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The possibilities of obtaining accurate total energies from GW calculations at various levels of
self-consistency are investigated. In the conserving approximation known as the fully self-consistent
GW approach there is no ambiguity in calculating the total energy, and the results for the electron gas
compare well with those of accurate Monte Carlo calculations. We demonstrate how to obtain chemical
potentials and total energies of similar accuracy from partially self-consistent (GW0) calculations.

PACS numbers: 71.10.Ca
The GW approximation has for some time now been a
major method to go beyond mean-field theories in order
to describe many-body effects in solids. Thus, e.g., the
band structure of different types of materials, like semicon-
ductors [1], alkali [2] and transition metals [3], as well as
insulators [4], has been obtained using this method. How-
ever, as originally proposed, the GW approximation im-
plies a scheme of self-consistency [5], which usually has
not been invoked in the applications. Instead, the self-
energy, which is the quantity that describes the many-body
effects, is obtained from a convolution over a Green’s
function G and a screened interaction W , both most often
obtained from some first-principle mean-field calculation.
This way of treating the GW approximation was applied to
the electron gas already in the 1960s [6], a study which has
served as a valuable point of reference ever since, also in
this work. In spite of the neglect of self-consistency, the
results have generally been satisfactory. However, they
depend on the input parameters, and there is no general
theoretical justification for the good results that are ob-
tained. For this reason, recently, the effects of self-
consistency have been studied for some different systems,
such as the electron gas [7–9], various model systems
[10,11], and even a real system, bulk silicon [12]. The
significance of self-consistency has also been investigated
in the case of semicore states [13]. It is by now well known
that self-consistency actually worsens some key results of a
GW calculation, e.g., the occupied bandwidth is increased,
quasiparticle weight is transferred towards the edge of the
spectra, plasmon structure is not improved, rather the op-
posite tends to be true. All this is contrary to what is ex-
pected from exact results.

However, it has been hinted that a self-consistent
treatment of the GW approximation could produce good
total energies, at least for the electron gas [8]. In this
Letter it is shown that this indeed is the case, and some
generally useful methods and observations of total energy
calculations are presented. The results of two studies are
used, Refs. [7] and [8]. These were mainly concerned
with the quality and the accuracy of the description of
the quasiparticles and the satellite structure in the one-
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electron Green’s function, in order to direct our attention
towards the accuracy of the total ground-state energies.

In Ref. [8], an approximation known as the fully self-
consistent GW method was examined. In this method, the
self-energy is constructed in a Hartree-Fock like fashion
but by replacing the bare Green’s function with the result-
ing interacting Green’s function. In addition, the bare Cou-
lomb interaction is replaced by a dynamically screened
interaction W . The latter is constructed as within the nor-
mal RPA but with the constituent Green’s function equal to
that which one obtains from Dyson’s equation involving
the resulting self-energy. This approximation is conserv-
ing in the spirit of Kadanoff and Baym [14,15]. Although
the method has several valuable physical properties, espe-
cially when one studies the response to external perturba-
tions, it also has major shortcomings as discussed above.
These also persist when a real system is studied [12].

In Ref. [7], a partially self-consistent scheme was
investigated, which, in the present work, will be referred
to as the GW0 method. This method is similar to the
GW method defined above, but the screened interaction
W is no longer involved in the self-consistency procedure.
Instead, W is kept fixed (�W0) at the RPA level, i.e.,
W0 is simply obtained from the Lindhard function for
the polarizability of the electron gas. The resulting
approximation is not conserving but the description of
quasiparticles and satellite structures is reasonably good.
Moreover, there is some evidence that self-consistency
with regard to the Green’s function is an important
ingredient in the understanding of systems with localized
and highly correlated electrons [4], as well as for semicore
states [13]. Also, the application of the GW0 method to
real system constitutes a drastic simplification to the GW
method. Thus, it would be highly desirable to be able to
obtain accurate total energies from the GW0 method.

As mentioned above, we use the results of the scheme
which have been referred to as the G0W0, or the first-
iteration method as a reference [6]. This scheme corre-
sponds to a straightforward calculation of the electronic
self-energy through the noninteracting Green’s function
G0 and the same fixed W0 as discussed above. The
© 1999 The American Physical Society
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resulting Green’s function is obtained from Dyson’s equa-
tion with this self-energy. This method corresponds to the
way in which GW calculations are routinely performed in
real systems, i.e., self-consistency is not at all attempted.

Most textbooks on many-body perturbation theory
(MBPT) explain how one, in principle, can obtain the
total ground-state energy from a knowledge of only the
one-electron Green’s function, assuming the validity of
certain exact relations between the one- and two-particle
Green’s functions. They also show how to obtain the total
energy directly from the two-particle Green’s functions.
In approximate theories, exact relations might be only
poorly obeyed or not at all. As a consequence, different
ways of calculating the total energy might give very dif-
ferent results, and one is faced with the task of deciding
which result is to be preferred. One of the virtues of a
conserving approximation like, e.g., the self-consistent
GW method discussed above, is that this ambiguity in the
total energy does not arise. All practically conceivable
ways of obtaining the total energy yield the same result.
On the other hand, the perhaps more useful GW0 method
is not conserving and has the mentioned problem. As
we shall see, however, there are well-defined ways of
obtaining the total energy also within this method.

The total energy of a many-electron system described
by the one-particle Green’s function G is given by

E �
X
k

Z m

2`
�ek 1 v�A�k, v� dv , (1)

with the shorthand notation
P

k � V
R

d3k�2p�23. The
usual Lehmann representation of the Green’s function
G in terms of the spectral function A�k, v� has been
introduced, G�k, v� �

R A�k,v0�dv0

v2v01idsgn�v02m� .
The quantity m is the chemical potential given by the

solution to the quasiparticle equation at the Fermi surface,
k � jkj � kF :

m � eF 1 S�kF , m� . (2)

Here, eF � k2
F�2. Equation (1) is often referred to

as the Galitskii-Migdal expression [16], and it is simply
the sum of the kinetic and the potential energies both
calculated from the one-electron Green’s function. For
the benefit of the later discussion we can also rewrite
these two contributions, T and U, in terms of the spectral
function A�k, v�:

T � 2
X
k

eknk , (3)

U �
X
k

Z m

2`
�v 2 ek�A�k, v� dv , (4)

where the momentum distribution function nk is given by

nk �
Z m

2`
A�k, v� dv . (5)

It can be shown that knowing precisely two of the quan-
tities T , U, or m, the total energy can be obtained from a
simple linear combination,

E � T 1 U �
1
5

�3mN 1 U� �
1
4

�3mN 2 T � . (6)

At this stage, note that each of the equations are also
valid for each component of the different energies, i.e.,
the noninteracting part (0), the exchange part (x), and the
correlation part (c).

The total energy as a function of the usual density pa-
rameter rs has been calculated from the Galitskii-Migdal
expression [Eq. (1)] using the Green’s functions of the
three computational schemes defined in the introduction.
The computational details are explained in [17].

In Fig. 1 and Table I we display the correlation energy
per electron (ec). The result is compared to Monte Carlo
data for the electron gas according to Ceperley and Alder
[18], which are generally believed to be rather accurate.

This figure demonstrates that the total energies come
out very well from the fully self-consistent GW scheme,
in fact only mismatching somewhat in the third digit. The
two other schemes are off by some 5% to 10%. Note
that the method based on a partial self-consistency already
constitutes an improvement on the G0W0 method.

In order to understand the shortcomings of the two
nonconserving methods, we display the kinetic and the
potential contributions to the total correlation energy per
electron in separate figures (Fig. 2). These quantities are
calculated from Eqs. (3) and (4). Notice that the curves
in Figs. 1 and 2 are not in the same scale.

From the conserving properties of the fully self-
consistent GW scheme it follows that an accurate total
energy also implies accuracy in the different pieces
(tc, uc). Accordingly, we see that this method again per-
forms well. The mismatch in the third digit is now
slightly larger, but there is a cancellation of errors when

FIG. 1. The correlation part of the total energy per electron
obtained through different levels of self-consistency in the
GW approximation compared to Monte Carlo data. Notice the
overlap of the curves corresponding to Monte Carlo data and to
the fully self-consistent method.
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TABLE I. The correlation energy per electron, ec, for the
different GW schemes, compared to quantum Monte Carlo data.

rs QMC GW GW0 G0W0

2.0 20.0897 20.0901 20.0825 20.101
4.0 20.0638 20.0640 20.0578 20.0718

the two contributions are added. Although the GW0
scheme is particle conserving [17], it fails to reproduce
the correct tc. The G0W0 scheme does even worse. In
order to understand these shortcomings, we study the
form of the momentum distributions nk [Eq. (5)] of
the various approximations. The quantity nk enters tc

through the factor
P

k ek�nk 2 nk0� (nk0 is the momen-
tum distribution of the noninteracting electron gas). The
quasiparticle renormalization factor, ZF , which describes
the discontinuity of nk at kF , is rather large in the GW
method, as discussed in Ref. [8]. Therefore, as the GW
method produces the correct tc, and since ZF decreases
as we go to the GW0 scheme, and decreases even further
as we go to the G0W0 scheme, we can expect tc to be
increasingly too large in these schemes. This is because
more and more states are transferred from below to above
the Fermi surface jkj � kF .

In the lower part of Fig. 2 we display the correlation
part of the interaction energy per electron. The result is
very interesting. The schemes of full and partial self-
consistency virtually yield the same result. However,
most textbooks on MBPT will also show how E can be
obtained as an integration over the interaction strength.
By rescaling all the position variables r to rsr in the
Hamiltonian of the interacting gas, one realizes that the

FIG. 2. The correlation part of the kinetic (upper) and inter-
action (lower) energy per electron obtained through different
levels of self-consistency in the GW approximation compared
to Monte Carlo data. Notice the overlap of the curves corre-
sponding to Monte Carlo data and to the fully self-consistent
method and, for the interaction energy, also for the partially
self-consistent method.
790
total energy of the gas has the form H�lrs, N��r2
s , where

l is the strength of the Coulomb interaction. It is also
immediately clear that, in the limit of a very large volume
V, boundary effects are negligible and we must be able to
write the total energy as Ng�rs, l�. Combining these two
expressions, we realize that there exists a function f�x�
such that total energy E can be written E � �N�r2

s � 3

f�lrs�. By using the Hellmann-Feynman trick with re-
spect to the strength l of the Coulomb interaction we see
that U � l�≠E�≠l� � �N�rs�f 0�rs�, where we have set
l to one after taking the derivative after the last equal
sign. Using the fact that E � T 1 U we can write T �
�N�r2

s � � f�rs� 2 rsf 0�rs��. This renders the following,
for our purposes, useful formula:

ec � �1�r2
s �

Z rs

0
uc�r 0

s�r 0s dr 0s . (7)

Thus, we can equally well obtain total energies from the
computationally much simpler and physically more realis-
tic partially self-consistent GW0 scheme. As an example,
ec has been calculated from uc obtained from different
methods of interest. The data points were fitted to a rather
simple polynomial, consisting of a constant, a logarithmic,
and a linear term. As a test of the accuracy, the same
coarseness of the mesh was used in the exact case as in
the others. Equation (7) now becomes an analytic expres-
sion, and the results are displayed in Table II. Remark that
the fit was made over metallic densities only, and natu-
rally, high densities (low rs values) are more sensitive to
the accuracy of the fit and its corresponding high density
behavior.

It can be speculated whether the procedure of using the
GW0 method to calculate total energies could be extended
to the case of valence electrons, by simulating different
densities through a variation of the lattice parameter. That
would imply that the method could be generalized to the
case of real crystals where pseudopotential calculations are
useful. Whether or not the above statement proves true,
we cannot make any conclusion about the case of core
electrons in this issue from the present work, as we have
studied the gas, which is no proper model to describe them.

No similar way was found to obtain good total energies
from the G0W0 scheme. To understand these results, we
study the integrand in Eq. (4). It consists of two terms,
vA and 2ekA. From the study of tc, we know that

TABLE II. The correlation energy per electron, ec, as ob-
tained from exact QMC data and different GW schemes
through Eq. (7), compared to quantum Monte Carlo data.

rs QMC a QMC b GW GW0

2.0 20.0897 20.0891 20.0889 20.0919
4.0 20.0638 20.0637 20.0638 20.0643

aExact.
bFrom exact uc data through Eq. (7).
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the contribution from the second term when using the
GW0 method is lower than when using the GW . This
is thus compensated by the first term, which can be
well understood, as the spectral function A is much more
extended in the energy regime in the GW case [8], and
thus the contribution from vA in the range of integration
is lower. In the case of the G0W0 method, the contribution
from the second term is even more off the correct value.
However, in this case there is no similar compensation in
the first term, because now ZF is smaller, and thus, more
spectral weight transferred to the side of the main peak,
as compared to the GW0 case, and we get a more negative
contribution in the integration.

We also investigate the chemical potential m obtained
through Eq. (2), and from the relation

mc � ec 2
rs

3
≠ec

≠rs
. (8)

In Fig. 3 we display the correlation part of the chemical
potential obtained directly through Eq. (2) and as obtained
through Eq. (8) from the energies displayed in Fig. 1.
Again, we compare to Monte Carlo data. We see that,
within the GW scheme, mc equals the Monte Carlo result
satisfactorily. We also see that mc from Eq. (8) is very
close. However, these curves cannot claim the same accu-
racy as the previous energy curves, because they result
either from an implicit equation or polynomial fit. To
improve, coarser meshes in energy and density parameter
would be required, a task which would severely increase
computing time and effort.

FIG. 3. The correlation part of the chemical potential obtained
from a fully self-consistent GW calculation (left), partially
self-consistent GW0 calculation (middle), and from a G0W0
calculation, “first iteration” (right) compared to Monte Carlo
data. Notice the similarity between the curve obtained directly
[Eq. (2)] and the one obtained from ec [Eq. (8)] in the fully
self-consistent case.
As we go on to study the corresponding curves resulting
from the GW0 and the G0W0 schemes, we see that the
values for m are gradually getting worse, and that the
relation in Eq. (8) is more and more violated.

In summary, we have calculated total energies for the
electron gas as given by the Galitskii-Migdal formula
[Eq. (1)], using different levels of self-consistency in the
GW approximation. We have found numerically, that for
the fully self-consistent GW scheme, the total energies
come out very well, and the examined consistency rela-
tions are fulfilled. As for the GW0 method, we find that
different consistency relations are much better satisfied
as compared to the G0W0 scheme. We further present a
method which uses the results of the GW0 scheme to cal-
culate very accurate total energies. The straightforward
G0W0 scheme fails to produce satisfactory results. In par-
ticular, the relation between m and e [Eq. (8)] is strongly
violated. We have found no simple means of obtaining
correct total energies.
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