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Many-body properties of a spherical two-dimensional electron gas
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We investigate the many-body properties of a two-dimensional electron gas constrained to the surface of a
sphere, a system which is physically realized in, for example, multielectron bubbles in liquid helium. A
second-quantization formalism, suited for the treatment of a spherical two-dimensional electron gas~S2DEG!,
is introduced. Within this formalism, the dielectric response properties of the S2DEG are derived, and we
identify both collective excitations and a spectrum of single-particle excitations. We find that the single-particle
excitations are constrained to a well-defined region in the angular-momentum–energy plane. The collective
excitations differ in two important aspects from those of a flat 2DEG: on a sphere, the ‘‘spherical plasmons’’
have a discrete frequency spectrum and the lowest frequency is nonzero.
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I. INTRODUCTION

When a film of electrons on a flat helium surface reac
a critical density, the helium surface becomes unstable1 and
multielectron bubbles form.2 These multielectron bubbles ar
spherical cavities in the helium liquid, containing from a fe
to several tens of millions of electrons. The bubble radiuR
is determined by balancing the Coulomb repulsion of
electrons in the bubble with the surface tension of the
lium: for N510 000 electrons, the typical bubble radius
1 mm, and scales asN2/3.3 Density functional calculations4,5

indicate that the electrons inside the bubble are not sp
out homogeneously, but instead form a thin spherical la
with thicknessd!R and radius'R2d, anchored to the sur
face of the helium, with a binding energy of the order
several kelvin.4,6 The electrons are free to move in the dire
tions tangential to the spherical helium surface, so tha
effect they form a spherical two-dimensional electron g
~S2DEG!.

Our present analysis of the spherical two-dimensio
electron gas, albeit motivated by the study of multielectr
bubbles, is equally relevant from a fundamental point
view: it is the logical next step to take after analysis of t
flat two-dimensional electron gas, a topic that keeps draw
renewed attention. Furthermore, S2DEG’s also appea
doped semiconductor particles if carriers accumulate i
surface layer,7 in charged droplets,8 and in fullerenes, where
multipole excitation modes with angular momentuml
51,2,3,4 of the S2DEG have recently been investigated9

In this paper, we introduce a second-quantization form
ism suited for the description of the S2DEG~in Sec. II!. On
the basis of this formalism, the angular-momentu
dependent dielectric function of the S2DEG is derived with
the random phase approximation~RPA! framework in Sec.
III. Results are given for the single-particle and collecti
excitations of the S2DEG and the static structure factor
pendence on the angular momentum quantum number in
IV.

II. HAMILTONIAN OF THE S2DEG

Decompositions in plane waveswk(r )}eik•r are well
suited to handle the many-body problem in flat space, but
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not appropriate to describe the many-body problem o
spherical surface. The noninteracting single-particle wa
functions suitable for the description of the S2DEG a
spherical harmonics,w l ,m(V)5Yl ,m(V), where V repre-
sents the spherical anglesV5$u,f%, and l ,m represent the
angular momentum quantum numbers. We introduce the
ation operatorĉl ,m

† which creates an electron in the sta
w l ,m(V) on the sphere if no electron is present in that st
and the annihilation operatorĉl ,m which destroys an electron
in the single-particle statew l ,m(V).

A. Kinetic energy

Within second-quantization theory~see, e.g., Ref. 10!, the
kinetic energy operator can be written as a function ofĉl ,m

†

and ĉl ,m as follows:

T̂5(
l 50

`

(
m52 l

l

(
l 850

`

(
m852 l 8

l 8

ĉl ,m
†

3F E dVYl ,m* ~V!
2\2

2meR
2
DVYl 8,m8~V!G ĉl 8,m8

5(
l 50

`

(
m52 l

l
\2l ~ l 11!

2meR
2 ĉl ,m

† ĉl ,m . ~1!

In this expression,me is the electron mass,R is the radius of
the spherical electron gas,DV is the angle-dependent part o
the Lagrangian in spherical coordinates, and*dV
5*0

2pdf*0
pdu sinu. Expression~1! shows that the energy o

a free electron in an angular momentum state$ l ,m% is

El ,m5
\2l ~ l 11!

2meR
2

. ~2!

If more than one electron is present, they will occupy t
lowest-energy states up to the Fermi energyEF characterized
by a Fermi angular momentumLF , so thatN52(LF11)2

and EF5\2LF(LF11)/(2meR
2). Since in multielectron

bubbles the bubble radiusR}N2/3,11 the Fermi energy scale
©2002 The American Physical Society18-1
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as EF}N21/3 so that adding electrons to the multielectr
bubbles lowers the Fermi energy.

B. Density

The surface density on the sphere, defined as the ex
tation value of the number of electrons in an infinitesim
spherical angle aroundV, is

n̂e~V!5(
l 50

`

(
m52 l

l

(
l 850

`

(
m852 l 8

l 8

Yl ,m* ~V!Yl 8,m8~V!ĉl ,m
† ĉl 8,m8 .

~3!

The decomposition in spherical harmonics of this dens
operator is given by

n̂e~V!5(
l 50

`

(
m52 l

l

r̂e~ l ,m!Yl ,m* ~V!, ~4!

r̂e~ l ,m!5E dVn̂e~V!Yl ,m~V!. ~5!

Using the parity property of spherical harmonics,Yl ,m(V)
5(21)mYl ,2m* (V), it is easily shown that r̂e( l ,m)

5(21)mr̂e( l ,2m). Substituting Eq.~3! in Eq. ~4!, we find
for the spherical components of the density operator

r̂e~ l ,m!5 (
l 150

`

(
m152 l 1

l 1

(
l 250

`

(
m252 l 2

l 2

3F E dVYl ,m~V!Yl 2 ,m2
* ~V!Yl 1 ,m1

~V!G
3 ĉl 2 ,m2

† ĉl 1 ,m1
. ~6!

The addition rules for spherical harmonics allow us to p
form the integral of the product of spherical harmonics in E
~6!:

r̂e~ l ,m!5 (
l 850

`

(
m852 l 8

l 8

(
L5u l 2 l 8u

l 1 l 8

(
M52L

L A~2l 11!~2l 811!

~2L11!

3^ l ,0;l 8,0uL,0&^ l ,m; l 8,m8uL,M &ĉL,M
† ĉl 8,m8 . ~7!

In this expression,̂ l ,m; l 8,m8uL,M & is the Clebsch-Gordan
coefficient for combining the angular momenta$ l ,m% and
$ l 8,m8% into $L,M %. To simplify this expression, we intro
duce the following notation:

ĉ( l ,m) ^ ( l 8,m8)
†

5 (
L5u l 2 l 8u

l 1 l 8

(
M52L

L A~2l 11!~2l 811!

~2L11!

3^ l ,0;l 8,0uL,0&^ l ,m; l 8,m8uL,M &ĉL,M
† .

~8!

The operatorĉ( l ,m) ^ ( l 8,m8)
† creates an electron in a sta

which results from the combination of two angular mome
tum states characterized by the quantum numbers$ l ,m% and
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c-
l

y

-
.

-

$ l 8,m8%, respectively. With this notation, the spherical com
ponents of the density operator can be written as

r̂e~ l ,m!5 (
l 850

`

(
m852 l 8

l 8

ĉ( l ,m) ^ ( l 8,m8)
† ĉl 8,m8 , ~9!

which highlights the analogy with the definition of th
Fourier-transformed density operator of the flat tw
dimensional electron gas.

C. Coulomb interaction on the sphere

The Coulomb potential energy term forN electrons, in the
Hamiltonian is

ĤCoulomb5
1

2 (
j 51

N

(
j 8Þ j 51

N
e2

4p«0

1

u r̂ j2 r̂ j 8u
, ~10!

wherer̂ j represents the position operator of electronj and«0
is the vacuum permittivity. The Coulomb potential on
sphere with radiusR can be straightforwardly expanded
spherical harmonics:

ĤCoulomb5
1

2 (
j 51

N

(
j 8Þ j 51

N
e2

4p«R (
l 50

`

(
m52 l

l
4p

2l 11

3Yl ,m~V̂ j !Yl ,m* ~V̂ j 8!, ~11!

with V̂ j the ~spherical angle! position operator of electronj
on the sphere. In second quantization this becomes

ĤCoulomb5 (
l 1 ,m1

(
l 2 ,m2

(
l .m

~21!mv~ l !

3 ĉ( l 1 ,m1) ^ ( l ,2m)
† ĉ( l 2 ,m2) ^ ( l ,m)

† ĉl 2 ,m2
ĉl 1 ,m1

,

~12!

with ( l ,m5( l 50
` (m52 l

l and

v~ l !5
e2

2«R

1

2l 11
. ~13!

This term in the Hamiltonian describes the interaction p
cess, shown in Fig. 1. The initial state consists of two el
trons in angular momentum states$ l 1 ,m1% and $ l 2 ,m2%. In
the final state one electron is in an angular momentum s
resulting from adding$ l ,m% to its original angular momen
tum, and the other electron is in a state resulting from s
tracting $ l ,m% from its original angular momentum. Henc
the Coulomb interaction on a spherical surface can be
scribed as the exchange of a virtual photon with a giv
angular momentum$ l ,m%, with an amplitude for this proces
of v( l ). The total Hamiltonian for the S2DEG is
8-2
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Ĥ5(
l 50

`

(
m52 l

l
\2l ~ l 11!

2meR
2

ĉl ,m
† ĉl ,m

1 (
l 1 ,m1

(
l 2 ,m2

(
l ,m

~21!mv~ l !

3 ĉ( l 1 ,m1) ^ ( l ,2m)
† ĉ( l 2 ,m2) ^ ( l ,m)

† ĉl 2 ,m2
ĉl 1 ,m1

. ~14!

III. RESPONSE PROPERTIES OF THE S2DEG

When an external field Vext(V;v)
5( l ,mVext( l ,m;v)Yl ,m(V) that couples to the electro
density is applied, an induced densityr ind(V,v)
5( l ,mr ind( l ,m;v)Yl ,m(V) is generated. Within linear re

FIG. 1. Two Feynman diagrams for equivalent processe
namely, the exchange of a virtual photon between two electr
The panel at the left shows the diagram for the case of a flat 2D
and the one to the right is for the case of a S2DEG. In the
2DEG, wave numbers are good quantum numbers; in the S2D
they have to be replaced by angular momentum quantum num
Vector addition of momenta has to be replaced by addition of
gular momenta.
ith

19541
sponse theory, the spherical components of this induced
sity can be written as

r ind~ l ,m;v!5
1

\
Vext~ l ,m;v!DR~ l ,m;v!, ~15!

where DR( l ,m;v) is the retarded density-density Green
function.12 If the external potentialVext( l ,m;v) is a Cou-
lomb potential created by an external chargerext, a dielectric
function depending on the angular momentum can be in
duced to describe the screening of this external Coulo
potential:

«~ l ,m;v!512
r ind~ l ,m;v!

rext~ l ,m;v!
~16!

⇒ 1

«~ l ,m;v!
511

v~ l !

\
DR~ l ,m;v!. ~17!

The retarded Green’s functionDR( l ,m;v) is derived from
the density-density Green’s function:

D~ l ,m;t !52 i K C0UTH (
l 1 ,m1

ĉ( l ,m) ^ ( l 1 ,m1)
† ~ t !ĉl 1 ,m1

~ t !

3 (
l 2 ,m2

~21!ĉ( l ,2m) ^ ( l 2 ,m2)
† ĉl 2 ,m2J UC0L ,

~18!

where the expectation value is taken with respect to
many-body ground stateuC0&, T is the time-ordering opera
tor, and

ĉl ,m~ t !5eiĤ t/\ĉl ,me2 iĤ t/\. ~19!

Within the second-quantization formalism for the S2DE
DR( l ,m;v) is evaluated with standard Green’s function tec
niques. In the resulting Feynman graphs~the ‘‘polarization
bubble’’ graphs,13! the wave numbers are replaced by angu
momenta as illustrated in Fig. 1. To lowest order in the
teraction amplitudev( l ), we find

s.
G
t

G,
rs.
-

D R
(0)~ l ,m;v!5 (

l 8,m8
(

L5u l 2 l 8u

l 1 l 8 ~2l 11!~2l 811!

4p~2L11!
n~ l 8,m8!@12n~L,m1m8!#u^ l ,0;l 8,0uL,0&u2u^ l ,m; l 8,m8uL,m1m8&u2

3S 1

v1~El 8,m82EL,m1m8!/\1 ih
2

1

v1~EL,m1m82El 8,m8!/\1 ih
D , ~20!
,

-

a
he
ns
with h an infinitesimal number;El ,m the energy of a free
electron in angular momentum state$ l ,m% on the sphere, and

n~ l ,m!5^C0uĉl ,m
† ĉl ,muC0&, ~21!

the occupation number of state$ l ,m%. This result, derived
with the formalism described in Sec. II, is in agreement w
the result of Inaoka9 for the susceptibility of the S2DEG
which was used to investigate thel 51,2,3,4 multipole
modes of the S2DEG.9 In Sec. IV we extend this investiga
tion to include excitations with large angular momentuml
~so thatl /LF.1), keeping the regime studied by Inaoka as
limiting case. By investigating a much broader portion of t
excitation spectrum, we identify the nature of the excitatio
and expose novel properties of those excitations.
8-3
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FIG. 2. Diagrams representing the angular momentum states of an electron on a spherical surface. In the three panels, ele
occupying the single-particle states up to a Fermi-level angular momentumLF53. This Fermi sea of occupied states is shown as s
circles. The diagrams also show the final states which can occur from combining the angular momentum of any of the electrons in
sea with the angular momentum of an excitation~with $ l ,m%5$2,1%,$4,23%,$8,1% for the left, middle, and right panels, respectively!. The
final states which are unoccupied, and thus allowed, are indicated by open squares. The final states which cannot be achieved be
is already an electron present are indicated by open circles.
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The contribution of lowest order inv( l ) to the retarded
density-density Green’s function determines the Hartr
Fock ~HF! approximation to the dielectric function~17!,
given here for reference:

«HF~ l ,m;v!5F11
v~ l !

\
D R

(0)~ l ,m;v!G21

. ~22!

It also permits the calculation of the RPA to the dielect
function, through a Dyson series forD R

RPA:

D R
RPA5

D R
(0)

12@v~ l !/\#D R
(0)

, ~23!

so that

«RPA~ l ,m;v!512
v~ l !

\
D R

(0)~ l ,m;v!. ~24!

Note that the spin degree of freedom is not explicitly tak
into account in the expressions above. The interparticle
tential and the kinetic energy are considered to be s
independent in the present treatment. The central quan
from which properties of the S2DEG are derived in the c
rent treatment, is the ‘‘polarization bubble’’ diagram leadi
to D R

(0) . For spin-independent interaction potentials, the s
degree of freedom only leads to a degeneracy prefa
D R

(0) : the degeneracy of the unperturbed levels is doub
from 2l 11 to 2(2l 11).
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IV. RESULTS AND DISCUSSION

A. Single-particle excitations

In this section we will use units such thatme5\5R51.
The dielectric function can be clarified by considering P
melj’s rule. The imaginary part of the RPA dielectric functio
becomes

Im«RPA~ l ,m;v!5pv~ l ! (
l 8m8

(
L5u l 2 l 8u

l 1 l 8 ~2l 11!~2l 811!

4p~2L11!

3n~ l 8m8!@12n~L,m1m8!#

3u^ l ,0;l 8,0uL,0&u2

3u^ l ,m; l 8,m8uL,m1m8&u2

3d@v2~EL,m1m82El 8,m8!#. ~25!

The dynamic structure factor of the S2DEG is related to
dielectric function by

S~ l ,m;v!

52
1

pv~ l !
ImF 1

«~ l ,m;w!G ~26!

52
1

pv~ l !

Im@«~ l ,m;v!#

$Re@«~ l ,m;v!#%21$Im@«~ l ,m;v!#%2
,

~27!

and can be interpreted as the probability that an excita
with given angular momentum quantum number$ l ,m% and
energy\v can be created.S( l ,m;v) is a quantity accessible
to experiment, in particular scattering experiments. From
pression~25! we conclude that Im«RPA( l ,m;v) is zero unless
adding the angular momentum$ l ,m% and the energy\v to
8-4
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the ground state of the S2DEG can excite a single elec
from an occupied state@n( l 8,m8)51# into an unoccupied
state@n(L,m1m8)50#. These are the single-particle excit
tions ~called the ‘‘Landau continuum’’ in the case of the fl
2DEG!. Figure 2 illustrates this concept in relation to th
S2DEG. Three regimes can be distinguished.

~i! Case 1. l,LF . In the left panel of Fig. 2, we show th
case of angular momentum$ l ,m%5$2,1% imparted on the
system. The solid disks represent the occupied states
open squares are allowed final states which can be rea
by adding the angular momentum$ l ,m% to the angular mo-
mentum of an electron in the Fermi sphere, and the o
circles are forbidden final states as they are occupied
excluded by Fermi statistics. In this example the Fermi se
filled up toLF53. Not all final states are accessible, since
excite an electron it has to go into a final state which
unoccupied~the open squares!. This means in practice tha
the electrons which can participate in creating an excita
of angular momentum$ l ,m% are the ones close to the Ferm
level ~in fact, those from levelLF2 l up to LF).

~ii ! Case 2.2LF. l .LF . This is shown in the middle
panel of Fig. 2 depicting single-particle excitations whi
have angular momentum$4,23%. Now all the electrons in
the Fermi sea can participate, but not all resulting final sta
are unoccupied.

~iii ! Case 3. l.2LF . An example is shown in the righ
graph of Fig. 2, for single-particle excitations of angular m
mentum$8,1%. Now not only can all electrons participate
the process, but also all possible final states are unoccu
and thus accessible.

The maximum energy difference between initial and fin
single-particle states in Fig. 2 is

vmax~ l !5
\2

2meR
2
@~LF1 l !~LF1 l 11!2~LF!~LF11!#

5
\2

2meR
2

@ l 21 l ~2LF11!#. ~28!

The smallest energy difference in case 3 (l .2LF) is

vmin~ l !5
\2

2meR
2
@~ l 2LF!~ l 2LF11!2~LF!~LF11!#

5
\2

2meR
2
@ l 22 l ~2LF21!22LF#. ~29!

The two frequenciesvmin(l) andvmax(l) demarcate a region
in the frequency versus angular momentum plane in wh
the single-particle excitations lie. Figure 3 shows the locat
of the excitations of the spherical two-dimensional elect
gas in the angular momentuml versus frequencyv plane.
The $ l ,v% values corresponding to a single-particle exci
tion for an S2DEG withLF510 are shown in Fig. 3 as
markers within the limiting frequenciesvmin andvmax of the
Landau continuum region shown by solid curves.
19541
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B. Plasmons in a spherical 2D electron gas

In addition to the single-particle excitations in th
S2DEG, collective excitations are also possible. ‘‘Collecti
excitations’’ are defined as poles of the density-dens
Green’s functionD, whereas single-particle excitations a
defined as poles of the single-particle Green’s function12

This means that collective excitations appear wh
«( l ,m;v)50. In the flat 2DEG, these collective excitation
are called plasmon modes. We will use the same terminol
for the S2DEG~occasionally using ‘‘spherical plasmons
when a distinction is needed!.

For the collective mode, the imparted angular moment
is shared between all the particles. This means that in a
lective mode with angular momentum$ l ,m% the entire
spherical shell of electrons will oscillate with an amplitud
proportional to Yl ,m(V). The frequency of the collective
modes~the plasma frequencyvpl) will depend on the angu-
lar momentum of the mode$ l ,m%. The plasma frequency
vpl( l ,m) of the S2DEG can be found by solving

12
e2

2«\R

1

2l 11
Re@DR,0~ l ,m;vpl!#50,

Im@DR,0~ l ,m;vpl!#50. ~30!

For the flat electron gas the last condition means that
plasma branch lies outside the region of single-particle e
tations discussed in the previous subsection. In Fig. 3,
spherical plasmon excitations are shown as full diamon
Figure 4 illustrates how the plasmon branch depends on

FIG. 3. In the many-body S2DEG, two types of excitations c
be distinguished: single-particle excitations~which appear for
Im@«#Þ0) and collective excitations~which appear when Re@«#
5Im@«#50). The excitations of the S2DEG can be characteriz
by their angular momentuml and energy\v. This figure shows the
location of the excitations in the frequency~energy! vs angular
momentum plane. The single-particle excitations are discrete,
all lie in a region demarcated by the black curves, represen
vmin(l) andvmax(l) given by expressions~29! and~28!. The collec-
tive excitations are shown as solid diamonds, lying above
vmax(l) curve.
8-5
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number of electrons in the S2DEG. The radius of the S2D
has been chosen equal to the equilibrium radius of a m
electron bubble with a given number of electrons.11 The
bubble radius is found by balancing the helium surface t
sion and the Coulomb repulsion as discussed in the introd
tion. Figure 5 illustrates how the plasmon branch depends
the radius of the S2DEG, for a fixed number of electrons.
find that as the radius is decreased~i.e., the multielectron
bubble is compressed!, the plasmon branch lies relativel
closer to the upper frequency of the single-particle excitat
region~as shown in the inset of Fig. 5!. However, the energy
scale, set by\2/(meR

2), increases with decreasing radius
that the absolute value of the plasmon frequencies incre
with decreasing radius. The plasmon frequency is indep
dent of the projection of the angular momentumm. The plas-
mon branch of the S2DEG strongly differs from the plasm
branch of 2DEG’s in two important aspects: it is discrete a
the lowest accessible plasmon frequency is larger than
despite the acoustic nature of the plasmon branch.

C. Sum rule and spectral weights

Sum rules prove to be a remarkably useful tool in t
analysis of spectra, both experimentally and theoretica
The zeroth-moment sum rule for the dynamic structure fac
defines the static structure factorS( l ,m):

S~ l ,m!5E
0

`

S~ l ,m;v!dv52
1

pv~ l !E0

`

ImF 1

«~ l ,m;v!Gdv.

~31!

FIG. 4. The collective excitations of the S2DEG are the ana
of plasmons in the flat 2DEG and appear at frequenciesv and
angular momental such that Re@«( l ,v)#5Im@«( l ,v)#50. For
S2DEG’s withLF510,20,40, these collective excitations are sho
as solid squares, circles, and triangles, respectively. The da
curves denote the upper frequency of the region of single-par
excitations@given by expression~28!#. As more electrons are pu
into the multielectron bubble, the frequency of the collective ex
tations decrease. As the Fermi level is increased,LF→`, the
spherical plasmon excitations form a solid curve and the low
spherical plasmon frequencyvpl( l 51) approaches zero.
19541
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Since the dynamic structure factor only depends on the m
nitude of the angular momentuml and not onm, this will
also be true for the static structure factor. Figure 6 shows
static structure factor as a function of angular momentuml.
The open squares are the result in the Hartree-Fock app
mation@using«HF, expression~22!#, and the solid circles are
the result in the RPA approximation@using«RPA, expression
~24!#. As in the case of the flat 2DEG, the HF structure fac
SHF( l ) is linear for smalll /LF , whereas the RPA structur
factor approaches zero more rapidly with decreasingl. In the
inset of Fig. 6, the first frequency moment of the dynam
structure factor,

^v~ l !&5E
0

`

vS~ l ,m;v!dv, ~32!

is shown, again for both HF and RPA approximation
Inaoka9 derived a sum rule for the first frequency moment
the angular-momentum-dependent dynamic structure fac
In units \5me5R, this is

^v~ l !&5
l ~ l 11!

2
. ~33!

From Fig. 6 it is clear that the HF dynamic structure fac
obeys this sum rule. The RPA dynamic structure factor c
be written as a sum of a contribution from the plasmon mo
and the contributionScont from single-particle excitations:

SRPA~ l ;v!5A~ l !d@v2vpl~ l !#1Scont~ l ;v!, ~34!

with A( l ) the spectral weight of the plasmon branch. T
inset of Fig. 6 shows*vScont( l ,v)dv. From the deficit of

g

ed
le

-

st

FIG. 5. In a multielectron bubble~MEB!, the radius of the
spherical electron gas can be varied independently of the numb
electrons by applying pressure. This figure, which compleme
Fig. 4, shows the effect of changing the MEB radius on the frequ
cies of the collective excitations~the ‘‘spherical plasmons’’! as a
function of the angular momentum. The inset shows the same
sults, with the frequency rescaled to the natural bubble freque
\/(meR

2).
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the RPA dynamic structure factor without the plasmon mo
shown in the inset of Fig. 6, the spectral weight of the pl
mon mode can be derived:

A~ l !vpl~ l !5
l ~ l 11!

2
2E

0

`

vScont~ l ,v!dv. ~35!

The spectral weight of the plasmon mode, along with
RPA dynamic structure factor in the region of single-parti
excitations, is shown in Fig. 7 forLF520. The RPA dynamic
structure factor of the S2DEG is shown color coded and a
function of the angular momentuml and the energy\v. In
white regions the RPA dynamic structure factor is zero.
shaded regions, the RPA dynamic structure factor diff
from zero. This figure is the complement of Fig. 3: where
Fig. 3 shows the location and type of the possible excitati
of the S2DEG as a function of angular momentum and
ergy, this figure shows their corresponding spectral weigh
expressed by the dynamic structure factor. At small ang
momentum (l /LF,0.5), the plasmon branch carries the mo
spectral weight, and the region of single-particle excitatio
only has a small fraction of the total spectral weight. With
the region of single-particle excitations, there is a local ma
mum in the dynamic structure factor aroundl 5LF .

D. Discussion

The dynamic structure factorS( l ,m;v) is the spectral
function of the density-density Green’s function and as s

FIG. 6. The static structure factorS( l ) for a spherical two-
dimensional electron gas~S2DEG! with LF520 is shown as a func
tion of l, both in the RPA and in the Hartree-Fock approximatio
Note that in the Hartree-Fock approximation,S( l ) is linear in l at
small l, whereas in the RPA approximation it goes to zero fas
than linearly. In the inset, the sum rule~33! for the first frequency
moment of the dynamic structure factor of the S2DEG~Ref. 9! is
checked. The Hartree-Fock result complies perfectly to the s
rule. The RPA result without the plasmon branch does not h
enough spectral weight to satisfy the sum rule forl /LF,2, which
indicates that in this region a substantial part of the spectral we
lies with the plasmon mode—the strength of the plasmon branc
derived from this result.
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can be interpreted as a probability function~see, e.g., Ref.
13, p. 153!. HereS( l ,m;v)dv is the probability that an ex-
citation of the S2DEG has angular momentum quant
numbers$ l ,m% and energy between\v and\(v1dv). This
is analogous to the interpretation of the more familiar d
namic structure factor@S(k,v)# expressed as a function o
wave number, which is the probability that an excitation h
momentum\k and energy\v.

A ‘‘natural’’ experiment to determine the dynamic stru
ture factor directly is an inelastic scattering experiment.
particular the differential cross section for a probe particle
massM ~such as an incident ion! and initial momentumpi to
be scattered to a final statepF with energy transfer betwee
\v and\(v1dv) to the scattering system is12

ds

dudv
5

M2

8p3

pf

pi
uVku2S~k,v!. ~36!

In this expression,u is the scattering angle betweenpf and
pi ,uVku is the Fourier transform of the interaction potent
between the probe particle, and the energy transferv is re-
lated to the momentum transferk by \v5\2k•pi /m
1(\k)2/(2m). The relation between the Fourier decompo
tion and the spherical decomposition of the density is

r̂e~k!5(
j 51

N

^eik• r̂ j&5(
j 51

N

(
l

A4p~2l 11!i l j l~kR!^Yl ,0~ û j !&

5(
l

A4p~2l 11!i l j l~kR!r̂e~ l ,0!, ~37!

where thez axis has been taken along the direction of t
wave vectork, j l(x) is the spherical Bessel function of th
first kind, andu j is the angle betweenk and the position
operator of electronj ,r j . The dynamic structure factors ar
related by

S~k,v!5(
l

uA4p~2l 11! j l~kR!u2S~ l ,0;v!, ~38!

which can be derived by writing the dynamic structure fac
as a density-density correlation function in the Lehmann r
resentation and substituting expression~37! for r̂e(k).

Note that the dependence of the angular wave functi
on the polar angleu becomes semiclassical when the qua
tum numberl is large. In particular, the WKB expression fo
the angular function becomes14

Yl0~u!'
i l

p

sin@~ l 11/2!u1p/4#

Asinu
. ~39!

This semiclassical approximation will be valid in the regio
where u l @1 and (p2u) l @1, which holds at largel for
almost all values ofu except those close to the ‘‘poles’’u
50 andu5p. The semiclassical approximation~39! corre-
sponds to the limit of a plane wave, where the wavelengt
given byR(2p/ l ). As such, this approximation leads prim
rily to the results of a flat 2D electron gas where\ l /R plays
the role of the electron momentum. This is valid in the lim
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FIG. 7. The RPA dynamic
structure factor S( l ,v) for a
spherical two-dimensional elec
tron gas~S2DEG! with LF520 is
shown here in units\5me5R
51 as a function of the angula
momentum quantum numberl and
their energyv. At zero tempera-
ture, the RPA dynamic structure
factor of the S2DEG consists of
region of single-particle excita-
tions and a set of collective mode
~colored disks!. This figure
complements Fig. 3, which show
only the locations of the excita
tions, whereas this figure show
their spectral weights.
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01,
thatR is large and the ratiol /R remains finite, although eve
for smallR, this approximation will still hold at largel. How-
ever, it does not reproduce some of the interesting lo
angular-momentum results such as a lower boundary to
plasmon frequencies.

V. CONCLUSIONS

In this paper, we have studied the properties of the tw
dimensional electron gas in a distinct geometry which is
cently gaining interest in connection to multielectro
bubbles—namely, electrons confined to a spherical surf
For this purpose, we set up a second-quantization form
tion based on the spherical harmonics as single-elec
building blocks for the many-electron theory, introduced
Sec. II. Within this formalism, the dynamic structure factor
derived in the RPA framework and both the single-parti
excitations and collective excitations are analyzed
S2DEGs withLF up to 40 and for angular momental up to
3LF .

The dynamic structure factor in the RPA approximati
reveals collective excitations~‘‘spherical plasmon modes’’!,
which differ from the collective modes of the flat 2DEG
that the spherical plasmon modes of the S2DEG are disc
in frequency and the smallest spherical plasmon frequenc
larger than zero. Forl /LF,0.5, we find that the spherica
19541
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he
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-
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n

r

te
is

plasmon mode carries the main fraction of the spec
weight. The single-particle excitations are confined to a
gion determined byvmin(l) andvmax(l) given by expressions
~29! and~28!. In the semiclassical approximation, the role
the electron momentum\k in the flat 2DEG is played by
\ l /R in the spherical electron gas, and the energy scale is
by \2/(meR

2), which opens interesting prospects for mul
electron bubbles since the radius can be varied by ei
changing the number of electrons or—independently—
pressure. For typical multielectron bubbles withN<104, the
plasmon modes of the S2DEG lie in the far infrared, a
their frequency increases with decreasing number of e
trons in the multielectron bubble or with decreasing radius
the bubble, such that these novel collective modes may
detectable in forthcoming experiments on stabilized mu
electron bubbles.15
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