∂G−1(εk,ωk)

∂iωk

. (56b)

Simple manipulation after the substitution of Eq. (54) into
Eq. (7) leads us to an expression to relate the function Īxc(Q)
with the polarization function �(Q) as

Īxc(Q) = 1

�(Q)
− 1

�0(Q)

− 1

DF

[
1 + 3ω2

q

v2
Fq

2
− 3ω2

q

v2
Fq

2

�1(Q)

�0(Q)
− �2(Q)

�0(Q)

]
, (57)

where the three “modified polarization functions” have been
defined by

�0(Q) ≡ 2
∑
K

G(K + Q) − G(K)

iωq − (εk+q − εk)η̃1(εk+q/2,ωk)
, (58a)

�1(Q) ≡ 2
∑
K

[G(K + Q) − G(K)](εk+q − εk)

[iωq − (εk+q − εk)η̃1(εk+q/2,ωk)]iωq

, (58b)

�2(Q) ≡ 2
∑
K

[G(K + Q) − G(K)]η̃2(εk+q/2,ωk)

iωq − (εk+q − εk)η̃1(εk+q/2,ωk)
. (58c)

If we reduce these equations into those in the zero-
temperature formalism by using the replacement scheme in
Eq. (25), we can easily derive the asymptotic behavior at
q → 0 and ωq → 0 for these polarization functions as

�0(Q) → �̃0(x∗) ≡ zDF
m∗

m
[1 − x∗ arctan(1/x∗)], (59a)

�1(Q) → m∗

m
�̃0(x∗), (59b)

�2(Q) → (1 − z)DF + m

m∗ �̃0(x∗), (59c)

with x∗ ≡ |ωq |/(v∗
Fq). By substituting Eqs. (42a) and (59a)–

(59c) into Eq. (57), we can confirm that Īxc(Q) →
D−1

F (κF/κ − 1) in the q limit.
Basically, the functions so far introduced in defining

�(K,K + Q) in Eq. (54) can actually be calculated, as long as
G(K) is provided. This means that this form of �(K,K + Q)
may be regarded as a functional of G(K), or equivalently a
functional of �(K), by referring to the Dyson equation or
Eq. (5), implying that we now have obtained the pursued
improved functional form for �[�] with which we can
determine the self-consistent self-energy �(K) in combination
with Eqs. (7)–(9).

B. Connection with GISC and GW� schemes

The present framework with use of the functional form in
Eq. (54) for �[�] is general enough to contain each of the
GISC and GW� schemes as its special situation, as we shall
show in the following.
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On the simple assumption of η̃1(εk+q/2,ωk) = 1 in Eq. (55a)
and �(b)(K,K + Q) = 1 in Eq. (54), we obtain �[�] as

�(K,K + Q) = �(a)(K,K + Q) = �WI(K,K + Q), (60)

with

�WI(K,K + Q) ≡ G−1(K + Q) − G−1(K)

G(0)−1(K + Q) − G(0)−1(K)
, (61)

where the free-electron Green’s function G(0)(K) is given by

G(0)(K) = 1

iωk + εF − εk
. (62)

The GISC scheme12 is proposed on the basis of this choice
of �[�] in Eq. (60) with Eq. (61). Although this seems to be
a very simple scheme, it always satisfies the WI, because the
choice of R(K,K + Q) = 1 in Eq. (52a) reproduces this form
of �[�] and for this reason, the subscript “WI” is attached
to �(K,K + Q) in Eq. (61). However, many other important
sum rules including the compressibility one are not satisfied
in this scheme.

If the assumption of η̃1(εk+q/2,ωk) = 1 is retained but
that of �(b)(K,K + Q) = 1 is replaced by η̃2(εk+q/2,ωk) = 1
in Eq. (55b), we obtain that �(a)(K,K + Q) = �WI(K,K +
Q) and �(b)(K,K + Q) = 1 − Īxc(Q)�(Q). Thus �[�] is
provided by �WI(K + Q,K)[1 − Īxc(Q)�(Q)], a result given
in the GW� scheme8 as schematically shown in Fig. 1(a).

In fact, on the assumption of both η̃1(εk+q/2,ωk) and
η̃2(εk+q/2,ωk) being unity, a further simplification can be
made to this original GW� scheme. First of all, all the
modified polarization functions, �0(Q), �1(Q), and �2(Q) in
Eqs. (58a)–(58c), are reduced to the same single polarization
function �WI(Q), defined by

�WI(Q) ≡ −2
∑
K

G(K)G(K + Q)�WI(K + Q,K). (63)

GW

W= 

G= 1

G  -G
G      -G

(0)

(0)

-1

-1(0)-1

-1-1

V
V

xc
-

∼

∼

WI WI

GW

W= 

G = 1

G  -G
G      -G

(0)

(0)

-1

-1(0)-1

-1-1
V

xc 
-

∼
WI

WI

WI

WI
WI

WI

FIG. 1. Self-consistent iteration loops to determine the self-
energy �(K) in the GW� scheme: (a) the original version and
(b) the improved one, named the GW̃�WI scheme.

With use of �WI(Q) and Eq. (57), we can represent the
polarization function �(Q) as

�(Q) = �WI(Q)

1 + Īxc(Q) �WI(Q)
. (64)

Then we can rewrite �(K) in Eq. (9) into

�(K) = −
∑
Q

W̃ (Q) �WI(K + Q,K) G(K + Q), (65)

with W̃ (Q) the modified dynamically screened interaction,
obtained from W (Q) in Eq. (8) as

W̃ (Q) ≡ V (q)

1 + [V (q) + Īxc(Q)] �WI(Q)
. (66)

Combining these results, together with the Dyson equation,
we can construct the GW̃�WI scheme as schematically shown
in Fig. 1(b). This scheme is equivalent to the GW� one
in obtaining �(K), but it is a merit that this is free from
the problem of the dielectric catastrophe from which the
original GW� suffers, because the iteration loop in the GW̃�WI

does not contain the process of calculating �(Q), a physical
quantity which diverges at rs = 5.25 in the electron gas.

A further merit in the GW̃�WI is a huge reduction of
computational costs to calculate �(Q) not by Eq. (7) but by
Eq. (64) via �WI(Q) in Eq. (63) which can be cast into a form
convenient for numerical calculations as

�WI(Q) = 2
∫

d3k

(2π )3

n(k + q) − n(k)

iωq − εk+q + εk
, (67)

with use of the interacting-electron momentum distribution
function n(k). Note that this expression very much resembles
the one for the polarization function in the random-phase
approximation (RPA) �(0)(Q), which is given by

�(0)(Q) = 2
∫

d3k

(2π )3

n(0)(k + q) − n(0)(k)

iωq − εk+q + εk
, (68)

where n(0)(k) [≡ θ (kF − k) the step function] is the free-
electron momentum distribution function.

In spite of these merits of regarding Eq. (57) as an equation
to determine not Īxc(Q) but �(Q), we are now confronted
with a serious problem of how to obtain Īxc(Q). Actually,
the problem may be traced back to the very assumption of
η̃1 = η̃2 = 1 in which the result of �0(Q) = �2(Q) clearly
contradicts the asymptotic behaviors described in Eqs. (59a)
and (59c), indicating that we should reconsider the asymptotic
behavior of Īxc(Q) itself in the q limit under this assumption.

In this circumstance, we shall take the strategy to provide
a proper form of Īxc(Q) by hand in the GW̃�WI, rather
than updating it automatically during the iteration process.
In constructing the proper form for Īxc(Q), we shall exploit
the compressibility sum rule; in the q limit, �(0,0) is known
as the value in Eq. (18), while �WI(0,0) can be calculated from
Eq. (67). Then we can determine Īxc(0,0) through Eq. (64) with
use of both �(0,0) and �WI(0,0). In this way we can impose
the compressibility sum rule exactly on the GW̃�WI scheme.

The difference between the GWA and this GW̃�WI in
actual computational costs is not very large, mainly because
the similarity between Eqs. (67) and (68) implies that the
polarization function in each method can be obtained in an
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analogous way. The only major difference lies in the existence
of �WI in Eq. (65), but this does not make the computational
costs very much different.

In the GW̃�WI, because the WI is obeyed, the electron
number is conserved on the microscopic level and thus it is
conserved on the macroscopic level as well. The conserving
property of this scheme may also be assured by explicitly
considering gauge invariance; because, as Baym discussed,5

G transforms in accord with G(0) with the change of gauge,
�WI is gauge-invariant, implying that the conserving property
of � in the GW̃�WI is the same as that without �WI, i.e., in
the GWA. Since the GWA is a conserving approximation, the
same is true for the GW̃�WI.

C. Application to electron gas

Let us apply the improved GW� method or the GW̃�WI

scheme to the low-density electron gas in order to show that
we can actually obtain �(K) even for rs > 5.25 in which κ

becomes negative.
On general grounds, both η̃1 and η̃2 defined in Eqs. (56a)

and (56b) are found to be equal to m/m∗ on the Fermi surface
due to the exact relations in Eqs. (30a)–(30d) and Eqs. (31a)–
(31d). On the other hand, G(K) approaches G(0)(K) far away
from the Fermi surface, on which η̃1 
 η̃2 
 1. Thus we may
safely assume that both η̃1 and η̃2 vary in the range from m/m∗
to 1.

Now in the electron-gas model at metallic densities, the
effective mass m∗ is known to be hardly different from the
bare one m at least for rs less than 6,3,24,25 implying that
the approximation to take both η̃1 and η̃2 as unity, the basic
assumption in deriving the GW̃�WI scheme, is expected to
work very well in this model.

As for the choice of the proper form of Īxc(Q), Eq. (64)
reminds us of the long-standing research in the electron gas
in pursuit of the appropriate local-field factor in the charge
channel G+(Q). More specifically, we can expect that Īxc(Q)
must be equal to −G+(Q)V (q) with G+(Q) satisfying various
sum rules such as the compressibility one. Note, however, that
the meaning of G+(Q) here is different from the ordinary one
that is defined with respect to �(0)(Q) instead of �WI(Q).
Fortunately, we already know a good form for G+(Q) with
taking account of this subtle difference, which is Gs(Q) in
Ref. 26, approaching the exact limit due to Niklasson27 as
q → ∞ with ωq = 0.

With this choice of Īxc(Q), the GW̃�WI provides us the self-
consistent �(K) in the electron gas for rs going beyond 5.25,
in spite of the existence of the dielectric catastrophe associated
with negative κ . After analytic continuation (iωk → ω + i0+)
of �(K) to the retarded self-energy �R(k,ω) with using
the Padé approximant, we obtain the one-electron spectral
function A(k,ω) [≡ − Im GR(k,ω)/π ]; examples are plotted
in Figs. 2(a)–2(c) at k = 0 (the center of the Fermi sphere), kF

(at the Fermi surface), and 1.4kF (at which εk − εF = 0.96εF ≈
εF), respectively, for rs = 4, 5, 6, and 8. The temperature is
taken as T = 0.001εF, virtually the same as zero temperature.
The overall structure of A(k,ω) is shown in Figs. 3(a) and 3(b)
as a function of ω for several values of k for rs = 4 and 8,
respectively, at T = 0.001εF. Note that we have already seen
a very similar structure of A(k,ω) at rs = 1, which was given
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FIG. 2. (Color online) One-electron spectral function A(k,ω),
plotted as a function of ω at (a) k = 0, (b) k = kF, and (c) k = 1.4kF

at T = 0.001εF in the electron gas for rs = 4, 5, 6, and 8.

in Fig. 5 in Ref. 11 and might be considered as providing
rather more typical Fermi-liquid behavior in the sense that
the quasiparticles are very well defined for any values of k at
rs = 1.
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FIG. 3. (Color online) Overall structure of the one-electron
spectral function A(k,ω) in the electron gas at (a) rs = 4 and
(b) rs = 8 with T = 0.001εF.

Several comments are in order on the results in Figs. 2 and 3:
(i) Although there is a difference in the choice of Īxc(Q),

the present results for k = 0 and kF at rs = 4 are essentially
the same as those given earlier in Fig. 2 in Ref. 8. In fact, we
find that A(k,ω) hardly depends on the choice of Īxc(Q), as
long as the compressibility sum rule is satisfied.

(ii) The self-energy shift on the Fermi surface due to
correlation depends rather sensitively on the choice of Īxc(Q),
although this value itself does not show up at all in A(k,ω),
because it is canceled out by μc the contribution to the chemical
potential from the correlation effect. We find that Gs(Q) does
not provide us an accurate enough value for μc, in spite of its
very excellent features in obtaining other physical quantities,28

prompting us to develop a better shape of Īxc(Q) in the near
future.

(iii) An interesting result is found for the quasiparticle
effective mass m∗ at rs = 8, in particular, for its k dependence;
for k less than about 1.4kF, m∗ is larger than m the free-electron
mass, implying dominance of the correlation effect over the
exchange one in determining m∗, while the opposite is the case
for larger k to give m∗ < m. This crossover in m∗ in changing
k never occurs for rs � 5 where m∗ is about the same as m,8,29

as can be seen in Fig. 3(a) for rs = 4, but it does occur for
rs larger than 5.25. Especially, the quasiparticle bandwidth
shrinks by as large as 30% in the occupied portion at rs = 8,
but it does not in the unoccupied portion, as can be seen in
Figs. 2(a) and 2(c). This feature in m∗ is robust, even if we
change the form of the compressibility-sum-rule conserving
Īxc(Q) from the one in Ref. 26.

(iv) The very basic assumptions of η̃1 = η̃2 = 1 are justified
for rs � 6, because m∗/m is found to be around unity for any
value of k, assuring us that the present results for A(k,ω) must
be very accurate. For the case of rs as large as 8, however,
the assumptions themselves are not well justified because of
the large difference of m∗ from m. Thus in the future, we will
need to reformulate the GW� scheme without adopting those
assumptions and examine to what extent the results of A(k,ω)
may deviate from the present ones in the revised scheme with
including the effect of m∗/m �= 1. In this regard, we do not
consider that our present value of m∗/m at rs = 8 is accurate
enough, but even though such a revision is made, if we imagine
how we can obtain a convergent result self-consistently with
changing the value of m∗/m at each iteration step, we will
probably end up with the qualitatively same crossover behavior
of m∗/m with the increase of k.

(v) If k deviates from kF, the quasiparticle peak in A(k,ω)
becomes broader as rs becomes larger, for which it may be
difficult to call a well-defined quasiparticle, but it is always
well defined on the Fermi surface. Thus, as shown in Fig. 4,
the momentum distribution function n(k) exhibits a jump on
the Fermi surface, a typical Fermi-liquid property, although
its deviation from n(0)(k) becomes larger as rs increases from
rs = 2, the typical density appropriate to most metals and
semiconductors.

(vi) The magnitude of the jump as well as the overall
structure of n(k) in Fig. 4 agrees well with the accurate
one,30 if available, as already shown for rs = 4 in Fig. 2(a)
in Ref. 8. In fact, all of our present results for n(k) satisfy the
important sum rules of

∑
kσ ε�

kn(k) for � = 0 (total number),
� = 1 (kinetic energy),30 and even � = 2 [fluctuation of kinetic
energy or the sixth-order moment

∫
dk k6n(k)] at least up to

six digits. It must be noted that those three sum rules will
not be satisfied at the same time without quite accurate n(k).
Recently the reptation Monte Carlo (RMC) calculations have
been done for n(k) and their results are plotted in Fig. 4 for
comparison.20 A reasonably good agreement is seen for rs = 5
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FIG. 4. (Color online) Momentum distribution function n(k) for
the electron gas at rs = 1 (diamond), 2 (ellipse), 4 (plus), 5 (star),
6 (cross), and 8 (rectangle) in the GW� method. For comparison,
we also plot the recent results for rs = 1 (longer dashed), 2 (dashed),
3.99 (dotted-dashed), 5 (dotted), and 10 (solid) in the reptation Monte
Carlo method (Ref. 20).

in the entire region of k and for rs = 2 and 4 in the region of
k except for small values. A large discrepancy is seen for
rs = 1 and probably for rs = 10 as well, although we have not
yet obtained the result for rs = 10, but our result for rs = 8
almost agrees with the one for rs = 10 in the RMC, clearly
indicating that our result for rs = 10 will be much different.
Because of this discrepancy, the results of n(k) in the RMC
at least for rs = 10 (and probably for all rs except for rs = 5)
will hardly satisfy the important sum rules and thus they will
not be so accurate, although no comments are made on the
sum rules in Ref. 20. Upon careful examination of the RMC,
we may think of at least the following three problems to make
their results not so accurate: (1) the fixed-node approximation,
(2) the extrapolation from data at N = 54 particles to those
at N → ∞, and (3) the use of the ideal-gas density matrix
for reducing the variance. Probably the second point will be
the reason for inaccuracy at rs = 1 as well as in the small-k
region for rs = 2 and 4, while the third one will be at rs = 10
at which the quasiparticle properties are much different from
the noninteracting ones.

(vii) The results in the GWA as well as its one-shot version,
the G(0)W(0)A, are not good enough in metals due to the neglect
of the vertex corrections. The same is true in the electron gas
in the description of not only the quasiparticle properties but
also the peak position of the so-called plasmaron excitation,
as already shown explicitly in Fig. 2(b) in Ref. 8 and in Fig. 4
in Ref. 11.

(viii) In clusters, insulators, and semiconductors at typical
valence-electron densities (namely, rs ≈ 2), on the other hand,

we have already shown31 that the quasiparticle energies in the
GW̃�WI are reasonably well described by the G(0)W(0)A.

V. ALTERNATIVE TO THE GW� SCHEME

The basic strategy in the GW� scheme is to regard Īxc(Q)
as an input quantity in view of the fact that its static function,
Īxc(q,0), is accurately known in the electron gas by the
combination of Eq. (64) for �(Q) and the virtually exact
data for the static polarization function �(q,0) obtained by
diffusion Monte Carlo simulations.32

In the general framework discussed in Sec. IV A, however,
we do not necessarily require Īxc(Q) as an input quantity
but a quantity determined through Eq. (57), if �(Q) is
accurately known beforehand. Now it is often the case in
the many-body problem that �(Q) can be obtained much
more easily than G(K) by employing various theoretical
techniques or even experimental data measured by either
x-ray or neutron diffraction. In fact, �(Q) can be obtained
from the first-principles Hamiltonian rather easily with use
of the formalism due to Singwi, Tosi, Land, and Sjölander
(STLS),33 its recent refinement,34 or its extension to the
dynamical version.35–37 The same is true in the time-dependent
density functional theory (TDDFT).38–40 Then we can think of
an alternative to the GW� scheme as shown schematically
in Fig. 5. Because of the important role of Īxc(Q) in this
procedure, this may be called the GI� scheme. Note that the
dynamically screened interaction W (Q) is known beforehand
through Eq. (8) in this situation.

Based on the formally exact expression for �(Q) in the
TDDFT, given by

�(Q) = �(0)(Q)

1 + fxc(Q)�(0)(Q)
, (69)

where fxc(Q) is the so-called exchange-correlation kernel, we
only mention a very simplified version of this GI� scheme
here. Comparing Eq. (69) with Eq. (42a), we see that fxc(Q)
is less singular than �(0)(Q) and actually it is given by
fxc(Q) = Īxc(q → 0,ωq → 0) = D−1

F (κF/κ − 1) for small q

and ωq . On the other hand, by the Luttinger’s theorem,
Eq. (19), the chemical potential μ can be given in terms
of the self-energy as μ = εF + �(KF), so that we see that

G

Eq. (5)

i

Eq. (56) 

Eq. (57) 
Ixc
-

Eq. (9) 

Eq. (54) 

FIG. 5. Self-consistent iteration loop in the GI� scheme to
determine the self-energy �(K) with use of the known information
on �(Q).

245134-11



HIDEAKI MAEBASHI AND YASUTAMI TAKADA PHYSICAL REVIEW B 84, 245134 (2011)

κF/κ = 1 + d�(KF)/dεF. By combining these results, we can
think of such a form for fxc(Q) as

f LDA
xc (Q) = 1

DF

d�(KF)

dεF
, (70)

in the local density approximation (LDA) in which its
dependence on q and ωq is totally neglected. Then we can give
the polarization function in the LDA, �LDA(Q), by adopting
f LDA

xc (Q) evaluated through Eq. (70) with differentiating an
input �(K) as

�LDA(Q) = �(0)(Q)

1 + f LDA
xc (Q)�(0)(Q)

. (71)

With use of this �LDA(Q), we can follow the iteration loop
in Fig. 5 to obtain the self-consistent self-energy �(K).
Note that ĪLDA

xc (Q) in this scheme depends on q and ωq ,
although f LDA

xc (Q) does not. Note also that contrary to the
original GI� scheme, we do not require any information on
�(Q) in the LDA, where �LDA(Q) is revised in each iteration
step to be determined from Eq. (71) self-consistently by virtue
of Eq. (70). Of course, if an accurate value for κF/κ is known
beforehand as is the case in the electron gas, we need not
revise f LDA

xc (Q) at all, but instead we should maintain the
relation of f LDA

xc (Q) = D−1
F (κF/κ − 1) from the outset of the

whole iteration process. The actual implementation along this
procedure as well as the original GI� scheme with use of a
more accurate form for �(Q) is a challenge in the future.

VI. CONCLUSION

We have made a detailed analysis of the three-point vertex
function � from the perspective of Fermi-liquid theory and
constructed a functional form for � in Eq. (49) which should
be accurate for small transferred momentum and frequency.
The functional form is extrapolated to the one in the entire
momentum-frequency space in Eqs. (55a) and (55b), the
central result of this paper, which always satisfies the WI, along
with other important sum rules. Based on this expression for
�, we have discussed several versions of the self-consistent
iteration procedure to determine the self-energy �, including
the GISC, the original GW�, its improved version or the
GW̃�WI, and the GI� schemes. In particular, the GW̃�WI

scheme is employed to obtain � in the low-density electron gas

with use of the accurate information on the local-field factor
for Īxc in Eq. (64), and the results for the one-electron spectral
function A(k,ω) and the momentum distribution function n(k)
are given in Figs. 2–4 for the density parameter rs up to 8,
elucidating the Fermi-liquid properties in a rather strongly
correlated and dielectrically catastrophic region of the electron
density. In future publications, we shall deal with the situations
of 1D systems and systems without translational symmetry.
We shall also investigate the electron gas at very low densities
(i.e., rs � 10) to obtain the accurate n(k) for which the RMC
will not seem to be a successful tool, as the results in Fig. 4
indicate.

All the calculation schemes proposed in this paper are based
on the self-energy revision operator theory (SEROT) in which
� is not calculated perturbatively, so that there is no problem
of double counting. This problem of double counting hurts the
usual perturbation methods including the so-called LDA + U
and its refinements as well as the GWA + BS (Bethe-Salpeter)
with use of the one-electron basis functions determined by the
Kohn-Sham equation for which it is difficult to see to what
extent the correlation effect is included from the outset of the
perturbation calculation. Contrary to such a situation in the
conventional perturbation theories, no problem of this kind
arises in the SEROT. In fact, the only concern in it is to make
a good approximate functional form for �[�] to simulate the
self-energy revision operator F[�input] that is the operator to
give the output self-energy �output (≡F[�input]) by automati-
cally adding new terms to the input self-energy �input, indicat-
ing that the exact self-energy is obtained as the fixed point of
F , at which no new terms are added any more. For this very
favorable feature, we believe that the SEROT provides the firm
starting point for the numerical calculation of � in strongly
correlated many-body systems in any spatial dimensions.

ACKNOWLEDGMENTS

This work is supported by a Grant-in-Aid for Scientific
Research (C) (No. 21540353) as well as on Innovative
Area “Materials Design through Computics: Complex Cor-
relation and Non-Equilibrium Dynamics” (No. 22104011)
from MEXT, Japan. It is also supported by the Strategic
Programs for Innovative Research (SPIRE), MEXT, and the
Computational Materials Science Initiative (CMSI), Japan.

1S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950).
2J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
3L. Hedin, Phys. Rev. 139, A796 (1965).
4G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
5G. Baym, Phys. Rev. 127, 1391 (1962).
6J. C. Ward, Phys. Rev. 78, 182 (1950).
7Y. Takahashi, Nuovo Cimento Ser. 106, 370 (1957).
8Y. Takada, Phys. Rev. Lett. 87, 226402 (2001).
9A. Kutepov, S. Y. Savrasov, and G. Kotliar, Phys. Rev. B 80,
041103(R) (2009).

10Y. Takada, Phys. Rev. B 52, 12708 (1995).
11Y. Takada, Int. J. Mod. Phys. B 15, 2595 (2001).
12Y. Takada, J. Phys. Chem. Solids 54, 1779 (1993).

13Y. Takada and T. Higuchi, Phys. Rev. B 52, 12720 (1995).
14O. V. Danylenko, O. V. Dolgov, and V. V. Losyakov, Phys. Lett. A

230, 79 (1997).
15F. Bruneval, F. Sottile, V. Olevano, R. Del Sole, and L. Reining,

Phys. Rev. Lett. 94, 186402 (2005).
16M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99,

246403 (2007).
17Y. Takada, J. Supercond. 18, 785 (2005).
18H. Maebashi and Y. Takada, J. Phys. Soc. Jpn. 78, 053706 (2009).
19H. Maebashi and Y. Takada, J. Phys. Condens. Matter 21, 064205

(2009).
20M. Holzmann, B. Bernu, C. Pierleoni, J. McMinis, D. M. Ceperley,

V. Olevano, and L. Delle Site, Phys. Rev. Lett. 107, 110402 (2011).

245134-12

http://dx.doi.org/10.1143/PTP.5.544
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1103/PhysRev.127.1391
http://dx.doi.org/10.1103/PhysRev.78.182
http://dx.doi.org/10.1103/PhysRevLett.87.226402
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.80.041103
http://dx.doi.org/10.1103/PhysRevB.52.12708
http://dx.doi.org/10.1142/S0217979201006471
http://dx.doi.org/10.1016/0022-3697(93)90290-8
http://dx.doi.org/10.1103/PhysRevB.52.12720
http://dx.doi.org/10.1016/S0375-9601(97)00226-0
http://dx.doi.org/10.1016/S0375-9601(97)00226-0
http://dx.doi.org/10.1103/PhysRevLett.94.186402
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1103/PhysRevLett.99.246403
http://dx.doi.org/10.1143/JPSJ.78.053706
http://dx.doi.org/10.1088/0953-8984/21/6/064205
http://dx.doi.org/10.1088/0953-8984/21/6/064205
http://dx.doi.org/10.1103/PhysRevLett.107.110402


ANALYSIS OF EXACT VERTEX FUNCTION FOR . . . PHYSICAL REVIEW B 84, 245134 (2011)

21W. Kohn and J. M. Luttinger, Phys. Rev. 118, 41 (1960).
22C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162 (2000).
23W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91,

066402 (2003).
24H. Yasuhara and Y. Ousaka, Solid State Commun. 64, 673 (1987).
25Y. Takada, Phys. Rev. B 43, 5979 (1991).
26C. F. Richardson and N. W. Ashcroft, Phys. Rev. B 50, 8170 (1994).
27G. Niklasson, Phys. Rev. B 10, 3052 (1974).
28M. Lein, E. K. U. Gross, and J. P. Perdew, Phys. Rev. B 61, 13431

(2000).
29H. Yasuhara, S. Yoshinaga, and M. Higuchi, Phys. Rev. Lett. 83,

3250 (1999).
30Y. Takada and H. Yasuhara, Phys. Rev. B 44, 7879 (1991).
31S. Ishii, H. Maebashi, and Y. Takada, e-print arXiv:1003.3342.

32S. Moroni, D. M. Ceperley, and G. Senatore, Phys. Rev. Lett. 75,
689 (1995).

33K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, Phys. Rev.
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