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I. THEORY IN DETAIL

A. The paring matrix fluctuation, particle-particle Green function, and the particle-particle Random Phase
Approximation

In the absence of a pairing field, the pairing matrix

κij(t) = 〈ΨN
0 |aHi(t)aHj (t)|ΨN

0 〉

where |ΨN
0 〉 is the N -electron ground state, is identically zero. The operators a†Hi(t) are the creation operators

in the Heisenberg picture, a†Hi(t) = e
i
~ (Ĥ−νN̂)ta†ie

−i
~ (Ĥ−νN̂)t and the term −νN̂ , with ν the chemical potential, is

added to the Hamiltonian such that the N -electron state is the minimum under the total Hamiltonian Ĥ − νN̂
when the particle number is allowed to change. Under a perturbation F̂ (t) in the form of a pairing field, F̂ (t′) =∑
kl fkla

†
Hl

(t′)a†Hk(t′)θ(t′), the retarded Green function K̄R

K̄R
ijkl(t− t′) =

−i
~
θ(t− t′)〈ΨN

0 |[aHi(t)aHj (t), a
†
Hl

(t′)a†Hk(t′)]|ΨN
0 〉, (1)

describes the linear change in the paring matrix 〈ΨN
0 |aHi(t)aHj (t)|ΨN

0 〉:

κij(t) =
−i
~

ˆ t

0

〈ΨN
0 |[aHi(t)aHj (t), F̂ (t′)]|ΨN

0 〉dt′

=
∑
kl

K̄R(t− t′)ijklfkl

Since the paring matrix 〈ΨN
0 |aHi(t)aHj (t)|ΨN

0 〉 = 〈ΨN
0 |aiaj |ΨN

0 〉 = 0 in the absence of the pairing field, the retarded

Green function is identical to the dynamic pairing matrix fluctuation, K̄(t− t′)

K̄ijkl(t− t′) =
−i
~
θ(t− t′)〈ΨN

0 |[
(
aHi(t)aHj (t)− 〈ΨN

0 |aiaj |ΨN
0 〉
)
,
(
a†Hl(t

′)a†Hk(t′)− 〈ΨN
0 |a
†
l a
†
k|Ψ

N
0 〉
)

]|ΨN
0 〉,

The dynamic pairing matrix fluctuation is the pairing interaction counterpart of the polarization propagator, which
determines the correlation energy via the well-known adiabatic-connection fluctuation-dissipation (ACFD) theorem
[4, 12]. In section I B, we will formulate a similar adiabatic connection in terms of the dynamic pairing matrix
fluctuation. The particle-particle Green function K(t− t′), defined as [2]

Kijkl(t− t′) =
−i
~
〈ΨN

0 |T [aHi(t)aHj (t)a
†
Hl

(t′)a†Hk(t′)]|ΨN
0 〉 (2)
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where T is the time-ordering operator, is a closely related quantity. The dynamic paring matrix fluctuation K̄(t− t′)
and the pp-Green function K(t− t′) contain information on the same physical properties, namely 2-electron removal
and addition energies and their corresponding transition amplitudes. This becomes apparent from their Fourier
Transform

Kijkl(E) =

ˆ +∞

−∞
e
i
~E(t−t′)Kijkl(t− t′)d(t− t′)

=
−i
~
∑
n

ˆ ∞
−∞

e
i
~ (EN0 −E

n+2
n +2ν+E)(t−t′)θ(t− t′)d(t− t′)〈ΨN

0 |aiaj |ΨN+2
n 〉〈ΨN+2

n |a†l a
†
k|Ψ

N
0 〉

− i
~
∑
n

ˆ ∞
−∞

e
i
~ (EN0 −E

N−2
n −2ν−E)(t′−t)θ(t′ − t)d(t− t′)〈ΨN

0 |a
†
l a
†
k|Ψ

N−2
n 〉〈ΨN−2

n |aiaj |ΨN
0 〉.

where the last line invokes the completeness of the N − 2 and N + 2 electron wavefunction basis. At this point, it is
convenient to introduce a short-hand notation for the transition pairing matrix elements

χn,N−2ij = 〈ΨN−2
n |aiaj |ΨN

0 〉 (3)

χn,N+2
ij = 〈ΨN

0 |aiaj |ΨN+2
n 〉

and the transition energies

ωN−2n = EN0 − EN−2n − 2ν (4)

ωN+2
n = EN+2

n − EN0 − 2ν. (5)

For a physical system, the energy decreases monotonically with the number of electrons, so the term −2ν makes it
possible to distinguish the 2-electron removal energies from the 2-electron addition energies by their sign: the 2-electron
removal energies ωN−2n = EN0 −EN−2n −2ν are negative and the 2-electron addition energies ωN+2

n = EN+2
n −EN0 −2ν

are positive. The particle-particle Green function expressed in the energy domain is then

Kijkl(E) =
−i
~
∑
n

ˆ ∞
−∞

e
i
~ (−ωN+2

n +E)(t−t′)θ(t− t′)d(t− t′)χn,N+2
ij

(
χn,N+2
kl

)∗
− i
~
∑
n

ˆ ∞
−∞

e
i
~ (ωN−2

n −E)(t′−t)θ(t′ − t)d(t− t′)
(
χn,N−2kl

)
∗χn,N−2ij

=
∑
n

χn,N+2
ij (χn,N+2

kl )∗

E − ωN+2
n + iη

−
∑
n

(χn,N−2kl )∗χn,N−2ij

E − ωN−2n − iη
. (6)

Similarly, the dynamic paring matrix fluctuation and the retarded particle-particle Green function in energy domain
are

K̄ijkl(E) = K̄R
ijkl(E) =

∑
n

χn,N+2
ij (χn,N+2

kl )∗

E − ωN+2
n + iη

−
∑
n

(χn,N−2kl )∗χn,N−2ij

E − ωN−2n + iη

This form of the particle-particle Green function and the dynamic pairing matrix fluctuation reveals their most
interesting properties: they contain information on the vectors χn,N−2 and χn,N+2 with the amplitudes defined in (3)
and the 2-electron removal and addition energies, ωN−2n and ωN+2

n . Since the particle-particle Green function and the
dynamic pairing matrix fluctuation contain the same physical information, the following derivations can be expressed
equivalently in terms of the dynamic pairing matrix fluctuation. While we feel that the dynamic pairing matrix
fluctuation has a more straightforward interpretation as the response to a pairing perturbation than the pp-Green
function, the majority of the literature on many-body perturbation theory uses the language of Green functions. We
will therefore adopt the Green function formalism in the following derivations as well.
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There are several ways to derive the pp-RPA equations, which are similar in nature to their ph-RPA counterparts
[2, 19]. In the same way the particle-hole Green function can be approximated by an infinite series in terms of the
non-interacting Green function in the ph-RPA, the particle-particle Green function K(E) can be approximated in
terms of the non-interacting Green function K0(E) by

K(E) = K0(E) + K0(E)VK(E), (7)

an equivalent form of which can be found in Ref. ([2]). In Eq. (7) all quantities, including the two-electron integrals

Vijkl = 〈ij||kl〉
= 〈ij|kl〉 − 〈ji|kl〉

=

ˆ
φ∗i (x1)φ∗j (x2)(1− P̂12)φk(x1)φl(x2)

|r1 − r2|
dx1dx2,

where x represents the one-electron spatial vector and spin coordinate, are expressed in an antisymmetrized basis, so
only matrix indices ab with a < b and ij with i < j need to be considered. All matrix operations, such as the trace
operation and matrix multiplication, are defined accordingly. The non-interacting particle-particle Green function,
expressed in an antisymmetrical basis, is the particle-particle Green function in the non-interacting limit,

K0
ijkl(t− t′) =

−i
~
〈ΦN0 |T [aIi(t)aIj (t)a

†
Il

(t′)a†Ik(t′)]|ΦN0 〉

=
−i
~

(δjlδik − δilδjk)
(
e−

i
~ (εi+εj−2ν)(t−t′)θ(i− F )θ(j − F )θ(t− t′) + e

i
~ (εi+εj+2ν)(t′−t)θ(F − i)θ(F − j)θ(t′ − t)

)
=
−i
~

(δjlδik − δilδjk)e−
i
~ (εi+εj−2ν)(t−t′) (θ(i− F )θ(j − F )θ(t− t′) + θ(F − i)θ(F − j)θ(t′ − t)) ,

where |ΦN0 〉 is the N -electron non-interacting reference state and the operators a†Ii(t) are the creation operators in

the interaction picture, a†Ii(t) = e
i
~ (Ĥ0−νN̂)a†ie

−i
~ (Ĥ0−νN̂) with Ĥ0 the non-interacting (one-electron) Hamiltonian.

Note that the non-interacting particle-particle Green function can also be written in terms of the non-interacting
one-particle Green function G0,

G0
ij(t− t′) =

−i
~
〈ΦN0 |T [aIi(t)a

†
Ij

(t′)]|ΦN0 〉

=
−i
~
δije

−i
~ (εi−ν)(t−t′)

(
θ(i− F )θ(t− t′)− θ(F − i)θ(t′ − t)

)
,

namely

K0
ijkl(t− t′) =

−~
i

(δikδjl − δilδjk)G0
ik(t− t′)G0

jl(t− t′)

=
−~
i

(
G0
ik(t− t′)G0

jl(t− t′)−G0
il(t− t′)G0

jk(t− t′)
)
.

The Fourier Transform of the non-interacting particle-particle Green function is

K0
ijkl(E) = (δikδjl − δilδjk)

−~
i

ˆ +∞

−∞
e
i
~EtG0

ik(t)G0
jl(t)dt

= (δikδjl − δilδjk)
−i
~

ˆ +∞

−∞
e
−i
~ (εi+εj−2ν−E)t

(
θ(i− F )θ(j − F )θ(t) + θ(F − i)θ(F − j)θ(−t)

)
dt (8)

= (δikδjl − δilδjk)

[
θ(i− F )θ(j − F )

E − (εi + εj − 2ν) + iη
− θ(F − i)θ(F − j)
E − (εi + εj − 2ν)− iη

]
(9)

where {εi} are the orbital energies of the non-interacting reference system.
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Eq. (7) can be solved by multiplying each side of the equation by (E − ωN−2n ) and subsequently taking the limit
E → ωN−2n

lim︸︷︷︸
E→ωN−2

n

(E − ωN−2n )K(E)ijkl = lim︸︷︷︸
E→ωN−2

n

(E − ωN−2n )
(
K0(E)ijkl +

∑
m<n,o<p

K0(E)ijmnVmnopK(E)opkl

)
.

This will separate out one single term on both sides of the equation: the term that has (E−ωN−2n ) in the denominator.

(χn,N−2kl )∗χn,N−2ij =
∑

m<n,o<p

K0(ωN−2n )ijmnVmnop(χ
n,N−2
kl )∗χn,N−2op .

The factor (χn,N−2kl )∗ that appears on both sides of the equation can then be canceled out

χn,N−2ij =
∑

m<n,o<p

K0(ωN−2n )ijmnVmnopχ
n,N−2
op

=
∑
o<p

(
θ(i− F )θ(j − F )

ωN−2n − (εi + εj − 2ν) + iη
− θ(F − i)θ(F − j)
ωN−2n − (εi + εj − 2ν)− iη

)
Vijopχ

n,N−2
op . (10)

This leads to a set of equations for the pp-indices ab and a set of equations for the hh-indices hi

χn,N−2ab =
1

ωN−2n − (εa + εb − 2ν)

 Np∑
c<d

Vabcdχ
n,N−2
cd +

Nh∑
h<i

Vabhiχ
n,N−2
hi


χn,N−2hi =

−1

ωN−2n − (εh + εi − 2ν)

 Np∑
c<d

Vhicdχ
n,N−2
cd +

Nh∑
h<i

Vhijkχ
n,N−2
jk

 .

which can be rearranged to reveal a generalized eigenvalue problem in the eigenvalues ωn and the eigenvectors χn∑
c<d

χn,N−2cd (Vabcd + δacδbd(εa + εb − 2ν)) +
∑
h<i

χn,N−2hi Vabhi = χn,N−2ab ωN−2n

−
∑
c<d

χn,N−2cd Vhicd −
∑
j<k

χn,N−2jk (Vhijk − δjhδik(εh + εi − 2ν)) = χn,N−2hi ωN−2n ,

where a, b, c, d are particle indices, h, i, j, k are hole indices and m,n, o, p are general indices. This can be written in

matrix form by defining χn ≡
(

Xn

Yn

)
, where Xn contains the elements of the vector χn with pp-labels and the vector

Yn contains the elements with hh-labels,

(
A B
B† C

)(
Xn

Yn

)
= ωn

(
1 0
0 −1

)(
Xn

Yn

)
(11)

with

Aabcd = 〈ab‖cd〉+ δacδbd(εa + εb − 2ν)

Babij = 〈ab‖ij〉
Cijkl = 〈ij‖kl〉 − δikδjl(εi + εj − 2ν). (12)

In our implementation, we have used ν = εHOMO+εLUMO
2 , which corresponds to the average chemical potential for

the physical system under the non-interacting KS or generalized KS DFA [5]. The constant ν does not affect the
correlation energy; it only ensures that the pp-RPA matrix on the left hand side of Eq. (11) is positive semidefinite.
This implies that the 2-electron removal energies are negative and the two-electron addition energies are positive,
which makes it easier to separate them among the entire set of eigenvalues ωn. Since the pp-RPA matrix is expressed
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in an anti-symmetric basis, only ordered pp-indices ab with a < b and hh-indices hi with h < i are included. The
dimension of the A and C matrix is therefore the number of ordered pp and hh pairs:

dim(A) =
1

2
Np(Np − 1)

dim(C) =
1

2
Nh(Nh − 1)

where Np and Nh are the number of particles (unoccupied orbitals) and holes (occupied orbitals) respectively. Since in
general, Np > Nh, the dimension of the pp-RPA matrix is O(N2

p ), so a straightforward diaonalization of the pp-RPA

matrix leads to an O(N6
p ) scaling. Nonetheless, the cost of computing the correlation energy is actually O(N2

hN
4
p )

because only 1
2Nh(Nh − 1) eigenvalues are needed to compute the correlation energy. Eq. (7) can be rearranged for

the N + 2 electron states in a similar manner, by multiplying by (E − ωN+2
n ) and taking the limit E → ωN+2

n . This
leads to the same set of equations for the 2-electron addition energies;

χn,N+2
ij =

∑
m<n,o<p

K0(ωN+2
n )ijmnVmnopχ

n,N+2
op

χn,N+2
ij =

∑
o<p

(
θ(i− F )θ(j − F )

ωN+2
n − (εi + εj − 2ν) + iη

− θ(F − i)θ(F − j)
ωN+2
n − (εi + εj − 2ν)− iη

)
Vijopχ

n,N+2
op ,

which has the exact same form as Eq. (10) for the 2-electron removal energies. The eigenvectors Xn and Yn that
satisfy Eq. (12) may thus involve either the N+2 electron states or N−2 electron states. The generalized eigenvalues
ωn are either positive 2-electron addition energies, ωN+2

n = EN+2
n −EN0 − 2ν, or negative 2-electron removal energies,

ωN−2n = EN0 − EN−2n − 2ν.

B. Exchange-correlation energy from dynamic pairing matrix fluctuations

In this section, we develop an exact expression for the exchange-correlation energy in terms of dynamic pairing
matrix fluctuations via the adiabatic connection [11–13]. The result is the dynamic pairing matrix fluctuation coun-
terpart of the well-known adiabatic-connection fluctuation-dissipation (ACFD) theorem [4, 12] which expresses the
exchange-correlation energy in terms of dynamic density fluctuations. Just like the ACFD theorem, it formulates the
exact correlation energy in terms of dynamic fluctuations; it only considers different correlation channels: the dynamic
pairing matrix fluctuation involves the pp- and hh-correlation channels, while the dynamic density fluctuation involves
the ph-correlation channel. These two different types of correlation channels are closely related to the division of the
second order density matrix space into P-, Q- and G-matrices [14]. The energy can be expressed in either one of these
matrices, which naturally leads to equivalent formulations for the exchange-correlation energy in terms of dynamic
pairing matrix fluctuations and dynamic density fluctuations via the adiabatic connection. The resulting adiabatic-
connection formulae are in principle exact. In section I C, we show that the approximate exchange-correlation energy
that follows from the pp-RPA is equivalent to the summation of ladder diagrams in many body perturbation theory.

The adiabatic connection considers a non-interacting reference system, described by the Hamiltonian

Ĥ0 = ĥ+ û,

where ĥ is the core Hamiltonian and û is the – local or non-local, and possibly spin-dependent – one-body operator
that defines the non-interacting system. The adiabatic connection then defines a path from the non-interacting model
to the fully interacting system, parametrized by the interaction strength λ:

Ĥλ = Ĥ0 + λ(V̂ − ûλ).

The operator ûλ is restricted to satisfy û1 = û such that Ĥ1 is the Hamiltonian for the fully interacting system. The
Hellmann-Feynman theorem
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∂E

∂λ
= 〈Ψλ|∂Ĥλ

∂λ
|Ψλ〉

then formulates the correlation energy E1 − E0 as an integration along the adiabatic connection path

E1 − E0 =

ˆ 1

0

〈Ψλ|∂Ĥλ

∂λ
|Ψλ〉dλ

=

ˆ 1

0

〈Ψλ|V̂ − ûλ − λ
∂ûλ
∂λ
|Ψλ〉dλ.

Since V̂ is a two-body operator and ûλ is a one-body operator, this can be written more compactly in terms of the
second-order density matrix Γλ and the first-order density matrix γλ for the system with interaction strength λ:

E1 − E0 = tr

ˆ 1

0

VΓλdλ− tr

ˆ 1

0

uλγ
λdλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ.

Given that E0 = tr hγ0 + tr uγ0, the energy for the fully interacting system is

E1 = tr hγ0 + tr

ˆ 1

0

VΓλdλ− tr

ˆ 1

0

(uλγ
λ − uγ0)dλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ.

Relative to the Hartree-Fock/Exact Exchange energy functional, EHF = tr hγ0 + tr VΓ0, the correlation energy
functional Ec ≡ E1 − EHF is then

Ec = tr

ˆ 1

0

V(Γλ − Γ0)dλ− tr

ˆ 1

0

(uλγ
λ − uγ0)dλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ

The two-body part of the energy can be written equivalently in terms of the second-order density matrix, the
Q-matrix or the G-matrix, defined by

Γijkl = 〈Ψ|a+k a
+
l ajai|Ψ〉

Qijkl = 〈Ψ|akala+j a
+
i |Ψ〉

Gijkl = 〈Ψ|a+k ala
+
j ai|Ψ〉,

because the anti-commutation properties of the creation and annihilation operators define maps between the second-
order density matrix, the Q-matrix and the G-matrix:

Γijkl = Qlkji + (δ ∧ γ)ijkl − (δ ∧ δ)ijkl
Γijkl = −Gilkj + δjlγik = Gjlki − δilγjk,

where ∧ denotes the wedge product, which includes all unique anti-symmetrical product terms, (δ ∧ γ)ijkl = δikγjl +
δjlγik − δilγjk − δjkγil and (δ ∧ δ)ijkl = δikδjl − δilδjk. This results in three equivalent expressions for the correlation
energy

Ec = tr

ˆ 1

0

V(Γλ − Γ0)dλ− tr

ˆ 1

0

(uλγ
λ − uγ0)dλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ, (13)

Ec = tr

ˆ 1

0

V(Qλ −Q0)dλ+ tr

ˆ 1

0

V(δ ∧ (γλ − γ0)dλ− tr

ˆ 1

0

(uλγ
λ − uγ0)dλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ, (14)
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and

Ec = tr

ˆ 1

0

Ṽ(Gλ −G0)dλ−
∑
ijk

ˆ 1

0

〈ij|ki〉(γλjk − γ0jk)dλ− tr

ˆ 1

0

(uλγ
λ − uγ0)dλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ. (15)

In Eq. (15), Ṽ is a rearranged form of the two-electron integral matrix that pairs up indices associated to the same

electron, Ṽijkl = 〈il|jk〉. Equations (13-15) are general expressions for the correlation energy functional, valid for any
adiabatic connection path.

In the context of KS-DFT, these formulae can be simplified by assuming that the potential ûλ = ûλ(x) is local and
chosing a constant-density adiabatic connection path, such that the spin density remains constant: ρλ(x) = ρ0(x) =

ρ(x). The terms tr
´ 1
0

(uλγ
λ − uγ0)dλ can then be expressed in terms of the density ρλ = ρ instead of the density

matrix γλ

tr

ˆ 1

0

(uλγ
λ − uγ0)dλ = tr

ˆ 1

0

(uλρ− uρ)dλ

and the last term tr
´ 1
0
λ∂uλ∂λ γ

λdλ can be simplified through partial integration

tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ = tr

ˆ 1

0

λ
∂uλ
∂λ

dλρ

= tr [λuλ]10ρ− tr

ˆ 1

0

uλdλρ

= tr uρ− tr

ˆ 1

0

uλdλρ

All terms involving ûλ cancel out:

−tr

ˆ 1

0

(uλγ
λ − uγ0)dλ− tr

ˆ 1

0

λ
∂uλ
∂λ

γλdλ = −tr

ˆ 1

0

(uλ − u)dλρ− tr uρ+ tr

ˆ 1

0

uλdλρ

= 0.

Furthermore, the terms tr
´ 1
0

V(δ ∧ (γλ − γ0)dλ and
∑
ijk

´ 1
0
〈ij|ki〉(γλjk − γ0jk)dλ vanish because of the following:

∑
ijk

〈ij|ik〉(γλjk − γ0jk) =

ˆ ∑
i φ
∗
i (x
′)φi(x

′)
∑
jk φ

∗
j (x)φk(x)(γλjk − γ0jk)

|r− r′|
dxdx′

=

ˆ
δ(0)

γλ(x,x)− γ0(x,x)

|r− r′|
dxdx′

=

ˆ
δ(0)

ρλ(x)− ρ0(x)

|r− r′|
dxdx′

= 0∑
ijk

〈ij|ki〉(γλjk − γ0jk) =

ˆ ∑
i φ
∗
i (x)φi(x

′)
∑
jk φ

∗
j (x
′)φk(x)(γλjk − γ0jk)

|r− r′|
dxdx′

=

ˆ
δ(x− x′)

γλ(x′,x)− γ0(x′,x)

|r− r′|
dxdx′

=

ˆ
δ(x− x′)

ρλ(x)− ρ0(x)

|r− r′|
dxdx′

= 0.
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Thus for a local potential ûλ(r) the adiabatic connection along the constant-density path leads to the equivalent
formulae

Ec = tr

ˆ 1

0

V(Γλ − Γ0)dλ

Ec = tr

ˆ 1

0

V(Qλ −Q0)dλ

Ec = tr

ˆ 1

0

Ṽ(Gλ −G0)dλ.

The correlation energy can then be expressed in terms of dynamic fluctuations: the P- and Q-matrix can be written
in terms of the pairing matrix fluctuation and the G-matrix in terms of the density matrix fluctuation. The second-

order density matrix can be related to the transition paring matrix elements χn,N−2ij = 〈ΨN−2
n |aiaj |ΨN

0 〉 through the
completeness of the N − 2 electron wavefunction basis,

Γijkl = 〈ΨN
0 |a+k a

+
l ajai|Ψ

N
0 〉

=
∑
n

〈ΨN
0 |a+k a

+
l |Ψ

N−2
n 〉〈ΨN−2

n |ajai|ΨN
0 〉

=
∑
n

χn,N−2ji (χn,N−2lk )∗, (16)

and the Q-matrix can be related to the transition pairing matrix elements χn,N+2
ij = 〈ΨN

n |aiaj |ΨN+2
0 〉 through the

completeness of the N + 2 electron wavefunction basis,

Qijkl = 〈ΨN
0 |akala+j a

+
i |Ψ

N
0 〉

=
∑
n

〈ΨN
0 |akal|ΨN+2

n 〉〈ΨN+2
n |a+j a

+
i |Ψ

N
0 〉

=
∑
n

χn,N+2
kl (χn,N+2

ij )∗, (17)

and the G-matrix can be written in terms of the transition density matrix elements χn,Nij ≡ 〈ΨN
n |a+j ai|ΨN

0 〉 through
the completeness of the N -electron wavefunction basis

Gijkl = 〈ΨN
0 |a+k ala

+
j ai|Ψ

N
0 〉

=
∑
n

〈ΨN
0 |a+k al|Ψ

N
n 〉〈ΨN

n |a+j ai|Ψ
N
0 〉

=
∑
n 6=0

χn,Nij (χn,Nkl )∗ + γijγkl. (18)

The exact correlation energy can thus be expressed in terms of transition pairing matrix elements,

Ec =
∑
n

∑
ijkl

ˆ 1

0

(
(χn,N−2λ )ji(χ

n,N−2
λ )∗lk − (χn,N−20 )ji(χ

n,N−2
0 )∗lk

)
Vijkldλ

=
∑
n

ˆ 1

0

ˆ
dxdx′

χn,N−2λ (x,x′)χn,N−2λ (x,x′)∗ − χn,N−20 (x,x′)χn,N−20 (x,x′)∗

|r− r′|
dλ, (19)

and
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Ec =
∑
n

∑
ijkl

ˆ 1

0

(
(χn,N+2
λ )∗ij(χ

n,N+2
λ )kl − (χn,N+2

0 )∗ij(χ
n,N+2
0 )kl

)
Vijkldλ

=
∑
n

ˆ 1

0

ˆ
dxdx′

χn,N+2
λ (x,x′)∗χn,N+2

λ (x,x′)− χn,N+2
0 (x,x′)∗χn,N+2

0 (x,x′)

|r− r′|
dλ, (20)

or in terms of transition density matrix elements,

Ec =
∑
n 6=0

∑
ijkl

ˆ 1

0

(
(χn,Nλ )ij(χ

n,N
λ )∗kl − (χn,N0 )ij(χ

n,N
0 )∗kl

)
Ṽijkldλ

=
∑
n 6=0

ˆ 1

0

ˆ
dxdx′

χn,Nλ (x)χn,Nλ (x′)∗ − χn,N0 (x)χn,N0 (x′)∗

|r− r′|
dλ. (21)

Note that the ground-state density matrix elements in Eq. (18) do not contribute along the constant-density adiabatic-
connection path.

Equation (21) for the correlation energy in terms of transition density matrix elements has been exploited in the
context of ph-RPA, because the transition density matrix elements involved can be extracted from the polarization
propagator Π, defined as [2]

Π(E)ijkl =
∑
n 6=0

〈ΨN
0 |a+k al|ΨN

n 〉〈ΨN
n |a+j ai|ΨN

0 〉
E − ωNn + iη

−
∑
n 6=0

〈ΨN
0 |a+j ai|ΨN

n 〉〈ΨN
n |a+k al|ΨN

0 〉
E + ωNn − iη

=
∑
n 6=0

〈ΨN
0 |a+k al|ΨN

n 〉〈ΨN
n |a+j ai|ΨN

0 〉
E − ωNn + iη

−
∑
n 6=0

〈ΨN
0 |a+j ai|ΨN

n 〉〈ΨN
n |a+k al|ΨN

0 〉
E + ωNn − iη

=
∑
n 6=0

(χn,Nkl )∗χn,Nij
E − ωNn + iη

−
∑
n 6=0

(χn,Nji )∗χn,Nlk
E + ωNn − iη

.

Integrating over a semi-circular path in the positive real plane gives

−1

2πi

ˆ +i∞

−i∞
e−EηΠ(E)ijkldE =

∑
n 6=0

χn,Nij (χn,Nkl )∗ (22)

while integrating over a semi-circular path in the negative real plane gives

−1

2πi

ˆ +i∞

−i∞
eEηΠ(E)ijkldE =

∑
n 6=0

χn,Nlk (χn,Nji )∗.

Using Eqs. (21) and (22), the correlation energy can be expressed in terms of the polarization propagator:

Ec =
∑
ijkl

Ṽijkl
∑
n 6=0

ˆ 1

0

(χn,Nλ )ij(χ
n,N
λ )∗kldλ− (χn,N0 )ij(χ

n,N
0 )∗kl

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
e−Eηtr Ṽ[Πλ(E)−Π0(E)]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
e−Eη

ˆ
dxdx′

ˆ
Πλ(x,x′, E)−Π0(x,x′, E)

|r− r′|
dEdλ. (23)
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This result is in principle exact, but requires an expression for Πλ(x,x′, E). The ph-RPA approximates the polarization

propagator for the interacting strength λ by the Dyson-like equation Πλ = Π0 + λΠ0ṼΠλ, which leads to the well-
known energy expression for the RPA [3, 12].

The correlation energy can also be expressed in terms of pairing matrix fluctuations or the particle-particle Green
function, based on Eqs. (16,17). The transition pairing matrix elements involved can be extracted from the particle-
particle Green function, Eq. (6): integrating the particle-particle Green function over a semi-circular path in the
negative real plane gives

−1

2πi

ˆ +i∞

−i∞
eEηK(E)ijkldE =

∑
n

(χn,N−2lk )∗χn,N−2ji (24)

while closing the contour in the positive real plane gives

−1

2πi

ˆ +i∞

−i∞
e−EηK(E)ijkldE =

∑
n

(χn,N+2
kl )∗χn,N+2

ij . (25)

Equations (16) and (24) then lead to an expression for the correlation energy in terms of the particle-particle Green
function, integrated over a contour in the negative real plane:

Ec =
∑
ijkl

Vijkl
∑
n

ˆ 1

0

(χn,N−2λ )ij(χ
n,N−2
λ )∗kldλ− (χn,N−20 )ij(χ

n,N−2
0 )∗kl

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
eEηtr V[Kλ(E)−K0(E)]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
eEη
ˆ
dxdx′

Kλ(x,x′, E)−K0(x,x′, E)

|r− r′|
dE (26)

where

Kλ(x1,x2, E) =
1

2

∑
ijkl

K(E)ijklφi(x1)φj(x2)φ∗k(x1)φ∗l (x2) (27)

Equations (17) and (25) lead to the same formula, integrated over a contour in the positive real plane:

Ec =
∑
ijkl

Vijkl
∑
n

ˆ 1

0

(χn,N+2
λ )∗ij(χ

n,N+2
λ )kldλ− (χn,N+2

0 )∗ij(χ
n,N+2
0 )kl

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
e−Eηtr V[Kλ(E)−K0(E)]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
e−Eη

ˆ
dxdx′

Kλ(x,x′, E)−K0(x,x′, E)

|r− r′|
dEdλ. (28)

The equivalence of (26) and (28) shows that the integration path can be closed in either half plane. Although the
previous equations integrate the Green functions along the imaginary axis, similar equations hold for integration along
the real axis, namely

Ec =
−1

2πi

ˆ 1

0

ˆ +∞

−∞
e−iEηtr Ṽ[Πλ(E)−Π0(E)]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +∞

−∞
e−iEη

ˆ
dxdx′

ˆ
Πλ(x,x′, E)−Π0(x,x′, E)

|r− r′|
dEdλ, (29)
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Ec =
−1

2πi

ˆ 1

0

ˆ +∞

−∞
eiEηtr V[Kλ(E)−K0(E)]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +∞

−∞
eiEη

ˆ
dxdx′

Kλ(x,x′, E)−K0(x,x′, E)

|r− r′|
dE, (30)

and

Ec =
−1

2πi

ˆ 1

0

ˆ +∞

−∞
e−iEηtr V[Kλ(E)−K0(E)]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +∞

−∞
e−iEη

ˆ
dxdx′

Kλ(x,x′, E)−K0(x,x′, E)

|r− r′|
dEdλ. (31)

From the numerical point of view, integration along the imaginary axis is more convenient because it avoids the poles
on the real axis. The integration along the imaginary energy axis is also valid for the retarded Green function or
the paring matrix fluctuation, such that Eq. (23,26 and 28) also apply to the retarded Green function or the pairing
matrix fluctuation.

C. Exchange-correlation energy from the particle-particle RPA

Expressions (26) and (28) for the correlation energy in terms of the particle-particle Green function are in principle
exact, but require knowledge of the Green function Kλ(E) as a function of the interaction strength λ. The pp-RPA
approximates Kλ(E) through the Dyson-like equation

Kλ(E) = K0(E) + λK0(E)VKλ(E) (32)

such that, based on Eq. (26),

Ecpp =
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
tr [Kλ(E)V −K0(E)V]dEdλ

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞

(
λtr [K0(E)VK0(E)V] + λ2tr [K0(E)VK0(E)VK0(E)V] + . . .

)
dEdλ

=
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞

∞∑
n=2

λn−1tr [(K0V)n]dEdλ

=
−1

2πi

ˆ +i∞

−i∞

[ ∞∑
n=2

1

n
(λ)ntr [(K0V)n]dE

]1
0

= − 1

2πi

ˆ +i∞

−i∞

∞∑
n=2

1

n
tr [(K0V)n]dE

=
1

2πi

ˆ +i∞

−i∞
tr [ln(I−K0V) + K0V]dE. (33)

Note that no convergence factors e±Eη are needed here, since the third line shows that no first-order poles are included.
This expression is consistent with the diagrammatic expansion of the particle-particle Green function in many body
perturbation theory. Similarly to the ph-RPA, which approximates the ground-state correlation energy by the sum
of all ring diagrams, the pp-RPA approximates the correlation energy by the sum of all ladder diagrams[2]:

EcLadder =
−1

2πi

∞∑
n=2

1

n

ˆ +i∞

−i∞
tr [K0(E))V]n dE

=
−1

2πi

∞∑
n=1

1

n

ˆ +i∞

−i∞
tr [K0(E))V]n dE +

1

2πi

ˆ +i∞

−i∞
tr K0(E))V dE (34)

=
1

2πi

ˆ +i∞

−i∞
tr [ln(I−K0(E)V) + K0(E)V] dE. (35)
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This expression is equivalent to adiabatic connection result, Eq. (33). The pp-RPA equations have an equivalent real
space representation. To derive their real space counterpart, it is convenient to rewrite the Dyson-like equation in
terms of the two-electron integrals that are not antisymmetrized

1

2
Kλ
ijkl =

1

2
K0
ijkl + λ

∑
mnop

1

2
K0
ijmn〈mn|op〉

1

2
Kλ
opkl

Because v(x1,x2) = 1
|r1−r2| is diagonal the real space representation, the real-space equivalent of Eq. (32) is a

four-point equation

Kλ(x1,x2,x
′
1,x
′
2, E) = K0(x1,x2,x

′
1,x
′
2, E) + λ

ˆ
dx1”dx2”K0(x1,x2,x1”,x2”, E)v(x1”,x2”)Kλ(x1”,x2”,x′1,x

′
2, E).

This leads to the correlation energy expression

Ecpp =
−1

2πi

ˆ 1

0

ˆ +i∞

−i∞
λ

ˆ ˆ
K0(x1,x2,x

′
1,x
′
2, E)v(x′1,x

′
2)K0(x′1,x

′
2,x1,x2, E)v(x1,x2)dx1dx2dx

′
1dx
′
2 dEdλ

− 1

2πi

ˆ 1

0

ˆ +i∞

−i∞
λ2
ˆ ˆ ˆ

K0(x1,x2,x
′
1,x
′
2, E)v(x′1,x

′
2)K0(x′1,x

′
2,x1”,x2”, E)v(x1”,x2”)

×K0(x1”,x2”,x1,x2, E)v(x1,x2)dx1dx2dx
′
1dx
′
2dx1”dx2” dEdλ

− 1

2πi

ˆ 1

0

ˆ +i∞

−i∞
λ3
ˆ ˆ ˆ ˆ

. . .

− . . .

=
−1

2πi

ˆ +i∞

−i∞

1

2

ˆ ˆ
K0(x1,x2,x

′
1,x
′
2, E)v(x′1,x

′
2)K0(x′1,x

′
2,x1,x2, E)v(x1,x2)dx1dx2dx

′
1dx
′
2 dE

− 1

2πi

ˆ +i∞

−i∞

1

3

ˆ ˆ ˆ
K0(x1,x2,x

′
1,x
′
2, E)v(x′1,x

′
2)K0(x′1,x

′
2,x1”,x2”, E)v(x1”,x2”)

×K0(x1”,x2”,x1,x2, E)v(x1,x2)dx1dx2dx
′
1dx
′
2dx1”dx2” dE

− 1

2πi

ˆ +i∞

−i∞

1

4

ˆ ˆ ˆ ˆ
. . .

− . . .

=
1

2πi

ˆ +i∞

−i∞
tr (ln(I− S) + S) dE (36)

where S is a matrix represented in real space with its elements

S(x1,x2,x
′
1,x
′
2, E) = K0(x1,x2,x

′
1,x
′
2, E)v(x′1,x

′
2)

The correlation energy can be computed directly from Eq. (35) or (36) through numerical integration, since the
non-interacting pp-function K0 has a simple, known structure (Eq. (9)), but it can also be reformulated in terms of
the eigenvalues of equation (12)[2]:
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Ecpp =
1

2πi

ˆ +i∞

−i∞
tr [ln(I−K0(E)V) + K0(E)V] dE

=

Npp∑
n

ωN+2
n − tr A (37)

= −
Nhh∑
n

ωN−2n − tr C (38)

=
1

2

Npp∑
n

ωN+2
n − 1

2
tr A− 1

2

Nhh∑
n

ωN−2n − 1

2
tr C. (39)

In order to show how the expression Eq. (35), or equivalently Eq. (33), reduces to the three equivalent expressions
in terms of the eigenvalues ωN+2

n or ωN−2n , we will consider the integrals of the two terms, tr [ln(I −K0(E)V)] and
tr [K0(E)V], separately. First of all,

1

2πi

ˆ +i∞

−i∞
tr K0(E)V dE

=
1

2πi

ˆ +i∞

−i∞

Np∑
a<b

Vabab
1

E − (εa + εb − 2ν) + iη
−

Nh∑
h<i

Vhihi
1

E − (εh + εi − 2ν)− iη
dE.

Integrating this over a semi-circle in the positive real plane – a negatively oriented curve – gives

1

2πi

ˆ +i∞

−i∞
tr K0(E)V dE

= −
Np∑
a<b

Vabab,

whereas integrating this over a semi-circle in the negative real plane – a positively oriented curve – gives

1

2πi

ˆ +i∞

−i∞
tr K0(E)V dE

= −
Nh∑
h<i

Vhihi.

The remaining integral of tr [ln(I−K0(E)V)] can be evaluated using partial integration.

1

2πi

ˆ +i∞

−i∞
tr [ln(I−K0(E)V)]dE =

1

2πi

[
E tr ln(I−K0(E)V)

]+i∞
−i∞ −

1

2πi

ˆ +i∞

−i∞
E tr [

∂

∂E
ln(I−K0(E)V)]dE

= − 1

2πi

ˆ +i∞

−i∞
E tr [

∂

∂E
ln(I−K0(E)V)]dE. (40)

In order to tackle the integrand, the identity I−K0V = K0K−1, which follows simply from Eq. (7), can be applied:

∂

∂E
ln(I−K0(E)V) =

∂

∂E
ln K0K−1

= K(K0)−1
(
∂K0

∂E
K−1 + K0 ∂K−1

∂E

)
= K(K0)−1

(
∂K0

∂E
K−1 + K0 ∂(K0)−1

∂E

)
. (41)
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In the last line, the relationship K−1 = (K0)−1−V, which implies that ∂K−1

∂E = ∂(K0)−1

∂E , has been used. The integral
then becomes

− 1

2πi

ˆ +i∞

−i∞
E tr [

∂

∂E
ln(I−K0(E)V)]dE = − 1

2πi

ˆ +i∞

−i∞
E tr

[
K(K0)−1

(
∂K0

∂E
K−1 + K0 ∂(K0)−1

∂E

)]
dE

= − 1

2πi

ˆ +i∞

−i∞
E tr

[
(K0)−1

∂K0

∂E
+ K

∂(K0)−1

∂E

]
dE. (42)

The terms needed to compute the integrand are

(
∂K0

∂E

)
ijkl

= −(δikδjl − δilδjk)

[
θ(i− F )θ(j − F )

(E − (εi + εj − 2ν) + iη)
2 −

θ(F − i)θ(F − j)
(E − (εi + εj − 2ν)− iη)

2

]
(
K0
)−1
ijkl

= (δikδjl − δilδjk) [θ(i− F )θ(j − F ) (E − (εi + εj − 2ν) + iη)− θ(F − i)θ(F − j) (E − (εi + εj − 2ν)− iη)]

∂
(
K0
)−1
ijkl

∂E
= (δikδjl − δilδjk) [θ(i− F )θ(j − F )− θ(F − i)θ(F − j)] . (43)

With the aid of expressions (40), (41) and (42), the first part of the integral (40) becomes

− 1

2πi

ˆ +i∞

−i∞
E tr

[
(K0)−1

∂K0

∂E

]
dE = − 1

2πi

ˆ +i∞

−i∞
E

K∑
i<j

[
− θ(i− F )θ(j − F )

E − (εi + εj − 2ν) + iη
− θ(F − i)θ(F − j)
E − (εi + εj − 2ν)− iη

]
dE.

Integration over a semi-circular path in the positive real plane gives

− 1

2πi

ˆ +i∞

−i∞
E

K∑
i<j

[
− θ(i− F )θ(j − F )

E − (εi + εj − 2ν) + iη
− θ(F − i)θ(F − j)
E − (εi + εj − 2ν)− iη

]
dE = −

Np∑
a<b

(εb + εa − 2ν),

whereas integration over a semi-circular path in the negative real plane gives

− 1

2πi

ˆ +i∞

−i∞
E

K∑
i<j

[
− θ(i− F )θ(j − F )

E − (εi + εj − 2ν) + iη
− θ(F − i)θ(F − j)
E − (εi + εj − 2ν)− iη

]
dE =

Nh∑
h<i

(εh + εi − 2ν).

The second part of the integral (40) becomes

− 1

2πi

ˆ +i∞

−i∞
E tr

[
K
∂(K0)−1

∂E

]
dE = − 1

2πi

ˆ +i∞

−i∞
E

 Np∑
a<b

K(E)abab −
Nh∑
h<i

K(E)hihi

 dE.

Integration over a semi-circular path in the positive real plane gives

− 1

2πi

ˆ +i∞

−i∞
E tr

[
K
∂(K0)−1

∂E

]
dE =

∑
n

ωN+2
n

 Np∑
a<b

χn,N+2
ab

(
χn,N+2
ab

)∗
−

Nh∑
h<i

χn,N+2
hi

(
χn,N+2
hi

)∗
=
∑
n

ωN+2
n
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and integration over a semi-circular path in the negative real plane gives

− 1

2πi

ˆ +i∞

−i∞
E tr

[
K
∂(K0)−1

∂E

]
dE = −

∑
n

ωN−2n

− Np∑
a<b

χn,N−2ab

(
χn,N−2ab

)∗
+

Nh∑
h<i

χn,N−2hi

(
χn,N−2hi

)∗
= −

∑
n

ωN−2n .

where we have used the normalization conditions, Eqs. (45-46).
To summarize, by closing a semi-circular path in the positive real plane, we find

Ecpp =

Npp∑
n

ωN+2
n −

Np∑
a<b

(εb + εa − 2ν)−
Np∑
a<b

Vabab

=

Npp∑
n

ωN+2
n − tr A

and by closing a semi-circular path in the negative real plane,

Ecpp = −
Nhh∑
n

ωN−2n +

Nh∑
h<i

(εh + εi − 2ν)−
Nh∑
h<i

Vhihi

= −
Nhh∑
n

ωN−2n − tr C.

The two expressions for the correlation energy are equivalent, which follows from the orthonormality and completeness
of the pp-RPA eigenvector basis. At this point, it is convenient to introduce a simplified notation for the pp-RPA
matrix,

R =

(
A B
B† C

)

and for its eigenvectors,

χn =

(
Xn

Yn

)
.

The norm matrix can be denoted as M =

(
1 0
0 −1

)
so that the pp-RPA equations take the form

Rχn = ωnMχn, (44)

for both the 2-electron addition and the 2-electron removal. The orthonormality and completeness of the eigenvector
basis can then be expressed as

(
χn,N+2

)†
Mχm,N+2 = δmn (45)(

χn,N−2)†Mχm,N−2 = −δmn (46)

Npp∑
n

χn,N+2
(
χn,N+2

)† − Nhh∑
n

χn,N−2 (χn,N−2)† = M
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The pp-RPA equations imply that

Npp∑
n

(
χn,N+2

) †(A B
B† C

)
χn,N+2 =

Npp∑
n

ωN+2
n

(
χn,N+2

)†
Mχn,N+2

−
Nhh∑
n

(
χn,N−2)†(A B

B† C

)
χn,N−2 = −

Nhh∑
n

ωN−2n

(
χn,N−2)†Mχn,N−2.

This, together with the normalization and completeness of the eigenvectors, and Eq.(45), leads to the following relation
between the N − 2 electron quantities and N + 2 electron quantities

tr A− tr C =

Npp∑
n

ωN+2
n +

Nhh∑
n

ωN−2n . (47)

The correlation energy can be viewed as a functional E[{φi}, ni] because equation (12) depends only on the or-
thonormal set of orbitals {φi} and their occupations ni. The total pp-RPA energy expression combines the HF-energy
functional with the pp-RPA correlation energy:

Epp[{φi}, ni] = EHF [{φi}, ni] + Ecpp[{φi}, ni]

=
∑
i

hiini +
1

2

∑
ij

〈ij||ij〉ninj + Ecpp[{φi}, ni]

with h the core Hamiltonian matrix.

D. Perturbation analysis of the pp-RPA energy

In the context of many-body perturbation theory, the pp-RPA energy arises as the sum of all ladder diagrams up
to infinite order [2]:

Ecpp =
−1

2πi

∞∑
n=2

1

n

ˆ +i∞

−i∞
tr [K0(E))V]n dE

=
−1

2πi

∞∑
n=1

1

n

ˆ +i∞

−i∞
tr [K0(E))V]n dE +

1

2πi

ˆ +i∞

−i∞
tr K0(E))V dE (48)

=
1

2πi

ˆ +i∞

−i∞
tr [ln(I−K0(E)V) + K0(E)V] dE. (49)

In contrast, the ph-RPA energy originates from the summation of all ring diagrams [2]:

Ecph =
1

2πi

∞∑
n=2

−1

2n

ˆ +i∞

−i∞
tr [Π0(E))Ṽ]n dE

=
1

2πi

∞∑
n=1

−1

2n

ˆ +i∞

−i∞
tr [Π0(E))Ṽ]n dE +

1

4πi

ˆ +i∞

−i∞
tr Π0(E))Ṽ dE (50)

=
1

4πi

ˆ +i∞

−i∞
tr [ln(I−Π0(E)Ṽ) + Π0(E)Ṽ] dE (51)

where Ṽahib = 〈ab|hi〉 does not include exchange. The ph-RPAX uses antisymmetrized two-electron integrals and the
corersponding correlation energy can be derived from the adiabatic connection to be [8]:
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EcphX =
1

4πi

∞∑
n=2

−1

2n

ˆ +i∞

−i∞
tr [Π0(E))Ṽ]n dE

=
1

4πi

∞∑
n=1

−1

2n

ˆ +i∞

−i∞
tr [Π0(E))Ṽ]n dE +

1

4πi

ˆ +i∞

−i∞
tr Π0(E))Ṽ dE (52)

=
1

8πi

ˆ +i∞

−i∞
tr [ln(I−Π0(E)Ṽ) + Π0(E)Ṽ] dE (53)

where V̄ahib = 〈ab‖hi〉 now includes exchange.
The pp-RPA energy is correct through second order:

E(2)
pp = −1

2

1

2πi

ˆ +i∞

−i∞
tr [K0(E)V]2dE

= −1

2

1

2πi

ˆ +i∞

−i∞

∑
a<b,c<d

VabcdVcdab
(E − (εa + εb))(E − (εc + εd))

+
∑

h<i,j<k

VhijkVjkhi
(E − (εh + εi))(E − (εj + εk))

−2
∑

a<b,h<i

VabhiVhiab
(E − (εa + εb))(E − (εh + εi))

dE

= −
∑

a<b,h<i

VabhiVhiab
εa + εb − εh − εi

= −1

4

∑
abhi

|〈hi‖ab〉|2

εa + εb − εh − εi

where only the third term in the second line makes a non-zero contribution. This expression includes all possible
second-order diagrams, and is hence exact. The ph-RPAX has the same second-order energy contribution,

E
(2)
phX = −1

4

1

4πi

ˆ +i∞

−i∞
tr [Π0(E)V̄]2dE

= −1

4

1

4πi

ˆ +i∞

−i∞

∑
abqi

V̄ahbiV̄biah
(E − (εa − εh))(E − (εb − εi))

+
∑
hijk

V̄haibV̄ibha
(E − (εh − εa))(E − (εi − εb))

−2
∑
pqhi

V̄ahibV̄ibah
(E − (εa − εh))(E − (εi − εb))

dE

= −1

4

∑
abhi

V̄ahibV̄ ibah
εa − εh − εi + εb

= −1

4

∑
abhi

|〈hi‖ab〉|2

εa + εb − εh − εi

but an inherent drawback of the ph-RPAX is its sensitivity to instabilities in the non-interacting reference state:
when the non-interacting reference state is unstable with respect to orbital rotations, the ph-RPAX breaks down and
produces imaginary eigenvalues [19]. For this reason, molecular calculations are done almost exclusively using the
‘direct’ ph-RPA[8, 10, 18], which does not suffer from such instabilities. The ph-RPA, however, does not have the
correct second-order energy expression because it does not consider antisymmetrized two-electron integrals:
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E
(2)
ph = −1

4

1

2πi

ˆ +i∞

−i∞
tr [Π0(E)Ṽ]2dE

= −1

4

1

2πi

ˆ +i∞

−i∞

∑
abqi

ṼahbiṼbiah
(E − (εa − εh))(E − (εb − εi))

+
∑
hijk

ṼhaibṼibha
(E − (εh − εa))(E − (εi − εb))

−2
∑
pqhi

ṼahibṼibah
(E − (εa − εh))(E − (εi − εb))

dE

= −1

2

∑
abhi

ṼahibṼ ibah
εa − εh − εi + εb

= −1

2

∑
abhi

|〈hi|ab〉|2

εa + εb − εh − εi

Only the last term in the second line does not vanish upon integration.

E. The particle-particle RPA for systems with fractional electron number

While equation (12) describes the pp-RPA for systems with integer electron number, the behavior of the pp-RPA
for systems with fractional electron number or spin can be quantified by taking the fractional orbital occupations into
account explicitly in the pp-RPA equations (12)

Aabcd =
√

(1− na)(1− nb)〈ab‖cd〉
√

(1− nc)(1− nd)
+ δacδbd(εa + εb − 2ν)

Babij =
√

(1− na)(1− nb)〈ab‖ij〉
√
ninj

Cijkl =
√
ninj〈ij‖kl〉

√
nknl − δijδkl(εi + εj − 2ν). (54)

This extension to fractional occupation number follows the same approach as the one taken in previous work by
Cohen, Mori-Sanchez and Yang [6, 15] and is explained in more detail in Ref. [22]. When all orbital occupation
numbers are integer these equations reduce to the usual pp-RPA equations.
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II. ADDITIONAL FIGURES AND TABLES

We computed the KS reference wavefunctions with Gaussian03 [9] for the systems with integer electron number
and with the QM4D package for systems with fractional electron number or spin [1]. For the subsequent pp-RPA
calculation, we used our implementation, which diagonalizes the pp-RPA matrix. Since the diagonalization is com-
putationally expensive, we used a cc-pVDZ basis set for all calculations, except for the Ar and Ne atoms, for which
we used an aug-cc-pVDZ (FC) basis set. For the calculations on thermodynamical properties, we used a cc-pVTZ
basis set limited to F-functions because the pp-RPA energy converges slowly with the basis set size (Fig. 12 of ref.
([21])) and geometries from the G2 test set [7]. Accurate potential energy functions for the dimers of the noble gases
have been taken from the work of Ogilvie et al. [16, 17] and the MRCI potential energy function for the N2 in the
cc-pVDZ basis set has been taken from previous work [20].
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FIG. 1: The pp-RPA energy (left: restricted LDA reference, right: restricted HF reference) for the H2 molecule approaches the
correct value in the dissociation limit, but has an unphysical ’bump’, much more so than ph-RPA. The dashed lines indicate
the dissociation limit from the fractional analysis of the H atom.
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FIG. 2: In contrast to the ph-RPA, the pp-RPA dissociates H+
2 correctly (left: LDA reference, right: HF reference). The

dashed lines indicate the dissociation limit from the fractional analysis of the H atom.
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FIG. 3: The pp-RPA also gives a correct energy profile for He+2 , in contrast to the ph-RPA (left: LDA reference, right: HF
reference). The dashed lines indicate the dissociation limit from the fractional analysis of the He atom.
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FIG. 4: The ph-RPA energy for the H atom (left) is a nearly constant function of the fractional spin projection, but is a convex
function of the fractional electron number. The pp-RPA energy (right) is physically correct: it has a nearly constant function
of the fractional spin projection and a linear function of the fractional electron number. Like the exact functional, its derivative
has a discontinuity at N=1.
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FIG. 5: The ph-RPA energy for the Li atom (left) is a nearly constant function of the fractional spin projection, but is a
convex function of the fractional electron number. The pp-RPA energy (right) is a nearly constant function of the fractional
spin projection and a nearly linear function of the fractional electron number. Like the exact functional, its derivative has a
discontinuity at N=3.
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FIG. 6: The pp-RPA also gives a correct energy profile for Cl–2, in contrast to the ph-RPA (left: LDA reference, right: HF
reference). The dashed lines indicate the dissociation limit from the fractional analysis of the He atom.
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FIG. 7: The pp-RPA energy for the Cl atom is nearly linear in between integer electron numbers, as opposed to the ph-RPA
energy (left: LDA reference, right: HF reference). The ’accurate’ graph consists of line segments between the CCSD energies
for the integer occupations.
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FIG. 8: The pp-RPA describes the stretching of the C-C bond in C2H6 correctly (left: restricted LDA reference, right: restricted
HF reference). The positions of the H atoms are kept fixed at their equilibrium position.
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FIG. 9: The pp-RPA leads to a decreasing energy in the dissociation limit of the triple bond in N2 (left: restricted LDA
reference, right: restricted HF reference).
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FIG. 10: The dissociation limit of the pp-RPA and ph-RPA energy for N2 corresponds to the energy of two spin and angular
momentum unpolarized N atoms, indicated with dashed lines (left: restricted LDA reference, right: restricted HF reference).
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FIG. 11: The ph-RPA and pp-RPA both describe the van der Waals interactions in the Ar dimer well (left: LDA reference,
right: HF reference).
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FIG. 12: The pp-RPA also describes the van der Waals interactions in the heteronuclear NeAr well (left: LDA reference, right:
HF reference).
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FIG. 13: The basis set convergence of the pp-RPA energy is rather slow, similar to that of ph-RPA. The atomization energy
D0 converges faster to its basis set limit than the absolute energies (left: N2, right: CO).
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TABLE I: The left and right derivatives of the pp-RPA(LDA) and ph-RPA(LDA) energy in eV, computed by finite difference
(with ∆ = 0.001), agree well with experiment, especially the derivatives with respect to the HOMO orbital occupation.(

∂E
∂nf

)
N−δ

(
∂E
∂nf

)
N−δ

εHOMO −I
(
∂E
∂nf

)
N+δ

(
∂E
∂nf

)
N+δ

εLUMO A

pp-RPA(LDA) ph-RPA(LDA) KS-LDA expt. pp-RPA(LDA) ph-RPA(LDA) KS-LDA expt.
Li -5.395 -3.130 -3.581 -5.392 0.125 -3.013 -2.169 -0.618
Be -8.628 -5.379 -6.042 -9.323 1.185 -2.811 -2.515 -0.295
B -8.184 -3.668 -4.540 -8.298 0.772 -4.010 -3.812 -0.280
C -11.112 -5.271 -6.564 -11.260 0.177 -4.131 -5.083 -1.262
N -14.281 -6.636 -8.849 -14.534 0.959 -5.553 -4.910 -0.070
O -15.137 -8.242 -9.636 -13.618 -1.395 -8.299 -7.709 -1.461
F -17.803 -10.193 -11.837 -17.423 -4.206 -11.434 -10.812 -3.401
MAE 0.445 5.332 4.114 0.945 4.552 4.232

TABLE II: The left and right derivatives of the pp-RPA(HF) and ph-RPA(LDA) energy in eV, computed by finite difference
(with ∆ = 0.001) agree well with experiment.(

∂E
∂nf

)
N−δ

(
∂E
∂nf

)
N−δ

εHOMO −I
(
∂E
∂nf

)
N+δ

(
∂E
∂nf

)
N+δ

εLUMO A

pp-RPA(HF) ph-RPA(HF) HF expt. pp-RPA(HF) ph-RPA(HF) HF expt.
Li -5.349 -2.580 -5.343 -5.392 -0.030 -2.026 0.153 -0.618
Be -8.528 -4.595 -8.416 -9.323 0.336 -2.054 0.396 -0.295
B -8.369 -3.013 -8.666 -8.298 0.424 -2.821 0.795 -0.280
C -11.405 -4.649 -11.941 -11.260 0.377 -3.978 1.025 -1.262
N -14.696 -6.639 -15.531 -14.534 1.357 -3.273 2.095 -0.070
O -15.607 -6.948 -16.648 -13.618 0.226 -5.759 1.765 -1.461
F -18.397 -8.841 -19.921 -17.423 -1.787 -8.885 0.967 -3.401
MAE 0.597 6.083 1.219 1.184 3.058 2.083

TABLE III: The errors in the atomization energies D0 and the heats of formation ∆H (in kcal/mol) relative to the experimental
values ∆Hexpt., computed with pp-RPA in the cc-pVTZ basis set, are significantly better than those computed with ph-RPA.

Dpp−RPA
0 Dph−RPA

0 ∆Hpp−RPA ∆Hph−RPA ∆Hexpt

C2H2 406.3 387.3 53.2 72.2 54.2
CH4 410.6 410.8 -9.3 -9.6 -17.9
Cl2 56.6 44.2 1.4 13.7 0.0
CO 265.0 243.6 -32.1 -10.7 -26.4
F2 37.5 27.9 1.0 10.6 0.0
H2 100.4 108.3 8.8 0.9 0.0
H2O 225.8 218.8 -51.3 -44.4 -57.8
HCl 102.4 98.3 -18.1 -14.0 -22.1
HF 139.2 128.5 -63.5 -52.8 -65.1
HOCl 161.7 148.5 -15.1 -1.9 -17.8
HOOH 262.7 250.6 -26.4 -14.3 -32.5
LiH 47.9 52.6 43.2 38.5 33.3
N2 225.6 221.8 3.0 6.8 0.0
NaCl 94.2 82.2 -39.8 -27.8 -43.6
NH 75.7 81.3 93.0 87.3 85.2
NH2 170.6 177.5 56.0 49.1 45.1
NH3 284.5 288.9 1.9 -2.5 -11.0
O2 129.4 111.3 -8.8 9.2 0.0
MAE 5.8 10.4
MAX 12.9 18.0
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