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Many-body properties of a spherical two-dimensional electron gas
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We investigate the many-body properties of a two-dimensional electron gas constrained to the surface of a
sphere, a system which is physically realized in, for example, multielectron bubbles in liquid helium. A
second-quantization formalism, suited for the treatment of a spherical two-dimensional elect(62DES,
is introduced. Within this formalism, the dielectric response properties of the S2DEG are derived, and we
identify both collective excitations and a spectrum of single-particle excitations. We find that the single-particle
excitations are constrained to a well-defined region in the angular-momentum—energy plane. The collective
excitations differ in two important aspects from those of a flat 2DEG: on a sphere, the “spherical plasmons”
have a discrete frequency spectrum and the lowest frequency is nonzero.
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[. INTRODUCTION not appropriate to describe the many-body problem on a
spherical surface. The noninteracting single-particle wave
When a film of electrons on a flat helium surface reachesunctions suitable for the description of the S2DEG are
a critical density, the helium surface becomes unstadie  spherical harmonicsg; () =Y, (), where Q repre-
multielectron bubbles forrThese multielectron bubbles are sents the spherical anglés={0, ¢}, andl,m represent the
spherical cavities in the helium liquid, containing from a few angular momentum quantum numbers. We introduce the cre-
to several tens of millions of electrons. The bubble ra®us .ion gperatord] . which creates an electron in the state
is determined by balancing the Coulomb repulsion of the ) th 'mh if lectron i tin that stat
electrons in the bubble with the surface tension of the heﬁo'vm( ) on ] ? s.p ere 1t no elec rpn IS presentin that state
lium: for N=10000 electrons, the typical bubble radius is@nd the annihilation operatoy , which destroys an electron
1 wm, and scales a4?33 Density functional calculatiods  in the single-particle state (€2).
indicate that the electrons inside the bubble are not spread
out homogeneously, but instead form a thin spherical layer A. Kinetic energy
with thicknessé<R and radius~R— &, anchored to the sur- Within d- tization theof Ref. 10th
face of the helium, with a binding energy of the order of " second-quantization eq yee, .9, ke '_])A €
several kelvirf:® The electrons are free to move in the direc- kinetic energy operator can be written as a functiorc/of
tions tangential to the spherical helium surface, so that irandc; ,, as follows:
effect they form a spherical two-dimensional electron gas

(S2DEG. oz % v
Our present analysis of the spherical two-dimensional — T=, > X on
electron gas, albeit motivated by the study of multielectron I=0m==1 17— m=-1"
bubbles, is equally relevant from a fundamental point of 52
view: it is the logical next step to take after analysis of the > f * — o
flat two-dimensional electron gas, a topic that keeps drawing d2Yim( ) 2meR2A“Y' m ()G m

renewed attention. Furthermore, S2DEG’s also appear in

doped semiconductor particles if carriers accumulate in a sl

surface layef,in charged droplet3and in fullerenes, where = 2 2

multipole excitation modes with angular momentum

=1,2,3,4 of the S2DEG have recently been investigted. In this expressionm, is the electron mas® is the radius of
In this paper, we introduce a second-quantization formalthe spherical electron gad,, is the angle-dependent part of

ism suited for the description of the S2DE{& Sec. I). On  the Lagrangian in spherical coordinates, antHQ

the basis of this formalism, the angular-momentum-_ vy 7qgsing. Expressior(1) shows that the energy of
dependent dielectric function of the S2DEG is derived W|th|na free electron in an angular momentum stdten} is

the random phase approximatioRPA) framework in Sec.

SmRZ_ ClmCim- 1)

lll. Results are given for the single-particle and collective B2(1+1)
excitations of the S2DEG and the static structure factor de- E|,m=—2 (2
pendence on the angular momentum quantum number in Sec. 2mR

V. If more than one electron is present, they will occupy the

lowest-energy states up to the Fermi endegycharacterized

by a Fermi angular momentuin:, so thatN=2(Lg+1)?
Decompositions in plane waveg,(r)<e'*" are well and Er=#2Le(Lg+1)/(2mR?). Since in multielectron

suited to handle the many-body problem in flat space, but arubbles the bubble raditg=N*3 the Fermi energy scales

II. HAMILTONIAN OF THE S2DEG
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as Er«N~2 so that adding electrons to the multielectron{l’,m'}, respectively. With this notation, the spherical com-

bubbles lowers the Fermi energy.

B. Density

The surface density on the sphere, defined as the expec-
tation value of the number of electrons in an infinitesimal

spherical angle aroun, is

o

| o I
(@)= 3 X 3 V@)Y m ()6 i m

I=0m=—1y—0m'=-1" @

The decomposition in spherical harmonics of this density

operator is given by

% |

n(Q)=2 2 pell,mYin(Q), (@)

pll,m) = f ARV, (). (5)

Using the parity property of spherical harmonid§,,(£2)
=(—1)MYF_(Q), it is easily shown thatf)e(l,m)
=(—1)"p(l,—m). Substituting Eq(3) in Eq. (4), we find
for the spherical components of the density operator

o0 |1 0 |2

I’;e(lim): E

11=0 my=—11 [,=0 my=—1,

X f dOY| ()Y, (DY, m, (Q)

4 -
XCp, m,Cly,m;- (6)

The addition rules for spherical harmonics allow us to per-
form the integral of the product of spherical harmonics in Eg.

(6):

I’ I+1’ L

pe(lm)—E > X X

I"'=om’=—1" L=|I-1"| M=-L

(21+1)(21"+1)
(2L+1)

X(1,0;1",0/L, 01, m;1",m’ [L,M)C] yyCpr e - (7)

In this expression{l,m;!’,m’|L,M) is the Clebsch-Gordan

coefficient for combining the angular momenrfigm} and

{I’,m'} into {L,M}. To simplify this expression, we intro-

duce the following notation:

- '*E" i [21+1)(21"+1)
Comearm)™ L ML (2L+1)

X(1,0;1",0/L,0)¢(I,m;1",m’|L,M)c] .
t)

ponents of the density operator can be written as

|m)_§) Z Cmyerm G 9)

I"'=0m'=

which highlights the analogy with the definition of the
Fourier-transformed density operator of the flat two-
dimensional electron gas.

C. Coulomb interaction on the sphere

The Coulomb potential energy term fdrelectrons, in the
Hamiltonian is

. 1NN e?
H coutomt= E E

1= jrej=1

-, (10
4"77-80 |rj_rj/|

whereFj represents the position operator of electr@amde

is the vacuum permittivity. The Coulomb potential on a
sphere with radiu®k can be straightforwardly expanded in
spherical harmonics:

1 N N eZ * ! 4
H couloms™ 2 Jz i §=1 AreR |:zo m;I 21+1
XY Q) YEn(Q)), (1D

with ﬁj the (spherical angleposition operator of electron
on the sphere. In second quantization this becomes

Acouoms= 2 2 2 (—1)Mo(l)

l1,mq Io,my I.m

- - .
XC(1 mpe(l,~mC(l,,my)e,mCl, mCl m

(12)

with 3, =37 =!__| and

ez 1
viD=2R2I7 1 (13

This term in the Hamiltonian describes the interaction pro-
cess, shown in Fig. 1. The initial state consists of two elec-
trons in angular momentum statfls ,m;} and{l,,m,}. In

the final state one electron is in an angular momentum state
resulting from addindl,m} to its original angular momen-
tum, and the other electron is in a state resulting from sub-
tracting{l,m} from its original angular momentum. Hence,
the Coulomb interaction on a spherical surface can be de-

The operatorc(l me(,my Creates an electron in a state scribed as the exchange of a virtual photon with a given
which results from the combination of two angular momen-angular momenturfll,m}, with an amplitude for this process

tum states characterized by the quantum numfiers} and

of v(l). The total Hamiltonian for the S2DEG is
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N B sponse theory, the spherical components of this induced den-
sity can be written as

I @ m)®-m) 1

) 1 pidl M) = 2 Ve M) De(l M), (19
virtual ;’:;Lt’:r'] |@my where Dﬁ(l,m;w) is the retarded density-density Green’s
photon

function: If the external potentiaVe(l,m;w) is a Cou-
lomb potential created by an external chapgg, a dielectric
function depending on the angular momentum can be intro-

(m,) (L,m)®(m) duced to describe the screening of this external Coulomb

potential:
e e |e e
. Pind(l,M; @)
2DEG: wave numbers k,k',q| S2DEG: angular momenta e(l,mw)=1- Pext(l ,M;w) (16)
characterize excitations characterize excitations
1 v(l)
FIG. 1. Two Feynman diagrams for equivalent processes— :s(l,m;w) =1+ A Dr(l,m;w). (17

namely, the exchange of a virtual photon between two electrons.
The panel at the left shows the diagram for the case of a flat 2DEG , . . .
and the one to the right is for the case of a S2DEG. In the ﬂatThe reta_rded Gr_eens functloDR(!,m;w) is derived from
2DEG, wave numbers are good quantum numbers; in the S2DEGNE density-density Green’s function:

they have to be replaced by angular momentum quantum numbers.

Vector addition of momenta has to be replaced by addition of an-  D(I,m;t)=—i < T,
gular momenta.

- R
7—[|2 Cme,.m) (D m (1)
1:M

0 | 2 o ~t ~
. +1)., . X )c, — c Yo,
=S S Al(l l)Crmclm |§12( )C(1,—mys(1,,m,) |2,sz o>
=om=-1 2mgR?> "
(18)
+ > S (= 1)Mu(l) where the expectation value is taken with respect to the
I1my 13.my Tm many-body ground statel,), 7'is the time-ordering opera-
- - R R tor, and
X . . .
Cliympe,~mCa,mye,mCi,mCi m (14 6|’m(t)zeth/ﬁelvmefth/ﬁ_ (19)
IIl. RESPONSE PROPERTIES OF THE S2DEG Within the second-quantization formalism for the S2DEG,
. Dg(l,m; ) is evaluated with standard Green’s function tech-
When an external field  Ve(Q;®)  niques. In the resulting Feynman grapltise “polarization

=3 mVexi(l,M;®) Y| n(Q) that couples to the electron bubble” graphs®) the wave numbers are replaced by angular
density is applied, an induced density;,q(Q,w) momenta as illustrated in Fig. 1. To lowest order in the in-
=2 mpind(l,M; @)Y, n(Q) is generated. Within linear re- teraction amplitude (1), we find

1+1"
2l+1)(21"+1)
(0) . _ ’ ’ _ ’ Nl 2 . ’ r\|2
DO, m;w) IEm 2 amaen) n(l’,m")[1—n(L,m+m")]|{1,0;1",0[L,0)[2[(I,m;l",m’|L,m+m"}|
1 1
X — — — |, (20
(1)+(E|/’m/_E|_’m+m/)/ﬁ+|7] (1)+(E|_Ym+m/_E|/'m/)/ﬁ+|77

with # an infinitesimal numberE, ., the energy of a free the result of Inaokafor the susceptibility of the S2DEG,
electron in angular momentum stgtem} on the sphere, and which was used to investigate the=1,2,3,4 multipole
modes of the S2DE&In Sec. IV we extend this investiga-
tion to include excitations with large angular momentum
(so thatl/L>1), keeping the regime studied by Inaoka as a
limiting case. By investigating a much broader portion of the
the occupation number of stafé,m}. This result, derived excitation spectrum, we identify the nature of the excitations
with the formalism described in Sec. Il, is in agreement withand expose novel properties of those excitations.

n(l ,m)=<‘1’oléf,m&|,ml\1’o>, (22)
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FIG. 2. Diagrams representing the angular momentum states of an electron on a spherical surface. In the three panels, electrons are
occupying the single-particle states up to a Fermi-level angular momebhfua8. This Fermi sea of occupied states is shown as solid
circles. The diagrams also show the final states which can occur from combining the angular momentum of any of the electrons in the Fermi
sea with the angular momentum of an excitat{@ith {I,m}={2,1},{4,—3},{8,1 for the left, middle, and right panels, respectiveljhe
final states which are unoccupied, and thus allowed, are indicated by open squares. The final states which cannot be achieved because ther
is already an electron present are indicated by open circles.

The contribution of lowest order in(l) to the retarded IV. RESULTS AND DISCUSSION
density-density Green’s function determines the Hartree-
Fock (HF) approximation to the dielectric functiofil?),

given here for reference:

A. Single-particle excitations

In this section we will use units such that,=2=R=1.
The dielectric function can be clarified by considering Ple-
melj’s rule. The imaginary part of the RPA dielectric function
becomes

v(l) -1

epe(l,mw)= 1+TD(RO)(I,m;w) (22)

I+17

IMmegea(l,Mw)=m0() >, >,

I'm’ L=[1-1"]
xn(I'm")[1—n(L,m+m’)]

X |(1,0;1",0|L,0)|?

(21+1)(21" +1)

. . . . +
It also permits the calculation of the RPA to the dielectric 4m(2L+1)
function, through a Dyson series forL

(0)
RPA_ Dr 23) X|(I,m;1",m’|L,m+m’)|?
R 1-Tw()/Aa]1DQ"
R Xa[w_(EL,erm’_El’,m’)]' (25)
The dynamic structure factor of the S2DEG is related to the
so that dielectric function by
S(I,m; w)
. v(D_ 0y o
SRPA(Iymyw):l__DR (Iamaw)' (24) 1 1
h = Im (26)
ao(l) | e(l,m;w)
Note that the spin degree of freedom is not explicitly taken 1 Im[e(l,m; )]
into account in the expressions above. The interparticle po- =— 0 5 5
tential and the kinetic energy are considered to be spin- mu ) {Ree(l,m;w) [} +{Im[e(l.m; )]}
independent in the present treatment. The central quantity, (27)

from which properties of the S2DEG are derived in the cur-and can be interpreted as the probability that an excitation
rent treatment, is the “polarization bubble” diagram leadingwith given angular momentum quantum numigm} and

to DY), For spin-independent interaction potentials, the spirenergy% w can be created(l,m; w) is a quantity accessible
degree of freedom only leads to a degeneracy prefactao experiment, in particular scattering experiments. From ex-
D(RO): the degeneracy of the unperturbed levels is doublegression25) we conclude that Imigpa(l,m; ®) is zero unless
from 214+1 to 2(2 +1). adding the angular momentufh,m} and the energyiw to
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the ground state of the S2DEG can excite a single electror 35

from an occupied statgn(l’,m’)=1] into an unoccupied {1 Lg=20 (N=822, R=0.210909 pm)
state[ n(L,m+m’)=0]. These are the single-particle excita- 301
tions (called the “Landau continuum?” in the case of the flat 1
2DEQG). Figure 2 illustrates this concept in relation to the 25+

Single particle excitations

S2DEG. Three regimes can be distinguished. 1+ Spherical plasmon branch

(i) Case 1. KLg. In the left panel of Fig. 2, we show the .~ 20+
case of angular momentufi,m}={2,1} imparted on the 'g 1
system. The solid disks represent the occupied states, th‘; 15+
open squares are allowed final states which can be reache 1
by adding the angular momentufhm} to the angular mo- 10 +
mentum of an electron in the Fermi sphere, and the oper
circles are forbidden final states as they are occupied anc 54 .°
excluded by Fermi statistics. In this example the Fermi sea is
filled up toLg=3. Not all final states are accessible, since to 0
excite an electron it has to go into a final state which is 0.0 1.0
unoccupied(the open squargsThis means in practice that 1L
the electrons which can participate in creating an excitation
of angular momentunjl,m} are the ones close to the Fermi  FIG. 3. In the many-body S2DEG, two types of excitations can
level (in fact, those from leveL-—1 up toL). be distinguished: single-particle excitatiorfashich appear for

(i) Case 2.2Ls>|1>Lg. This is shown in the middle Im[e]#0) and collective excitationgwhich appear when Re]

panel of Fig. 2 depicting single-particle excitations which =Im[e]=0). The excitations of the S2DEG can be characterized

have angular momenturf#,— 3!. Now all the electrons in by their angular momentuinand energyi w. This figure shows the

the Fermi sea can participate, but not all resulting final statelé’cat'on of the excitations in the _frequen_@nergy VS a_mgular

are unoccupied. momer_ltum pla_ne. The single-particle excitations are discrete, gnd
. . . all lie in a region demarcated by the black curves, representing
(i) Cas_,e 3. ]>2L.F' An exgmple IS s_hown in the right omin(l) and wma(l) given by expression®9) and(28). The collec-

graph of Fig. 2, for single-particle excitations of an_g_ular rT?O'tive excitations are shown as solid diamonds, lying above the

mentum{8,1}. Now not only can all electrons participate in () curve.

the process, but also all possible final states are unoccupied”a

and thus accessible. B. Plasmons in a spherical 2D electron gas
The maximum energy difference between initial and final

single-particle states in Fig. 2 is

25

F

In addition to the single-particle excitations in the
S2DEG, collective excitations are also possible. “Collective
excitations” are defined as poles of the density-density

h? Green’s functionD, whereas single-particle excitations are
omal )= om Rz[(LFH)(LFH+1)_(LF)(LF+1)] defined as poles of the single-particle Green's functfon.
€ This means that collective excitations appear when
2 e(l,m;w)=0. In the flat 2DEG, these collective excitations
= 5 [12+1(2Lg+1)]. (28 are called plasmon modes. We will use the same terminology
2mR for the S2DEG(occasionally using “spherical plasmons”
when a distinction is needgd
The smallest energy difference in casel 32L¢) is For the collective mode, the imparted angular momentum
is shared between all the particles. This means that in a col-
2 lective mode with angular momenturfl,m} the entire
min(D)=-——=[(I=Lp)(I =Lg+1) = (Lp)(Lg+1)] spherical shell of electrons will oscillate with an amplitude
mgR proportional toY, ,({2). The frequency of the collective
5 modes(the plasma frequency,,) will depend on the angu-
_ h [12-1(2Le—1)—2L,] (29 lar momentum of the modél,m}. The plasma frequency
2m,R? F - wp(1,m) of the S2DEG can be found by solving
2
The two frequencies (1) and w,,(I) demarcate a region 1— dew quDR’O(I ,M; wp)]=0,

in the frequency versus angular momentum plane in which
the single-particle excitations lie. Figure 3 shows the location )
of the excitations of the spherical two-dimensional electron Im[Dg ol 1,m; wp) ]=0. (30

gas in the angular momentuhnversus frequency plane. For the flat electron gas the last condition means that the
The {l,w} values corresponding to a single-particle excita-plasma branch lies outside the region of single-particle exci-
tion for an S2DEG withL=10 are shown in Fig. 3 as tations discussed in the previous subsection. In Fig. 3, the
markers within the limiting frequencias,,i, and w,ax 0f the  spherical plasmon excitations are shown as full diamonds.
Landau continuum region shown by solid curves. Figure 4 illustrates how the plasmon branch depends on the
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FIG. 4. The collective excitations of the S2DEG are the analog FIG. 5. In a multielectron bubbl¢éMEB), the radius of the
of plasmons in the flat 2DEG and appear at frequenaieand  spherical electron gas can be varied independently of the number of
angular momentd such that Ree(l,w)]=Im[e(l,w)]=0. For  electrons by applying pressure. This figure, which complements
S2DEG's withL=10,20,40, these collective excitations are shownFig. 4, shows the effect of changing the MEB radius on the frequen-
as solid squares, circles, and triangles, respectively. The dasheges of the collective excitationghe “spherical plasmong”as a
curves denote the upper frequency of the region of single-particlgunction of the angular momentum. The inset shows the same re-
excitations[given by expressiori28)]. As more electrons are put sults, with the frequency rescaled to the natural bubble frequency
into the multielectron bubble, the frequency of the collective exci-7/(m,R?).
tations decrease. As the Fermi level is increadeg-~, the
spherical plasmon excitations form a solid curve and the lowesKjnce the dynamic structure factor only depends on the mag-
spherical plasmon frequenay,(l=1) approaches zero. nitude of the angular momentuimand not onm, this will

) ) also be true for the static structure factor. Figure 6 shows the

number of electrons in the S2DEG. The radius of the SZDEG4iic structure factor as a function of angular momentum
has been chosen equal to the equilibrium radius of a multithe gpen squares are the result in the Hartree-Fock approxi-
electron bubble with a given number of glectréhsThe mation[usinge e, expressiori22)], and the solid circles are
bubble radius is found by balancing the helium surface teng,o result in the RPA approximatidusing s gps, €Xpression

sion and the Coulomb repulsion as discussed in the introdug 4] As in the case of the flat 2DEG, the HF structure factor
tion. Flgure 5 illustrates how the_ plasmon branch depends O8 (1) is linear for smalll/Ly, whereas the RPA structure
the radius of the S2DEG, for a fixed number of electrons. We iy approaches zero more rapidly with decreasig the

find that as the radius is decreaseée., the multielectron gt of Fig. 6, the first frequency moment of the dynamic
bubble is compressgdthe plasmon branch lies relatively ¢ cture factor

closer to the upper frequency of the single-particle excitation

region(as shown in the inset of Fig)5However, the energy o

scale, set by:?/(mgR?), increases with decreasing radius so (w(|)>=f oS(l,m;w)do, (32
that the absolute value of the plasmon frequencies increases 0

with decreasing radius. The plasmon frequency is indepens shown, again for both HF and RPA approximations.
dent of the projection of the angular momentomThe plas-  |naokd derived a sum rule for the first frequency moment of

mon branch of the S2DEG strongly differs from the plasmonthe angular-momentum-dependent dynamic structure factor.
branch of 2DEG's in two important aspects: it is discrete andp units 4 = m,=R, this is

the lowest accessible plasmon frequency is larger than zero
despite the acoustic nature of the plasmon branch. ( [(1+1)
w(l))= .
2

(33

C. Sum rule and spectral weights
From Fig. 6 it is clear that the HF dynamic structure factor

Sum rules prove to be a remarkably useful tool in the . .
. . . obeys this sum rule. The RPA dynamic structure factor can
analysis of spectra, both experimentally and theoretically, . LY
be written as a sum of a contribution from the plasmon mode

The zeroth-moment sum rule for the dynamic structure facto‘r,jmd the contributiorS..... from sinale-particle excitations:
defines the static structure factsfl,m): cont gie-p '

Sreall @) =A(l) Lo — wp(1) ]+ Seond @), (34)
dw.

1
e(l,m; w)

© 1 ©
S(I,m)=f S(I,m;w)dw=— f Im ) )
0 mu(l)Jo with A(l) the spectral weight of the plasmon branch. The

(3D  inset of Fig. 6 showd wSonl,w)dw. From the deficit of
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can be interpreted as a probability functitsee, e.g., Ref.
13, p. 153. HereS(l,m; w)dw is the probability that an ex-
citation of the S2DEG has angular momentum quantum
numbergl,m} and energy betweéehw andf(w+dw). This

is analogous to the interpretation of the more familiar dy-
namic structure factofS(k, )] expressed as a function of
wave number, which is the probability that an excitation has
momentunik and energyi w.

A “natural” experiment to determine the dynamic struc-
ture factor directly is an inelastic scattering experiment. In
particular the differential cross section for a probe particle of
massM (such as an incident igrand initial momentunp; to
be scattered to a final stapg with energy transfer between
hw and#(w+dw) to the scattering system'fs

00 05 10 15 20 2.5 3.0 do M? pr ‘
L, d0dw g8 il v Sk, (36

FIG. 6. The static structure facta(l) for a spherical two- In this expressiong is the scattering angle betweepand
dimensional electron gg§2DEQG with Lg=20 is shown as a func- p;,|V,]| is the Fourier transform of the interaction potential
tion of I, both in the RPA and in the Hartree-Fock approximations.between the probe particle, and the energy transfés re-
Note that in the Hartree-Fock approximatids(l) is linear inl at lated to the momentum transfek by Aw=7%2k-p,/m
small I, whereas in the RPA approximation it goes to zero faster (7k)?/(2m). The relation between the Fourier decomposi-

than linearly. In the inset, the sum ru@3) for the first frequency +tion and the spherical decomposition of the density is
moment of the dynamic structure factor of the S2DHERRf. 9 is
checked. The Hartree-Fock result complies perfectly to the sum N
rule. The RPA result without the plasmon branch does not havc—f)e(k)z

enough spectral weight to satisfy the sum rulelfdr, <2, which I
indicates that in this region a substantial part of the spectral weight

lies with the plasmon mode—the strength of the plasmon branch is => Jam(21+1)i'j;(kR)pd1,0), (37)
derived from this result. [

the RPA dynamic structure factor without the plasmon modewhere thez axis has been taken along the direction of the
shown in the inset of Fig. 6, the spectral weight of the plaswave vectork, ji(x) is the spherical Bessel function of the
mon mode can be derived: first kind, and ¢; is the angle betweek and the position

operator of electron,r;. The dynamic structure factors are
[(1+1) B Jw related by

N
<eik-rj>:j§1 ZI \/miIJ-I(kR)<Y|,0(A'9J')>

1

A wg(l)= 5 . wS;on{l,w)dw. (35
The spectral weight of the plasmon mode, along with the
RPA dynamic structure factor in the region of single-particle
excitations, is shown in Fig. 7 fdrg=20. The RPA dynamic  which can be derived by writing the dynamic structure factor
structure factor of the S2DEG is shown color coded and as as a density-density correlation function in the Lehmann rep-
white regions the RPA dynamic structure factor is zero. In - Note that the dependence of the angular wave functions
shaded regions, the RPA dynamic structure factor differgn the polar angl@ becomes semiclassical when the quan-

from zero. This figure is the complement of Fig. 3: whereasym numbet is large. In particular, the WKB expression for
Fig. 3 shows the location and type of the possible excitationghe angular function becomés

of the S2DEG as a function of angular momentum and en-

ergy, this figure shows their corresponding spectral weight as i! sir[ (1 +1/2) 6+ 7/4]

expressed by the dynamic structure factor. At small angular Yi0(0)~— : . (39
momentum [/Lg<<0.5), the plasmon branch carries the most & vsing

spectral weight, and the region of single-particle excitationsrhis semiclassical approximation will be valid in the region
only has a small fraction of the total spectral weight. Within,, pqre 9l>1 and (r— 6)I>1, which holds at largd for
the region of single-particle excitations, there is a local maXi'aImost all values o9 except those close to the “poled

mum in the dynamic structure factor aroundL. =0 and = 7. The semiclassical approximati¢89) corre-
sponds to the limit of a plane wave, where the wavelength is
given byR(27/1). As such, this approximation leads prima-
The dynamic structure facta®(l,m;w) is the spectral rily to the results of a flat 2D electron gas whérgR plays
function of the density-density Green’s function and as suctthe role of the electron momentum. This is valid in the limit

S(k,w):EI INam(21+1)j(kR)[?S(1,0;w), (39

D. Discussion
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01 1,220, R=0.210909

I

0 FIG. 7. The RPA dynamic

structure factor S(l,w) for a
spherical two-dimensional elec-
tron gas(S2DEQ with Lg=20 is
shown here in unitsh=m,=R
=1 as a function of the angular
momentum quantum numbkand
their energyw. At zero tempera-
ture, the RPA dynamic structure
factor of the S2DEG consists of a
region of single-particle excita-
tions and a set of collective modes
(colored disks This figure
complements Fig. 3, which shows
only the locations of the excita-
tions, whereas this figure shows
their spectral weights.

30 ¢

0 0.5 1 1.5 2 2.5 3
l/LF

thatRis large and the ratit/ R remains finite, although even plasmon mode carries the main fraction of the spectral
for smallR, this approximation will still hold at largk How-  weight. The single-particle excitations are confined to a re-
ever, it does not reproduce some of the interesting lowgion determined byo,iy(1) and wyal) given by expressions
angular-momentum results such as a lower boundary to th9) and(28). In the semiclassical approximation, the role of
plasmon frequencies. the electron momenturfik in the flat 2DEG is played by
nl/R in the spherical electron gas, and the energy scale is set
by #2/(msR?), which opens interesting prospects for multi-
V. CONCLUSIONS electron bubbles since the radius can be varied by either
. . . changing the number of electrons or—independently—the
In this paper, we have studied the properties of the tWO'pressure. For typical multielectron bubbles wiks 10%, the

dimensional electron gas in a distinct geometry which is re? S .
cently gaining interest in connection to multielectron plasmon modes of the S2DEG lie in the far infrared, and

bubbles—namely, electrons confined to a spherical surfacd€lr frequency increases with decreasing number of elec-

For this purpose, we set up a second-quantization formuldrons in the multielectron bubble or with decreasing radius of

tion based on the spherical harmonics as single-electroffi€ bubble, such that these novel collective modes may be
building blocks for the many-electron theory, introduced indetectable in forthcoming experiments on stabilized multi-
Sec. II. Within this formalism, the dynamic structure factor is electron bubbles’

derived in the RPA framework and both the single-particle

excitations and collective excitations are analyzed for

S2DEGs withL up to 40 and for angular momenitaip to ACKNOWLEDGMENTS
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