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The Sham-Schluter Equation in Time-Dependent Density-Functional Theory
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We present an exact equation for the exchange-correlation potential of time-dependent density-
functional theory. This relation is derived using a many-particle Green’s function formalism due to
Keldysh. We furthermore show how this equation can be derived from an action principle. The
method presented provides a systematic way to derive correlation contributions to the time-dependent
exchange-correlation potential. [S0031-9007(96)00144-5]

PACS numbers: 71.15.Mb

In recent years a wealth of new physical phenomenghe other hand, are treated perturbatively using Green’s
has been observed in the study of atoms and moleculdanction techniques. This requires the use of a Green’s
in strong laser fields [1-3]. These phenomena canndunction formalism in which the zeroth-order system is
be explained theoretically using traditional perturbationalready a nonstationary time-dependent system. Such a
theory, due to the high strengths of the electric fieldformalism has been developed by Keldysh and elaborated
involved. In order to be able to calculate the properties obn by others [12—17]. In this Letter we will demonstrate
atomic and molecular systems in strong external fields &s usefulness in connection with the TDDFT of atoms
completely nonperturbative treatment of the external fieldand molecules in strong fields.

is therefore called for. We discuss an interacting system Mfelectrons with
Time-dependent density-functional theory (TDDFT)the Hamiltonian
[4-6] is a method of this type. The rigorous foundations Ho) =T +V0) + W 1)

of TDDFT were first established by Runge and Gross . o .
[7]. In the TDDFT formalism one can transform the Where 7' represents the kinetic energy operatdr,the
interacting many-particle problem into an equivalentlime-dependent external field, and the Coulombic
problem of noninteracting particles with the same time-interparticle repglsmn. The external field is assume_d to
dependent density(rz). The effective potentiab; for be constant in time for times < ry when the system is
this noninteracting system is known as the Kohn-Shanfssumed to be in its ground state. We are therefore also
potential. By subtracting fromv, both the Hartree describing swnch-_on processes. .The time evolution of
potential and the external potential of the interactingthe system under influence of the time-dependent external
system one obtains the exchange-correlation potengial field is described by the time-evolution operator
incorporating all the exchange and correlation effects of . Y

the system. The formalism has been successfully applied Vin,n) = Texp|:—z ]t. H(1) d’]

(2)
to the case of atoms in strong laser fields [8,9] and in the : . .
calculation of atomic excitation energies [10] using thewhereT is the usual time-ordering operator. In TDDFT

exchange-only (x-only) time-dependent optimized potenIhe system is also described by the time-dependent Kohn-

tial method (TDOPM) [11]. The TDOPM has important Sham Hamlltonlarj R R

advantages over other common approaches, such as the H(t) =T + V1), 3)
adiabatic local density approximation (ALDA) [10]. In \yhere ¥, is the one-particle operator representing the
contrast to ALDA the TDOPM is self-interaction free and Konn-Sham potential. The Kohn-Sham noninteracting
incorporates memory effects. In this Letter we developsiate can be represented by a Slater determinant wave

a theoretical approach in which we make a connectiofynction whose orbitals satisfy the time-dependent Kohn-
between the many-particle Green’s function theory andspam equations [5,6]

TDDFT. This enables one to extend the above-mentioned

12 .
x-only TDOPM calculations and include correlation [=3V" + vs(”)]z’i(”) = i0:¢i(r1),
effects. 2
Conventional methods treat the external time-dependent n(re) = ; gi(ro)l”, (4)

field perturbatively. However, the perturbation series
breaks down when the expansion parameter (the external
field) becomes large. Our approach will be to find anwherevy(rt) = [d*r'n(x't)/Ir — r’| denotes the time-
exact solution for the time evolution of the noninteractingdependent Hartree potential antrr) represents the time-
(zeroth-order) system in the presences of the externalependent external field. The quantity.(r7) denotes
field. The external field is thereby treated completelythe time-dependent exchange-correlation potential, the
nonperturbatively. The two-particle interactions, ondetermination of which is a central problem in TDDFT.

v(rt) = v(rt) + vy(re) + ve(re),
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The time evolution of the Kohn-Sham noninteracting statéf 7 runs from—o to 0 thent runs from—o to ¢’ and if r

is determined by the evolution operator runs from 0 to+ce thent runs back fromy’ to —». The
. actual form of the parametrizatiorir) is not important
0,62, 1)) = Tex;{—i[ i A,(r) d,] (5) sin(_:e our_final resu_lts will be independent of it. We now
f define a time orderin@c (whereC stands for contour) in

. the pseudotime variable. Then Eq. (6) becomes
We can now express the expectation value of any operator

A at time?’ in terms of Kohn-Sham quantities by Aty = (DPo|Tc[Sc(+o, —)A()] | Py), (9)
(A(")) = (Do|S (=00, A ()8, =) [Dg).  (6)  where

Here A; and§ are, respectively, the operatdrand the _ B

time-evolution operator in the interaction picture defined Sc(r,m)=Tcexg —i ]7'1 dr () (H = Hl1(7)] |,

> (10)
Ap(t) = Us(to, VA1) Us(t, 10) () wheret'(7) = dt/dr. If we further define; = #(r;) then
the one-particle Green'’s function is defined by

S(l2,l1) = Uv(lo,fz)v(lz,fl)ffx(h,fo)
iG(ri71,1272) = 6(11 — 72) <‘I’0|¢H(r1l1)l//13(1‘212)|‘1’0>

12 R R
=T“{ﬂﬁ}H—Hm@m] ® = 0(r2 = ) (Woly (v (e111) W), (12)
Equation (6) also includes an adiabatic switching on ofwhere g4 and gy are the creation and annihilation
the interaction (for times < #,) of the form expe(r — operators in the Heisenberg picture. With the definitions

10)](H — H;). This relates the interacting stationary state(9) and (11) we can carry out the usual diagrammatic
|W,) at 1y to a noninteracting statib) atr — —. We perturbation theory. The only difference is that time
must also introduce a static external potentialdefined  integrations in the diagrams must be replaced by contour
by the requirement that for < 7, the density of the integrations in the pseudotime The Green's function
system with the adiabatically switched on two-particlesatisfies the equation of motion
interaction remains equal to the density of the Kohn-
Sham system for all values @f. For timest < 7o this  [ia, — h,(r;1)]G(ri71,1272) = Sty — 1)
density is constant in time. The use of such an adiabatic oo
con_nection formula is common practice ir_1 DFT for +] drs ,’(73)] AP ra[Se (X171, 1373)
stationary systems. It follows théd,) can be identified —o
with the Kohn-Sham state of the interacting system at  —5q(t; — 13)8(r1 — r3)vec(r111)]G(r373,1272), (12)
t — —oo, The limit € | 0 is taken after evaluation of the
expectation value Eq. (6). where i, is the Kohn-Sham Hamiltonian andy. is

At this point an important difference with respect to the exchange-correlation (xc) potential of time-dependent
the case of stationary systems becomes apparent. F8ohn-Sham theory [5,6]. We further defined a contour
these systems we turn off the interaction adiabatically andelta function [14] bydc(t) — 1) = 6(7y — 12)/t'(71).
return to the noninteracting ground state. If we use thisThe termX,. represents the xc parts of the self-enebyy
property, we can make the time variable in Eq. (6) run(that is, all diagrams except those involving the external
from —x to + and expand in time-ordered products potential differencev — v, and the Hartree potential).
with the help of Wick’s theorem. This is, however, not When we use the Dyson equation and the fact that the
possible for the case of time-dependent systems. Becaustectron density is given by
of the external field being switched on at= 7, the o o
system will always end up in a nonstationary state, even if 7(rf;) = —i l"fj G(rr,rmp) = —i l"fj Gy(rry,rm)
we turn off the interaction adiabatically. In order to still e e (13)
be able to apply the usual many-body techniques we use
a method due to Keldysh [12,14,17]. We parametrize thdor both the interacting system and the Kohn-Sham system
physical times(7) by a pseudotime- in such a way that, we obtain the required integral equation gk (rr)

+oo
f de]d3"2 1'(12)G(r171,1272) G (1272, 11 71 ) Uy (1272)

+o0 +oo
Z] dT3] d74]dsm[d3"4l/(73)t'(74)Gs(1‘171,1‘373)2xc(1‘37'3,1‘474)G(I‘4T4,1‘17'1), (14)
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where G, is the Green’s function of the time-dependentphysically interesting memory effects .. Therefore
Kohn-Sham system, explicitly given in terms of the Kohn-our Keldysh diagrammatic method, which in principle

Sham orbitalsp; of Eq. (4) by allows an exact treatment of electron correlations, provides
a direct means for a systematic study of these memory

iGy(ri71,1272) =6(11 — 72) Z @i(ri111)p; (rat2) effects.
>N As a final remark we mention that Eq. (14) can also be

— O — (r11) b (taty) . (15 obtained from a variational principle in the same spirit as in
(2= 71) l; i(r10)¢; (r212) - (19) the work by Sham and Schliter [18,19]. For reasons that
Equation (14) is the main result of this Letter. It repre_soon will become evident we define an action functional

sents the generalization to time-dependent systems of tiff G andG; as
integral equation derived by Sham and Schliiter [18,19]
for the case of stationary systems.

Equation (14) is a convenient starting point for making
successive approximations within time-dependent density- X fd3r<r7'||n(l — 3Gy)lrr), (20)
functional theory. In the x-only case for instance, where ] ) ] ]
we replaceS,. by 3. andG by G,, this equation reduces where the mathematical meaning of the last term is defined

to the x-only equations of the TDOPM [11]. In this by its Taylor series and insertion of complete 4ets (r7|.
approximation we have The functionald is defined by

+oo

A[G.G,] = AG,] + ®[G] - j dr(r)

— 00

S (K373, FaTs) = _5(7'3 — T4) ﬁ" ¢i(r3l3)¢;(1‘4l4). Ao[G,] = [, drit'(my)

t/(74) i=1 |I‘3 - I'4| “

16 1
_ _ _( ) X lim|ig, — | —=VI + v(rn)) | |Gs(r171,1272),
Insertion of Egs. (16) and (15) into Eq. (14) then yields the alm) 2
x-only TDOPM equations [11] for the exchange potential (21)
Ux wherev is the external potential of the interacting system.

For this functional it follows from the equation of motion

N —+oo
Z ] dlz] & ry[v(r2y) = wy i (0222) 1 (01 11) b7 (0212) for G, that
i=1 7= :

X Ggr(rit,r260) + c.c.= 0, a7 _ %A _ Sc(ty — 1)d(r; — 1)
h 8G,(r71,1272)
where , X [v(rit) — vi(ri)]. (22)
Ed / / *
uy (rt) = — *1 Z f 4’ bi (K1) $i(r'1) i () The functionald is defined by [20]
¢i(rt) = Ir — r/|

+oo +oo
18)  o[6]1=> %f dn/ dn] dr

><fd372t/(71)f/(72)2(")(r17'1,I’sz)G(l'ﬂz,I'lTl),
(23)
where3 (") represents the diagramshwith n interaction

and
+o0

iGr(rit1,122) = O(t) — 1) > $ilr111) ] (t212) . (19)
i=

The Green’s functionGr is the retarded Kohn-Sham

Green's function. This Green's function appears in theIines and in which Green’s function lines are given by the

above expression as a res_ult Of. the fa.‘Ct thatthe> 7, full Green’s functionG. The functionakb has the property
integration leads to a relative minus sign as compared tf)ZO]

the integration over, < 7; when the integration in the

pseudotimer; is replaced by integration in the physical___ 9% S(r7i. T — S~(t1 — -)8(r1 — 1
time ,. The occurrence of retarded Green's function®®G(ry72,r;71) (171, 1272) clh 2)5(r, 2)
is a typical feature of the Keldysh formalism. It implies X [v(r1t)) — vs(r111)] (24)

that physical quantities, such as response functions, have ] ] s )
the correct physical causality properties. In the case oft the solution point wher€ satisfies the Dyson equation.
the x-only TDOPM equations the presence of the retardefifom the Runge-Gross theorem [7] we see that kbémd
Green’s function implies that the determinatiomqfrt,) G, are functionals of the glectron density or, equwglently,
at time, requires knowledge of the system for all times f the Kohn-Sham potential,. Therefore the functional
t,<t,. We can proceed further and systematically go(20) can be viewed as a functional of. Requiring
beyond the x-only TDOPM approximation by making stationarity of this functional with respect to variations in
successively better approximations for the self-endgy Vs then yields

and Green'’s functio® in the central equation [Eq. (14)]. 0 0A 0A 6G; 0A 6G

Electron correlation may have a large influence on the - Sv, - 8G, Sv, + S5G Sv. (25)

N
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