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Spectral moments in the homogeneous electron gas

M. Vogt,1 R. Zimmermann,2 and R. J. Needs1

1Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, United Kingdom
2AG Halbleitertheorie, Institut fu¨r Physik, Humboldt-Universita¨t zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany

~Received 10 July 2003; revised manuscript received 17 October 2003; published 30 January 2004!

We present calculations of the lowest three moments of the spectral function of the one-particle Green’s
function of the unpolarized three-dimensional homogeneous electron gas, which are related to the exact
ground-state properties via commutation relations. The moments are, in turn, related to the coefficients in the
expansion of the self-energy in inverse powers of the frequency. The zeroth-order term in this expansion can
be written in terms of the momentum distribution function, while the first-order term consists of a local term
which can be written in terms of the pair correlation function or static structure factor, and a nonlocal term. We
use data from diffusion quantum Monte Carlo calculations to evaluate the zeroth-order term and the local part
of the first-order term. We have also examined local-field approximations to the self-energy, finding that they
do not affect the zeroth-order term in the high-energy expansion, but they substantially alter the first-order
term. The nonlocal part of the second-order term has been evaluated using a wave function consisting of a
single determinant of plane waves. Our results provide additional benchmarks for self-energy theories of the
homogeneous electron gas.

DOI: 10.1103/PhysRevB.69.045113 PACS number~s!: 71.10.Ca, 05.30.Fk
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I. INTRODUCTION

One of the most important systems for investigating el
trons in condensed matter is the homogeneous electron
~HEG! or jellium model.1 This widely studied model ha
yielded many insights into electronic many-body pheno
ena. However, our knowledge of important dynamical pro
erties of the HEG, such as the one-particle Green’s func
or equivalently the self-energy, is still far from satisfacto
For example, recent calculations of the quasiparticle ener
of the HEG at the density appropriate for sodium predict
occupied bandwidth of about 3.6 eV,2–4 which is much larger
than the values measured in angle-resolved photoemis
spectroscopy experiments on sodium of 2.5–2.65 eV.5,6 At
present it is unclear whether this discrepancy is due to
inappropriate interpretation of the experimental data, an
adequacy of present theories of the HEG or shortcoming
the HEG as a model of sodium.

Our goal is to investigate self-energy theories of the H
and provide benchmarks against which self-energy appr
mations may be tested. One approach is to calculate s
ground-state properties within a given self-energy theory
compare them with the most accurate data available.
most accurate approach for calculating static ground-s
properties is currently the diffusion quantum Monte Ca
~QMC! method.7 Results along these lines have been p
lished, for example, for the total energy.8–13 In this paper we
develop a closely related strategy using the relationship
the moments of the spectral function of the Green’s funct
to the coefficients in the expansion of the self-energy in
verse powers of the frequency~the ‘‘high-energy’’ expan-
sion!. The corresponding sum rules are valid for the ex
self-energy, and were used by von Barth and Holm8,9 to
check the accuracy of their self-consistentGW calculation
for the HEG. Farid14 has derived general expressions for t
coefficients in the high-energy expansion starting from
0163-1829/2004/69~4!/045113~10!/$22.50 69 0451
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real-space description. In our paper these terms are der
in k space for the special case of the HEG.

The zeroth-order term in the expansion of the self-ene
is determined by the momentum distribution function and
equivalent to an expression already used by von Barth
Holm.8 We show how this term changes when we replace
noninteracting Hartree-Fock~HF! momentum distribution by
the interacting one, which is obtained from QMC data. T
first-order term is the sum of a local and a nonlocal con
bution. We show that the expression for the local contrib
tion to the first-order term can be written in terms of t
static structure factor. The well-knownG0W0 approximation
to the self-energy includes the zeroth-order term at the n
interacting level and the local contribution to the first-ord
term within the RPA, but the nonlocal contribution to th
first-order term is absent. It is shown that the inclusion
local-field corrections changes the value of the first-or
term significantly but preserves its momentum independ
form. An approximate calculation of the nonlocal term
presented. The inclusion of nonlocal effects changes the fi
order term quantitatively and qualitatively, indicating th
these effects are important for calculating the vertex fu
tion.

This paper is organized as follows. A short introduction
the jellium model is given in Sec. II. Exact relations for th
moments of the spectral function and the coefficients of
high-energy expansion are given, and the corresponding
grams are given in Sec. III. Approximate self-energy theor
used for later comparisons are introduced in Sec. IV. In S
V we present our results for the first two coefficients in t
self-energy expansion and the first and second moment
the spectral function and show that the higher moments
verge in the HEG. We draw our conclusions in Sec. VI a
present an outlook for future investigations. The derivatio
of the exact expressions for the first and second moments
given in the two appendixes.
©2004 The American Physical Society13-1
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II. THE JELLIUM MODEL

The Hamiltonian of the HEG is

Ĥ5(
k,s

e0~k!aks
1 aks1

1

2V (
q

v~q!~ r̂qr̂2q2N̂!, ~1!

wherer̂q is the density operator andN̂ is the number opera
tor,

r̂q5(
ks

aks
1 ak1qs , N̂5(

ks
aks

1 aks , ~2!

andaks
1 (aks) are the fermionic creation~annihilation! opera-

tors. The free dispersione0(k) and the Coulomb potentia
v(q) are given by

e0~k!5
\k2

2m
, v~q!5

4pe2

q2
. ~3!

It is understood that in theq summation of Eq.~1! and all
following equations, theq50 term is omitted, which follows
from the cancellation of this term with that from the unifor
positive background. The uniform charge density isn0
5Ne /V, whereNe electrons occupy a volumeV. The prop-
erties of the HEG are usually written in terms of the dime
sionless parameterr s , which is related to the electron den
sity by 1/n054pr s

3a0
3/3, wherea0 is the Bohr radius. Since

the density is given in terms of the Fermi momentumkf as
n05kf

3/3p2, we have the relation

kf5
1

ar sa0
, a5S 4

9p D 1/3

'0.521 06. ~4!

All quantities in this paper are given in units ofEf andkf .
To convert quantities from units ofEf to atomic units one
divides by 2(ar s)

2.

III. EXACT RELATIONS FOR THE SPECTRAL
MOMENTS

A. Spectral functions

In a translationally invariant system such as the HEG
Green’s functionGs(k,v) and self-energySs(k,v) are re-
lated by

Gs~k,v!5
1

v2e0~k!2Ss~k,v!
. ~5!

In the spectral representation the Green’s function is writ
as

Gs~k,v!5E
2`

`

dv8
As~k,v8!

v2v81 id sgn~v82m!
, ~6!

whereAs(k,v) is the spectral function andm is the chemical
potential. The spectral function is therefore related to
imaginary part of the Green’s function by
04511
-

e

n

e

As~k,v!5
1

p
uImGs~k,v!u, ~7!

or explicitly, using Eq.~5!,

As~k,v!5
1

p

uImSs~k,v!u

@v2e0~k!2ReSs~k,v!#21@ ImSs~k,v!#2
.

~8!

The frequency moments of the spectral function are defi
as

M ks
(n)5E

2`

`

dvvnAs~k,v!. ~9!

The self-energy can also be written in terms of a spec
function,

Ss~k,v!5Sx,s~k!1E dv8
Cs~k,v8!

v2v81 id sgn~v82m!
,

~10!

whereSx,s(k) is the frequency-independent exchange te
whose structure will be discussed below.

B. General relation between the spectral moments and the
high-energy expansion of the self-energy

Expanding the denominator in Eq.~6! one obtains

Gs~k,v!5 (
n51

n111 M ks
(n21)

vn
1 f 1~k,v!, ~11!

where f 1(k,v) is a quantity decaying faster thanv2(n111),
and n1 is the order up to which the moments are finite.~In
Sec. V D we show thatn152 for the HEG.!

A similar expression is expected to hold for the se
energy

Ss~k,v!5 (
p50

n121
Sks

(p)

vp
1 f 2~k,v!, ~12!

where f 2(k,v) is a function decaying faster thanv2(n121).
By inserting Eqs.~11! and ~12! into Eq. ~5!, expanding the
right-hand side of Eq.~5!, and equating the coefficients o
powers of 1/v we obtain

M ks
(0)51, Sks

(0)5M ks
(1)2e0~k!, ~13!

and

Sks
(1)5M ks

(2)2~M ks
(1)!2. ~14!

It is a general property of these relations that thepth coeffi-
cientSks

(p) is determined by the spectral moments up to or
p11.
3-2
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C. Derivation of the first and the second moments

The nth moment of the spectral function is given by th
nth derivative with respect to timet of the time-dependen
spectral function,15

As~k,t !5^@aks~ t !,aks
1 ~0!#1&, ~15!

evaluated att50. By calculating these derivative using th
Heisenberg equation of motion we get ann-fold nested com-
mutator with the Hamilton operatorĤ,

~16!

where ^•••& denotes the ground-state expectation value
the system.

The zeroth moment is

M ks
(0)5^@aks ,aks

1 #1&51, ~17!

which gives the normalization of the spectral function.
Appendix A we show that the first moment of the spect
function of the HEG is given by

M ks
(1)5e0~k!1Sx,s~k!, ~18!

whereSx,s(k) is the exchange self-energy

Sx,s~k!52
1

V (
q

v~k2q!nqs , ~19!

andnks is the expectation value of the number operator

nks5^aks
1 aks ,&, ~20!

i.e., the exact momentum distribution function. From E
~13! and ~18! one obtains

Sks
(0)5Sx,s~k!. ~21!

Equation~18! has been derived, for example, by von Ba
and Holm8 directly from the spectral representation of t
Green’s function and the self-energy.

For the second moment we find, see Appendix B,

M ks
(2)5e0

2~k!12e0~k!Sks
(0)1

1

V2 (
q

v2~q!

3^r̂qr̂2q&2
1

V2 (
qq8

v~q!v~q8!nk2q2q8s

2
2

V2 (
qq8

v~q!v~q8!^ak2q8s
1 r̂qak2q2q8s&.

~22!

Let us discuss the structure of the second moment in de
First we note the existence of a momentum- and sp
independent term in the second line which can be rewri
in terms of the static structure factor,1
04511
f

l

.

il.
-
n

S~q!52Nedq,01
1

Ne
^r̂qr̂2q&. ~23!

Sinceq50 has to be omitted in theq summation, we obtain

1

V2 (
q

v2~q!^r̂qr̂2q&5
n0

V (
q

v2~q!S~q!. ~24!

It follows from Eqs.~14!, ~18!, and~22! thatSks
(1) consists of

a local, spin-independent contribution and a nonlocal, sp
dependent contribution,

Sks
(1)5S loc

(1)1Snl,ks
(1) ~25!

with

S loc
(1)5

n0

V (
q

v2~q!S~q!, ~26!

and

Snl,ks
(1) 52

1

V2 (
qq8

v~q!v~q8!nk2q2q8s2
2

V2 (
qq8

v~q!v~q8!

3^ak2q8s
1 r̂qak2q2q8s&2~Sks

(0)!2. ~27!

One can show that the second term in Eq.~27! is real since
the ground-state wave function of the HEG can always
chosen to be real.

Farid14 has calculated the first three terms in the hig
energy expansion of the self-energy for systems of spin-
fermions in d-dimensionalr space, interacting through a
arbitrary two-body potentialv(r2r 8). For the first-order
term he found a local spin independent and a nonlocal s
dependent contribution as well. After Fourier transformin
our expressions~25! and~27! for the HEG are equivalent to
special cases of Farid’s.

IV. APPROXIMATE THEORIES OF THE SELF-ENERGY
OF THE HEG

In this section we introduce approximations to the se
energy which have been widely used in earlier work. We w
discuss some of these approximations later within the fra
work of the previously derived exact relations. The se
energy can be written as

S~k,v!5
i

~2p!4E d3qdv8G~k1q,v1v8!

3W~q,v8!G~k,v,k1q,v1v8!, ~28!

where G is the vertex function. The dynamically screen
interaction potentialW is defined as

W~q,v!5
v~q!

e~q,v!
5

v~q!

12v~q!P~q,v!
, ~29!

wheree(q,v) is the dielectric function andP is the irreduc-
ible polarization propagator
3-3
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P~q,v!52
2i

~2p!4E d3kdv8G~q1k,v1v8!

3G~k,v8!G~k,v8,q1k,v1v8!. ~30!

Together with Eq.~5! and the expression for the vertex fun
tion these equations form a self-consistent set of equat
known as Hedin’s equations.16,17 The fundamental problem
lies in an appropriate choice of the vertex function.

Self-consistent calculations of the self-energy using a
phisticated ansatz for the full vertex function have be
presented.2–4 The resulting occupied bandwidth is broad
than the free-electron result and much broader than the
perimental data. According to Yasuharaet al.2 these results
may be made consistent with the experimental observat
by considering final state effects, although this idea has b
sharply criticized.18

A first approximation is to set the vertex function equal
unity. Because of the resulting structure of the self-ene
this scheme is called theGW approximation, and was firs
proposed by Hedin.16 Barth and Holm9 performed self-
consistentGW calculations for the HEG and found an in
crease in the valence bandwidth compared with the fr
electron result as well as a broad and featureless sate
structure. However, both results contradict experiment
significant improvement for the satellite structure has b
obtained using a self-consistent cumulant expansion.19

Another approximation is to replace the interacti
Green’s function by the noninteracting Green’s functionG0,
but to retain the vertex functions in Eqs.~28! and ~30! in a
simplified form, asG(q,v). Such a scheme has been us
for example, to study quasiparticle properties.1,10 In this ap-
proximation the self-energy is written as

S~k,v!5
i

~2p!4E d3qdv8G0~k1q,v

1v8!W~q,v8!G~q,v8!, ~31!

and

W~q,v!5
v~q!

e~q,v!
5

v~q!

12v~q!G~q,v!P0~q,v!
, ~32!

where the independent-electron polarizabilityP0 is given by

P0~q,v!52
2i

~2p!4E d3kdv8G0~k1q,v1v8!G0~k,v8!.

~33!

Assuming the simplified form of the vertex functionG(q,v)
a summation of ladder diagrams leads to

G~q,v!5
1

11v~q! f ~q!P0~q,v!
, ~34!

where f (q) is the local-field factor. From Eqs.~32! and~34!
we obtain for the dielectric function
04511
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e~q,v!512
v~q!P0~q,v!

11v~q! f ~q!P0~q,v!
. ~35!

We call this scheme the local-field approximation. Resu
for the HEG give a narrowing of the occupied bandwidth20

Various forms of the local-field factor have been su
gested over the years. Hubbard~H! derived the formf H(q)
5q2/2(q211).21 An improved theory of the local-field fac
tor was suggested by Singwi, Tosi, Land, and Sjo¨lander
~STLS!.22 Vashishta and Singwi~VS! modified the STLS
theory so that it almost exactly fulfills the compressibili
sum rules.23 The VS expression can be adequately fitted
the form f VS(q)5A@12exp(2Bq2)#, whereA andB are fit-
ting parameters.23

In some studies in the 1980s24,25 quasiparticle properties
were calculated by including the vertex correction in the e
pression for the screened interaction of Eq.~32! but not in
the self-energy integral. This approximation leads to a
lence bandwidth very close to the experimental data. It
however, an inconsistent approach.

In their original work on theGW approximation Hedin16

and later Lundqvist26 solved Eqs.~31! and ~32! for f (q)
50, i.e., G(q,v)51. This is equivalent to using the well
known Lindhard or random phase approximation~RPA! di-
electric function,

e0~q,v!512v~q!P0~q,v! ~36!

in the expression for the screened interactionW0. In this
paper we refer to this scheme as theG0W0 approxi-
mation. Within this approximation the valence bandwidt
are close to the values calculated within the local-fie
approximation.20

V. RESULTS AND DISCUSSION

We are specifically interested in the properties of the H
at metallic densities (1,r s,5). Various QMC calculations
show that in this region the HEG is unpolarized,27,28 and we
therefore limit ourselves to this case.

A. The zeroth-order term S0

The zeroth-order term corresponds to the well-known d
gram for the exchange self-energy@Fig. 1~b!#. If the nonin-
teracting Green’s function is used, the diagram represents
HF approximation@Fig. 1~a!#.

After inserting Eq.~21! into Eq. ~19! and performing the
angular integration one obtains for the zeroth-order term

Sk
(0)52

2ar s

pk E
0

`

dqqnqlnUk1q

k2qU, ~37!

where we made use of the fact thatnq is isotropic. By insert-
ing the noninteracting momentum distribution of the HEG

nk
(0)5H 1, k,1

0, k.1,
~38!

into Eq. ~37! we obtain the well-known HF result
3-4
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Sk
(HF)52

ar s

p F21S 1

k
2kD lnUk11

k21UG . ~39!

Note that whenever the noninteracting Green’s function
used in obtaining the self-energy, we findSk

(0)5Sk
(HF) .

We have performed calculations ofSk
(0) using different

momentum distributions beyond HF. First, we determinednk
from the equation

nk5E
2`

m

dvA~k,v!, ~40!

whereA(k,v) is the spectral function calculated using t
G0W0 self-energy in Eq.~8!.

Highly accurate momentum distributions have been de
mined from diffusion QMC calculations. Ortiz and Ballon
~OB! ~Ref. 29! performed such calculations for a range
values ofr s , and fitted their momentum densities to polyn
mials, with different forms forq above and below one. A
different fitting to the same QMC data was suggested
Senatore, Moroni, and Ceperley~SMC!.30 In a recent paper
Gori-Giorgi and Ziesche~GZ! proposed another fitting for
mula which obeys some other constraints.31,33 In Fig. 2 we
plot the HF,G0W0, OB-QMC, and GZ-QMC formulas for
r s55, where the finite jumpZkf

at k/kf51 is the weight of
the quasiparticle at the Fermi edge. The SMC-QMC cu
lies very close to the OB-QMC data. One of the distincti
features of the GZ fitting is the infinite that the momentu
distribution function approaches the Fermi edge with an
finite slope. This feature resembles the shape of theG0W0
momentum distribution. The QMC data are only calcula
at k vectors commensurate with the simulation cell used
it is not clear whether QMC calculations closer to the Fer
edge would show such a feature.

The question arises of whether the uncertainties in
correct momentum distribution have a significant impact
our values forSk

(0) . Figure 3 showsSk
(0) at r s55, calculated

from Eq.~37! using the HF,G0W0, OB-QMC, and GZ-QMC

FIG. 1. Self-energy diagrams corresponding to the terms use
this paper. The lines represent the noninteracting Green’s func
~single solid line!, the interacting Green’s function~double solid
line!, the bare Coulomb interaction~dashed line!, and the screened
interaction~wiggly line!. The diagrams represent~a! the exchange
self-energy in HF theory,~b! the exact exchange self-energy,~c! the
GW self-energy, and~d! the first vertex correction beyondGW in
the single-Slater-determinant approximation~SSDA!.
04511
s
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momentum distributions. The inclusion of correlation i
creasesSk

(0) at smallk and reduces the dispersion ofSk
(0) .

The G0W0 result is already very close to the QMC dat
presenting a significant improvement over the HF curve. T
differences between the various QMC fits at smallk are al-
most as large as between the GZ-QMC andG0W0 values.
This shows that an accurate determination of the shape o
momentum distribution is needed to exclude any ambigu
for this benchmark. However, because the differences
tween the results obtained with the different QMC fits a
small we believe that our values for the first moment a
already highly accurate. In Table I we give some numeri
values forSk

(0) obtained at three values ofk using the HF,
G0W0, OB-QMC, SMC-QMC, and GZ-QMC momentum
distributions.

B. The local part of the first-order term S loc
„1…

In the high-energy expansion of the self-energy, the fi
term is the (v-independent! exchange term, represented b

in
n

FIG. 2. The momentum distribution function of the HEG atr s

55 within HF andG0W0 theory, and from the QMC fitting formu-
las of Ortiz and Ballone29 ~OB! and Gori-Giorgi and Ziesche31

~GZ!.

FIG. 3. Sk
(0) for r s55 calculated from Eq.~37! using the OB-

QMC, GZ-QMC,G0W0, and HF momentum distributions.
3-5
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diagram~b! in Fig. 1. The next term goes as 1/v and con-
tains the difference of diagrams~c!–~b!. Since the Green’s
function G(k,v)→1/v in the high-energy limit, it does no
appear in the final expression for the local term.

The relation to the local termS loc
(1) can be seen by writing

the structure factor in terms of the dielectric functio
e(q,v),1

S~q!52
3q2

8ar s
E

0

`

dvIm
1

e~q,v!
. ~41!

Inserting Eq.~41! into Eq.~26! gives exactly the high-energ
limit of Eq. ~31! if the vertex function is set to unity, i.e., th
GW approximation. Consequently, theG0W0 approximation
corresponds to using the noninteracting Green’s function
the RPA screened potential in the diagram of Fig. 1~c!.

The local part of the first-order term is evaluated from E
~26!. SinceS(q) is isotropic we obtain

S loc
(1)5

32

3p2
~ar s!

2E
0

` dq

q2
S~q!. ~42!

Equations~42! and ~41! are equivalent to the expressio
for the second momentM k

(2) in terms of the spectral func
tion of the self-energy and the screened interaction given
Eq. ~17! of the paper by von Barth and Holm.8

Diffusion QMC calculations give the pair correlatio
function g(r ) directly.32 From these data one can calcula
highly accurate static structure factors using the relation

S~q!215n0E d3reiqr@g~r !21#. ~43!

Equations~42! and ~41! therefore enable us to calculate th
local term and the second moment within the self-ene
approximations introduced in Sec. IV by using the cor
sponding dielectric function. In addition we study the loc
term in the HF approximation, where the structure facto
given by

S~q!5H 3

4
q2

1

16
q3, q,2

1, q.2.

~44!

Structure factors within the RPA using the dielectric fun
tion of Eq. ~36! and the VS approximation@ f (q)5 f VS(q) in
Eq. ~35!# were calculated from Eq.~41!. Ortiz, Harris, and
Ballone28 have performed diffusion QMC calculations of th

TABLE I. The zeroth-order termSk
(0) for r s55 calculated using

the HF,G0W0, OB, SMC, and GZ-QMC momentum distribution
and Eqs.~37! and ~18!.

k HF G0W0 OB SMC GZ

0.0 23.317 23.057 23.131 23.114 23.095
0.6 22.885 22.631 22.673 22.656 22.669
1.0 21.686 21.573 21.578 21.561 21.573
1.4 20.640 20.654 20.659 20.662 20.658
04511
d

.

y

y
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static structure factor of the HEG, and a fitting formula usi
this data has been developed by Gori-Giorgi, Sacchetti,
Bachelet~GSB!.32,33 Results forr s55 and QMC-GSB data
for r s51 are shown in Fig. 4, where we have also includ
the HF structure factor of Eq.~44!. The HF structure factor is
linear at smallq while the more advanced approximation
which include correlation effects are quadratic at smallq.
The linear dependence in HF theory leads to a divergenc
the integral in Eq.~42!.34

All approximations which go beyond HF theory give fi
nite values ofS loc

(1) , since the structure factor is proportion
to q2. We calculatedS1

loc from Eq.~42! using the GSB-QMC
formula and the RPA and VS local-field approximations f
the structure factor~Fig. 5!. The main contribution to the
integral in Eq. ~42! is from the smallq region. Figure 4
shows that at smallq the values of the structure factor

FIG. 4. The structure factorS(q) as a function ofq at r s55.
Data from the GSB fitting formula to the QMC data, the HF a
proximation, and from the RPA and VS dielectric functions a
shown. Data for the QMC-GSB structure factor atr s51 are also
presented.

FIG. 5. The local termS loc
(1) as a function of the density param

eter r s calculated using different approximations for the structu
factor and the GSB-QMC structure factor in Eq.~42!.
3-6
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which include correlation effects lie almost on top of ea
other. It is for this reason that the various approximations
S loc

(1) in Fig. 5 are rather similar. The RPA result deviat
from the QMC result more than the local-field ones. Th
reflects the well-known fact that correlation effects are i
portant in the description of the electron gas at metallic d
sities. The inclusion of local-field effects withinS(q) gives
results surprisingly close to the QMC data even at quite
densities, with the VS result being closest.

In the high-density limitS(q) approaches the HF resul
although the quadratic behavior forq→0 is preserved~see
the QMC-GSB curve forr s51 in Fig. 4!. This results in a
contribution proportional tor s

2ln rs to S loc
(1) in the high-

density limit. In Fig. 6 we plotS loc
(1)/r s

2 as a function ofr s .
The RPA data clearly shows the logarithmic divergence
r s→0. It is possible to calculate this leading order term a
lytically within the RPA, using the strategy of Gell-Man
and Brückner as presented in the review paper by Hedin
Lundqvist,17 and we obtain

S loc
(1);

8

p
~ar s!

2S 2
1

2p
ln r s1bD . ~45!

By fitting the numerical values for smallr s we obtain b
'0.706. The dotted curve in Fig. 6 corresponds to Eq.~45!
with b50.706.

The QMC and VS data follow similar curves to the RP
but for these cases no data is available at very lowr s . How-
ever, the data in Fig. 6 strongly suggests that the logarith
divergence in the slope is not an artifact of the RPA.

C. The nonlocal part of the first-order term Snl,k
„1…

The nonlocal term of Eq.~27! is complicated due to the
four-operator expectation value in the second term. The e
calculation of this term within QMC is the subject of ong

FIG. 6. The ratioS loc
(1)/r s

2 as a function of the density paramet
r s calculated using different approximations for the structure fac
and the GSB-QMC structure factor in Eq.~42!. In addition we plot
this ratio for the high-density limit~HDL! of the RPA Eq.~45!. The
symbols indicate the lower limit of the range where the fitting fo
mulas for the structure factor in QMC~diamond! and VS ~circle!
are valid.
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ing work and will be presented in a forthcoming paper. In t
present paper we will analyze the nonlocal term within t
single-Slater-determinant approximation~SSDA!. The SSDA
corresponds to the well-known mean-field decoupling pro
dure. For the expectation value in question we obtain

^ak2q8s
1 r̂qak2q2q8s&'(

ps8
dq,0̂ ak2q8s

1 ak2q2q8s&

3^aps8
1 ap1qs8&

2(
ps8

dp,k2q2q8ds,s8^ak2q8s
1 ap1qs8&

3^aps8
1 ak2q2q8s&. ~46!

Dropping again theq50 term we obtain for the second term
in Eq. ~27!,

2
2

V2 (
qq8

v~q!v~q8!^ak2q8s
1 r̂qak2q2q8s&

'
2

V2 (
qq8

v~q!v~q8!nk2q8snk2q2q8s ~47!

and arrive at the following expression for the nonlocal te
within the SSDA,

Snl,ks
(1) 52

1

V2 (
qq8

v~q!v~q8!nk2q2q8s~122nk2qs!

2~Sks
(0)!2. ~48!

This term corresponds to the high-energy limit of diagra
~d! in Fig. 1, which exhibits crossed interaction lines a
goes substantially beyond theGW approximation@diagram
~c! of Fig. 1#.

Equation~48! can be rewritten as

Snl,k
(1) 52

2ar s

pk E
0

`

dqqSq
(0)~122nq!lnUk2q

k1qU2~Sk
(0)!2.

~49!

For the sake of internal consistency, the noninteracting m
mentum distribution of Eq.~38! should be used in Eq.~49!.14

However, to gain some understanding of the influence
correlation we also calculated the SSDA nonlocal term us
the QMC momentum distribution. Within this approach t
correlation reduces the first-order term at smallk and
smooths it aroundk51. This is only a preliminary resul
which needs to be tested by performing the full QMC calc
lation of the four-operator expectation value.

In Fig. 7 we showSk
(1) calculated as a sum of the QMC

value ofS loc
(1) and the SSDA result forSnl,k

(1) , using the QMC
and the HF momentum distributions. The full termSk

(1) is
reduced compared with its local contribution~dot-dashed
line in Fig. 7!.

Diagram~d! in Fig. 1 shows the first vertex correction i
a GWG scheme for the self-energy of Eq.~31!.1 Due to the
simplified form of the vertex function, any local-field ap

r

3-7
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proximation along the lines discussed in Sec. IV leads t
local ~i.e.,k-independent! correction asv→`. The VS value
~dashed line in Fig. 7! comes close to thek50 result of both
the QMC-SSDA and the HF-SSDA dispersions, but devia
increasingly at larger values ofk. This result shows that the
inclusion of nonlocal effects into the vertex function is im
portant.

D. Higher-order terms

After calculating the zeroth- and first-order terms of t
self-energy expansion for large frequencies of Eq.~12! we
can directly obtain the first and second spectral moments
Eqs. ~13! and ~14!. However, the question remains wheth
the higher moments are finite, i.e., we have to determine
indexn1 of the last finite moment in the expansions Eqs.~11!
and ~12!.

Instead of using the commutator expression of Eq.~16!
we can check the momentsM ks

(n) by a direct evaluation of the
defining integral of Eq.~9! using the spectral function of Eq
~8!. If the imaginary part of the self-energy is zero outside
fixed frequency range, the integral is finite for any pow
n, and all moments are finite. Otherwise, the converge
of the integral is determined by the high-frequency limit
the integrand, i.e., by the behavior ofvn22uImS(k,v)u at
v→6`. When calculating the imaginary part of theG0W0
self-energy in the large-frequency limit, an intermedia
step is

ImS~k50,v!;(
q

v~q!Ime21@q,v2e0~q!#. ~50!

The leading contribution comes from the positive disp
sion branch in Ime21 and restricts the summation in Eq.~50!
via v'2e0(q) to large values ofq. Therefore, the inverse
dielectric function can be replaced by the dielectric funct

FIG. 7. The first-order termSk
(1) calculated within the SSDA for

r s55.0 asS loc
(1)1Snl,k

(1) using the OB-QMC momentum distributio
~solid line! and the HF momentum distribution~dotted line!. The
dashed line indicates the local (k-independent! correction within
VS. As a reference we have also plotted the QMC value ofS loc

(1)

~dot-dashed line!.
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itself, Ime21→2Ime. With the RPA expression, the integra
can be evaluated analytically, which gives the leading te

ImS~k,v!;2
16A2

3p

~ar s!
2

v3/2
52

C

v3/2
, v→1`.

~51!

Consequently, the integrand for thenth moment behaves a
vn2223/2 at large positive frequencies, and the last finite m
ment is obtained forn52. In Fig. 8 we display the imagi-
nary part of theG0W0 self-energy and its limiting behavio
given by Eq.~51!.

We have analyzed the other diagrams to second orde
the bare Coulomb potential and found that only the ver
diagram in Fig. 1~d! contributes to the 1/v3/2 term in the
high-energy limit as

ImSG~k,v!;1
1

2

C

v3/2
, v→1`, ~52!

whereC is defined by Eq.~51!. From general consideration
we expect that the contributions of all higher-order diagra
in the high-energy expansion of ImS decay faster than
1/v3/2. Therefore we conclude quite generally that in t
HEG, n152, and therefore the spectral momentsM k

(0)51,
M k

(1) andM k
(2) are the only finite ones. This surprising resu

can be understood if one notes~1! that the electron disper
sion e0(q) is unlimited at positive energies and~2! that the
basic interaction potentialv(q) has a power-law dependenc
at large momentum transferq ~hereq22).

We have also analyzed the high-energy limit of the ima
nary part of the self-energy in the local-field approximatio
defined by Eqs.~31!, ~32!, and~34!, and find that

ImS f~k,v!;2@12 f ~q→`!#
C

v3/2
, v→1`, ~53!

FIG. 8. The imaginary part of theG0W0 self-energy atr s55.0
for two different values ofk. In addition we plot the leading term o
uImS(k,v)u in the high-energy limit~HEL!, given by Eq.~51!.
3-8
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whereC is defined by Eq.~51!. For the Hubbard local-field
factor we havef (q→`)51/2, thus reproducing exactly th
sum of the terms defined by Eqs.~51! and ~52! in the high-
energy limit of ImS f(k,v).

The general relation between the high-frequency limit
ImS and the spectral moments works in both directions
the commutation relation of Eq.~16! produces finite results
up to ordern1, the imaginary part of the exact self-energ
decays faster thanv2(n121).

VI. CONCLUSION AND OUTLOOK

We have derived analytic expressions for the lowest th
moments of the spectral function of the one-particle Gree
function of the three-dimensional HEG. These moments
related to the zeroth and first coefficients in the expansio
the self-energy in inverse powers of the frequency.

The zeroth-order term in the high-energy expansion w
calculated using the HF,G0W0, and QMC momentum dis
tributions. We established that the use of different parame
zations of the QMC data does not change the numerica
sults for the zeroth-order term significantly. TheG0W0 and
QMC data gives first moments which are significantly larg
than the HF values below the Fermi edge and very clos
them above the Fermi edge. TheG0W0 result does not differ
significantly from the QMC data.

The first-order term in the high-energy expansion can
written as the sum of a local and a nonlocal term. For
HEG, we have shown that the local term can be rewritten
terms of the static structure factor. We have calculated
local term within various approximations, including a para
etrization of the QMC data for the structure factor.

We have performed an approximate calculation of
nonlocal term in the SSDA, which indicates that it is lar
and has a strongk dependence. The local part is positive, b
the nonlocal part is negative and therefore leads to a subs
tial reduction in the size of the first-order term and the c
responding second moment of the spectral function. We h
identified the nonlocal term in the SSDA with the hig
energy limit of the first vertex correction beyondGW. A
QMC calculation of the nonlocal term would be very usef
and this will be addressed in a forthcoming paper. We h
shown for different approximations that higher moments
divergent and concluded that this is a general property of
HEG.

Our results provide additional benchmarks for self-ene
theories of the HEG and might help in resolving the curr
debate concerning the valence bandwidth of alkali metal
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APPENDIX A: DERIVATION OF THE FIRST MOMENT

For the derivation of the moments we use the followi
commutation relations which are derived from the antico
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mutation relations of the fermionic operators and the expr
sion for the density operator given in Eq.~2!,

@aks ,r̂q#25ak1qs , @aks
1 ,r̂q#252ak2qs

1 . ~A1!

According to Eq.~16! the first moment is

M ks
(1)5^†@aks ,Ĥ#2 ,aks

1
‡1&. ~A2!

Decomposing the Hamiltonian of Eq.~1! into the free and
the interacting part,Ĥ5Ĥ11Ĥ2, we calculate

†@aks ,Ĥ1#2 ,aks
1
‡15e0~k!. ~A3!

Using

@aks ,r̂qr̂2q#252r̂qak2qs1aks , @aks ,N̂#25aks ,
~A4!

we obtain

@aks ,Ĥ2#25
1

2V (
q

v~q!r̂qak2qs . ~A5!

Therefore

†@aks ,Ĥ2#2 ,aks
1
‡15

1

V (
q

v~q!@ r̂qak2qs ,aks
1 #1

52
1

V (
q

v~q!ak2qs
1 ak2qs . ~A6!

Adding Eqs.~A3! and~A6! and taking the expectation valu
we arrive at Eq.~18!.

APPENDIX B: DERIVATION OF THE SECOND MOMENT

According to Eq.~16! the second moment is given by

M ks
(2)5^@†@aks ,Ĥ#2 ,Ĥ‡2 ,aks

1 #1&

5^@†@aks ,Ĥ1#2 ,Ĥ1‡2 ,aks
1 #1&

12^@†@aks ,Ĥ1#2 ,Ĥ2‡2 ,aks
1 #1&

1^†@@aks ,Ĥ2#2 ,Ĥ2#2 ,aks
1
‡1&. ~B1!

The first two expectation values in Eq.~B1! are easily evalu-
ated as

^@†@aks ,Ĥ1#2 ,Ĥ1‡2 ,aks
1 #1&5@e0~k!#2, ~B2!

^@†@aks ,Ĥ1#2 ,Ĥ2‡2 ,aks
1 #1&5e0~k!Sks

(0) . ~B3!

For the third term in Eq.~B1! we require the following com-
mutator,
3-9
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†@aks ,Ĥ2#2 ,Ĥ2‡2

5
1

2V2 (
q

v~q!(
q8

v~q8!@ r̂qak2qs ,r̂q8r̂2q8#2

2
1

2V2 (
q

v~q!(
q8

v~q8!@ r̂qak2qs ,N̂#2 .

Using

@ r̂qak2qs ,r̂q8r̂2q8#25 r̂qak2qs12r̂qr̂q8ak2q2q8s ,

and

@ r̂qak2qs ,N̂#25 r̂qak2qs , ~B4!

one arrives at the following expression,

†@aks ,Ĥ2#2 ,Ĥ2‡25
1

V2 (
q

v~q!(
q8

v~q8!r̂qr̂q8ak2q2q8s .

With Eq. ~A1! and
.

e

04511
@ r̂q ,ak2q8s
1

#25ak2q2q8s
1 , ~B5!

we finally obtain

@†@aks ,Ĥ2] 2 ,Ĥ2‡2 ,aks
1 ] 1

5
1

V2 (
q

v~q!(
q8

v~q8!@ r̂qr̂q8ak2q2q8s ,aks
1 #1

5
1

V (
q

v2~q!r̂qr̂2q2
1

V2 (
q

v~q!

3(
q8

v~q8!ak2q2q8s
1 ak2q2q8s

2
2

V2 (
q

v~q!(
q8

v~q8!ak2q8s
1 r̂qak2q2q8s .

~B6!

With the definitions of Eqs.~B2! and ~B3! we arrive
at Eq.~22!.
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