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ABSTRACT
We present an energy-dependent explicitly correlated (F12) formalism for the nondiagonal renormalized second-order (NR2) Green’s func-
tion method of closed-shell molecules. For a test set of 21 small molecules, the mean basis set error in IP computed using NR2-F12 with
aug-cc-pVTZ basis is 0.028 eV, compared to 0.044 eV for NR2 with aug-cc-pV5Z basis. Similarly, for a set of 24 medium-sized organic elec-
tron acceptor molecules (OAM24), the mean basis set errors are 0.015 eV for NR2-F12 with aug-cc-pVTZ basis compared to 0.067 eV for
NR2 with aug-cc-pVQZ basis. Hence, NR2-F12 facilitates accurate calculation of IP at a lower cost compared to the NR2 method. NR2-F12
has O(N6

)/O(N5
) noniterative/iterative costs with system size. At a small basis, the performance of NR2-F12 for 21 small molecules and

OAM24 dataset is comparable to equation-of-motion ionized coupled-cluster singles and doubles, whose cost is iterativeO(N6
).

Published under license by AIP Publishing. https://doi.org/10.1063/1.5090983

I. INTRODUCTION

Green’s function (GF) (propagator) formalisms are the founda-
tion of the many-body electronic structure in physics.1–3 This is also
the case in chemistry,4–6 where they draw increasing attention as an
alternative to wave function/operator methods7–13 as well as a way to
systematically improve the density functional theory.14–18 Although
the recent chemistry literature has utilized single-particle and polar-
ization propagators for computing total correlation energies19,20

and as a basis for quantum mechanical embedding methods,21–24

the traditional application of single-particle (electron) propagator
(EP) methods were for computing ionization potential (IP), electron
affinity (EA), and photoelectron spectra.25–33 The appeal of propa-
gator methods is their direct connection to the observables as well as
their interpretive power.34

Conventional spectral solvers for propagator methods, utiliz-
ing expansions in a Fock subspace built from a finite single-particle
basis, suffer from slow asymptotic decay of basis set errors of
energies (such as ionization potentials and total correlation ener-
gies) and other properties. This is due to the inability to model
efficiently localized features such as electron-electron cusps with

products of single-particle basis functions. Explicitly correlated wave
function methods solve this problem by introducing 2-particle basis
functions that describe the cusp structure directly. The R12/F12
wave function methods realized this idea practically by approxi-
mating the many-electron integrals by resolution of the identity
and other techniques following the original ideas by Kutzelnigg35

and finalized by many others.36–44 Recently, the explicitly cor-
related F12 formalism was also applied to propagator methods.
Ohnishi and Ten-no utilized MP2-F12 energies to correct the diago-
nal elements of self-energy at unperturbed (Koopmans) energies;45

recently this approach was reformulated using stochastic integra-
tion formalism and applied to large systems.46 General nondiago-
nal energy-dependent F12 correction to the second-order self-energy
(GF2-F12) was proposed by some of us.47 The GF2-F12 method
scales as iterative O(N5

) and shows much faster convergence to
the complete basis set (CBS) limit than the standard GF2 counter-
part, thus requiring only a triple-zeta basis to reduce the numer-
ical error in ionization potentials below 0.05 eV. However, the
accuracy of the second-order (non-self-consistent) model of self-
energy is limited and more complete models of self-energy must be
utilized.
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Among nondiagonal EP methods,34,48 the nondiagonal renor-
malized second-order (NR2) approximation of EP is a promising
method to calculate ionization potentials.49 Numerical results indi-
cate that the performance of NR2 is the best among nondiago-
nal EP methods at a complete basis set limit.50 In this article, we
investigate the basis set convergence of an energy dependent F12
correction to the NR2 method. IPs calculated with NR2-F12 for
small and medium sized organic molecules (Fig. 1) are compared
to GF2-F12, equation-of-motion ionized coupled-cluster singles and
doubles (EOM-IP-CCSD), coupled-cluster with perturbative triples
(CCSD(T)) reference IPs extrapolated to CBS limit and perturbative
inclusion of explicitly correlated terms (CCSD(T)-F12).

This article is organized as follows. Section II introduces the
NR2 method and how its basis set error is reduced via an F12
correction to self-energy. The implementation details are included
in Sec. III. Basis set errors of NR2-F12, their accuracy compared
to other methods against a CCSD(T) benchmark, are presented in
Sec. IV, followed by conclusions in Sec. V.

II. FORMALISM
We have used the time-independent (superoperator) EP for-

malism in this work.6,52 The eigenvalues, which correspond to the
poles of EP are obtained by solving the Dyson quasiparticle equa-
tion self-consistently. The Dyson equation is an eigenvalue problem
given by

[F + Σ(E)]C = EC. (1)

In this equation, Σ(E) is the energy-dependent nonlocal potential
called the self-energy; F is the Fock matrix and C are canonical
Hartree-Fock orbitals in case of a diagonal self-energy and Dyson
orbitals for a nondiagonal self-energy. The off-diagonal elements of
the self-energy matrix in canonical basis are small and have negli-
gible effect on the poles and the Dyson orbitals. The derivation and
approximations to the Dyson quasiparticle equation are discussed
by Corzo and Ortiz.48

The focus of this work is on a particular model for the self-
energy operator—specifically, the Nondiagonal Renormalized 2nd-
order (NR2) model—proposed by Ortiz.49 Recently it has been
demonstrated as a particularly cost-effective way to compute accu-
rate ionization potentials and electron affinities of lowest IP/EA
of organic molecules.50 The non-Hermitized NR2 self-energy for
electron detachment (NR2-D) is represented as follows:

Σij(E) = (ai∣Ĥackl)
(1)

(ackl∣(E1̂ − Ĥ)
−1admn)

(1)
(admn∣Ĥaj)(2)

+ (ai∣Ĥakcd)
(1)

(akcd∣(E1̂ − Ĥ)
−1alef )

(0)
(alef ∣Ĥaj)(1),

Σai(E) = (aa∣Ĥackl)
(1)

(ackl∣(E1̂ − Ĥ)
−1admn)

(1)
(admn∣Ĥai)(2)

+ (aa∣Ĥakcd)
(1)

(akcd∣(E1̂ − Ĥ)
−1alef )

(0)
(alef ∣Ĥai)(1),

Σia(E) = [Σai(E)]∗,

Σab(E) = (aa∣Ĥackl)
(1)

(ackl∣(E1̂ − Ĥ)
−1admn)

(0)
(admn∣Ĥab)

(1)

+ (aa∣Ĥakcd)
(1)

(akcd∣(E1̂ − Ĥ)
−1alef )

(0)
(alef ∣Ĥab)

(1),

(2)

FIG. 1. Benchmark set of 24 medium sized organic molecules (OAM24) from Ref. 51 used in this work.
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where the matrix elements of the superoperator are defined as

(µ∣ν) = ⟨0∣[µ†,ν]+(1 + T̂(1)2 )∣0⟩, (3)

where |0⟩ is the Hartree-Fock reference state and T̂(1)2 ∣0⟩ is the first-
order Møller-Plesset (MP) wave function. We have used standard
Einstein-summed tensor notation for products of annihilation (ap)
and creation (ap ≡ a†

p) operators that are normal ordered with
respect to the physical vacuum.53 Indices i, j, . . . refer to the active
occupied orbitals (holes), a, b, . . .—to the unoccupied (particle)
orbitals represented in the orbital basis set (OBS), p, q, r—to any
(hole or particle) active orbital represented in OBS, and α, β—to
the unoccupied orbitals of the complete basis set (CBS). The super-
script indices on superoperator matrix elements denote the maxi-
mum order (in the MP sense) of the terms kept, and the operator
inverse is defined by the inverse of its given basis representation.
The Hermitized expressions for NR2-D were used in practice and
are given by Corzo and Ortiz.48

The high accuracy of NR2 IPs/EAs is only revealed when the
numerical error is eliminated. Unfortunately, the rate of basis set
convergence of IPs/EAs is slow due to the slow convergence of sum-
mations over unoccupied states in the (to leading order) 2p1h com-
ponent of the self-energy. This is illustrated for the lowest-energy
detachment pole of the energy-dependent diagonal second-order
self-energy in Fig. 2. It is easy to see that the basis set convergence
of the 2h1p and 2p1h components [the first and second terms on the
right-hand side of Eq. (2)] of the self-energy are fundamentally dif-
ferent. In an atom, exact evaluation of the 2h1p contribution only
requires the basis of 1-particle states to be complete through 3Locc,
where Locc is the maximum angular momentum of an occupied
orbital (this roughly explains why for p-elements the 2h1p contri-
bution is essentially converged with a TZ basis, which is first to gain
basis functions of angular momentum 3). In contrast, the summa-
tion over the particle states in the 2p1h term does not truncate and
thus is analogous to the slowly convergent error of truncated partial
wave expansion of the atomic correlation energies.54 To reduce the
basis set error of this term, some kind of basis set extrapolation is
typically employed. However, a more robust solution to the basis set
problem is to employ explicit correlation.

FIG. 2. Basis set errors in 2h1p and 2p1h contributions to first ionization potential
of aN2 molecule evaluated with the noniterative diagonal second-order self-energy
model.

The explicitly correlated R12/F12 formalism35,41–43 has been
established as the standard solution to the basis set problem of
wave function methods in which the many-electron basis includes
terms with explicit dependence on the inter-electronic distances.
Such formalism can be also extended to the self-energy operator as
we recently showed in the case of (nondiagonal) energy-dependent
case;47 note that our approach specifically accounts for the energy
dependence of the explicitly correlated term. The energy-dependent
F12 correction to self-energy is obtained by augmenting the slowly
convergent f = {aiab} operator manifold with the geminal field
operator manifold, fγ, given by

fγ =
1
2
R̃αβ
ir ã

i
αβ, (4)

where R̃ is the antisymmetrized matrix element of the geminal
correlation factor f (r12) given by

Rαβ
ir ≡ ⟨ir∣Q̂f (r12)∣αβ⟩, (5)

and the projector Q̂ ensures orthogonality of geminal and conven-
tional 2h1p field operators. By neglecting the coupling blocks of
the superoperator between the conventional and F12 manifolds, the
conventional 2p1h self-energy is corrected by addition of the F12
contribution

ΣF12(E) = (a∣Ĥ(1)fγ)(fγ∣(E − Ĥ(0))fγ)−1
(fγ∣Ĥ(1)a). (6)

Since the conventional 2p1h contribution to the self-energy in the
NR2-D approach is identical to its GF2 counterpart, we obtain the
NR2-F12 self-energy expression for the detachment processes by
simple addition of the F12 self-energy correction; note that for the
NR2-A approach, we expect that the F12 correction will need to be
modified to account for the presence of the higher-order terms in
the 2p1h self-energy. The 2h1p contribution to the NR2 or GF2 self-
energy is not affected by the F12 terms, and it converges quickly to
the CBS limit.

The structure of the coupling between the conventional and
F12 manifolds in the GF2-F12 and NR2-D-F12 methods is com-
pletely analogous to their coupling in the MP2-F12 method (e.g., see
Refs. 55 and 41); namely, it involved matrix elements of the Fock
operator between the conventional unoccupied orbitals and their
complement in the complete basis. The effect of the coupling on
the MP2-F12 energies is smaller than the residual basis set errors
(and the method errors) and becomes completely negligible with
triple-zeta and larger basis sets,55 and for the ionization potentials,
we expect the same trends. Since the 2h1p channel’s contribution to
the self-energy requires a triple-zeta basis anyway, the neglect of the
coupling is justified.

Resolution of matrix elements of Eq. (6) yields standard F12
intermediates V, X, and B.47 The derivation and programmable
equations of these terms are available in the literature.41 In this work,
the intermediates V and X are calculated using the complementary
auxiliary basis set (CABS) approach.56 The bottleneck of evaluating
the F12 correction is the intermediate B, which in this work for effi-
ciency was computed in approximation D,57 rather than the more
complete approximation C.58

With canonical Hartree-Fock orbital energy as an initial guess,
the eigenvalue problem of Eq. (1) is solved iteratively until the root is
converged with the energy-dependent F12 correction to self-energy
included in every iteration.
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TABLE I. Mean absolute (MAE) and max absolute (MaxAE) basis set errors in eV of
NR2 IPs for the O21 set.

MAE MaxAE

Basis set NR2 NR2-F12 NR2 NR2-F12

aDZ 0.416 0.049 0.515a 0.085b

aTZ 0.185 0.028 0.246c 0.047c

aQZ 0.087 0.015 0.119c 0.037c

a5Z 0.044 0.061c

aCH3COCH3 .
bH2CO.
cHF.

III. COMPUTATIONAL DETAILS
Distributed-memory parallel implementations of NR2 and

NR2-F12 methods were developed in the Massively Parallel Quan-
tum Chemistry (MPQC) package.59 The performance of the NR2-
F12 method was assessed for a set of 21 small molecules used pre-
viously by Ortiz and co-workers (and referred to here as O21)60

and the OAM24 benchmark set of 24 medium-sized organic elec-
tron acceptor molecules,51 with the Cartesian geometries taken from
the respective references. The frozen core approximation is invoked
in all the calculations reported in this work. Standard (global) den-
sity fitting (DF) approximation for 2-electron integrals was used for
efficiency throughout.

We have used the augmented correlation consistent basis sets
that can be reliably extrapolated to the complete basis set (CBS)
limit.61–63 The aug-cc-pVXZ orbital basis (denoted for brevity as
aXZ), with X = D,T,Q, and 5, were paired with the corresponding
aug-cc-pVXZ-RI basis for density fitting64 and the aug-cc-pVXZ-
OptRI basis for approximating many-electron F12 integrals.65 The
standard Slater-type correlation factor

f (r12) = (1 − exp(−γr12)/γ) (7)

was used in all F12 computations, with the geminal exponent γ set
as in Ref. 47 to 1.3, 1.9, and 2.1 a−1

0 for the aDZ, aTZ, and aQZ
orbital basis sets, respectively. All propagator F12 calculations eval-
uated intermediate B using approximation D;57 for the O21 set, the
difference in IPs evaluated with the F12/D approach vs the more
complete F12/C approach with the aTZ basis was found to be at

TABLE II. Differences of IP in eV of the O21 set calculated using Green’s function and coupled-cluster methods with aDZ and aTZ bases relative to CCSD(T) IP extrapolated
to the CBS limit.

GF2-F12 NR2-F12 CCSD(T)-F12 EOM-IP-CCSD CCSD(T)
Molecule aDZ aTZ aDZ aTZ aDZ aTZ aDZ aTZ CBSa CBS Expt.

C2H2 −0.018 −0.049 0.177 0.152 −0.063 −0.026 −0.062 0.062 0.149 11.467 11.02
C2H4 −0.270 −0.261 −0.075 −0.064 −0.067 −0.025 −0.170 −0.036 0.039 10.713 10.51
C5NH5 −0.248 −0.241 −0.012 −0.005 −0.069 −0.029 −0.230 −0.095 −0.017 9.852 9.60
C6H6 −0.253 −0.248 0.007 0.022 −0.033 0.011 −0.204 −0.070 0.006 9.421 9.25
CH3CH2CH3 −0.306 −0.288 −0.184 −0.162 −0.049 −0.013 −0.189 −0.056 0.014 12.171 11.51
CH3CHO −0.988 −0.954 −0.180 −0.135 −0.086 −0.045 −0.347 −0.123 0.012 10.380 10.26
CH3Cl −0.280 −0.275 −0.170 −0.207 −0.058 0.021 −0.310 −0.140 0.024 11.495 11.29
CH3COCH3 −1.000 −0.966 −0.155 −0.111 −0.081 −0.044 −0.341 −0.111 0.027 9.879 9.70
CH3F −0.967 −0.957 −0.265 −0.242 −0.087 −0.039 −0.375 −0.194 −0.059 13.477 13.04
CH3OH −0.941 −0.907 −0.199 −0.155 −0.084 −0.049 −0.385 −0.176 −0.044 11.186 10.94
CH3SH −0.218 −0.185 −0.185 −0.171 −0.067 0.004 −0.285 −0.083 0.032 9.554 9.46
CH4 −0.250 −0.240 −0.141 −0.128 −0.060 −0.018 −0.170 −0.042 0.030 14.415 13.60
CO 0.044 0.081 0.078 0.131 0.002 0.002 −0.068 0.123 0.220 14.078 14.01
CO2 −0.615 −0.606 0.107 0.127 −0.084 −0.071 −0.353 −0.129 0.031 13.906 13.78
H2CO −1.051 −1.015 −0.222 −0.173 −0.090 −0.040 −0.388 −0.167 −0.036 11.017 10.88
HCl −0.201 −0.195 −0.093 −0.135 −0.065 0.031 −0.305 −0.131 0.041 12.845 12.75
HCN 0.037 0.018 0.252 0.245 −0.086 −0.037 −0.051 0.096 0.196 13.734 13.60
HCOOH −0.988 −0.964 −0.110 −0.074 −0.084 −0.054 −0.341 −0.119 0.028 11.659 11.51
HF −1.330 −1.345 −0.184 −0.182 −0.018 −0.043 −0.432 −0.247 −0.082 16.295 16.05
N2 −0.432 −0.406 0.236 0.262 0.011 0.017 −0.187 0.025 0.143 15.579 15.60
H2S −0.167 −0.130 −0.151 −0.137 −0.079 0.010 −0.292 −0.079 0.040 10.504 10.48

MAEb 0.505 0.492 0.152 0.144 0.063 0.030 0.261 0.110 0.060 0.23c

MaxAEb 1.330 1.345 0.265 0.262 0.090 0.071 0.432 0.247 0.220 0.82c

aCBS value calculated from X−3 extrapolation of {aTZ,aQZ} basis set pair.
bMean and max absolute errors of IP obtained from GF and coupled-cluster methods are calculated with respect to CCSD(T) CBS reference.
cMean and max absolute errors of CCSD(T) reference are with respect to the experimental value.
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TABLE III. Mean absolute errors (MAEs) and max absolute errors (MaxAEs) in eV
for OAM24 dataset with respect to the NR2 CBS. CBS values are calculated by
extrapolating aTZ and aQZ bases.

MAE MaxAE

Basis set NR2 NR2-F12 NR2 NR2-F12

aDZ 0.391 0.033 0.494a 0.056a

aTZ 0.159 0.015 0.204a 0.022b

aQZ 0.067 0.086a

aMaleic anhydride.
bF4-pDCNB.

most 0.002 eV and 0.001 eV on average, i.e., completely negligible.
The GF2 and NR2 CBS IPs for the O21 and OAM24 sets were cal-
culated by two-point X−3 extrapolation66 using the {aQZ,a5Z} and
{aTZ,aQZ} basis set pairs,respectively.

The reference IPs were computed as the differences between
the CCSD(T) energies of the cation and neutral species. For the
O21 set, the CCSD(T) and RI-CCSD(T)F12 [for simplicity denoted
CCSD(T)-F12]67–69 reference total energies were calculated using
Orca electronic structure program package.70 The geminal corre-
lation exponents in CCSD(T)-F12 computations were set to 1.1
and 1.2 for the aDZ and aTZ bases, respectively.71 The Hartree-
Fock and correlation energies were extrapolated separately using
the {aTZ,aQZ} bases via the e−Xα and X−β schemes, respec-
tively.66,72 CCSD(T) CBS IPs for the OAM24 dataset were taken from
Ref. 51.

The EOM-IP-CCSD calculations are performed using the par-
allel implementation in MPQC version 4. The aug-cc-pVXZ family
of basis set were used and extrapolated using the standard two-point
X−3 formula. CBS IP of the O21 set were calculated from aTZ and
aQZ basis, while for OAM24, aDZ and aTZ bases were used. All IPs
(in eV) calculated using GF and coupled cluster methods for O21
and OAM24 can be found in the supplementary material.

TABLE IV. Differences of IP in eV of OAM24 dataset calculated with GF and coupled-cluster methods and aXZ (X = D,T) basis relative to CCSD(T) CBS values from Ref. 51.

GF2-F12 NR2-F12 EOM-IP-CCSD CCSD(T)
Molecule aDZ aTZ aDZ aTZ aDZ aTZ CBSa CBS Expt.

Acenes Anthracene −0.313 −0.309 0.009 0.024 −0.235 −0.101 −0.045 7.52 7.44
Acridine −0.347 −0.341 −0.025 −0.006 −0.247 −0.105 −0.045 8.04 7.8
Phenazine −0.339 −0.344 −0.028 −0.010 −0.228 −0.082 −0.021 8.47 8.44
Azulene −0.371 −0.364 −0.043 −0.023 −0.300 −0.161 −0.102 7.55 7.42

Quinones Benzoquinone −0.831 −0.807 −0.102 −0.077 −0.227 −0.001 0.094 10.27 10.0
Naphthalenedione −0.192 −0.189 −0.039 −0.021 −0.158 −0.018 0.041 9.88 9.5
Dichlone −0.273 −0.285 0.116 0.103 −0.020 0.112 0.167 9.99 9.5
F4-benzoquinone −0.150 −0.158 0.305 0.308 −0.094 0.096 0.177 11.14 10.7b

Cl4-benzoquinone −0.157 −0.184 0.244 0.207 −0.148 0.010 0.076 10.25 9.74b

Nitro/nitriles Nitrobenzene −0.129 −0.127 0.124 0.138 −0.138 0.002 0.061 10.19 9.94
F4-pDCNB −0.228 −0.231 0.239 0.249 −0.161 0.025 0.104 10.76 10.65
Dinitrobenzonitrile 0.032 0.032 0.322 0.335 −0.058 0.103 0.170 11.15 N/A
Nitrobenzonitrile −0.091 −0.090 0.232 0.248 −0.128 0.030 0.097 10.62 10.59
Benzonitrile −0.212 −0.208 0.076 0.092 −0.201 −0.054 0.008 9.93 9.73
Fumaronitrile −0.104 −0.100 0.114 0.127 −0.137 0.028 0.098 11.48 11.3c

mDCNB −0.173 −0.169 0.127 0.143 −0.186 −0.031 0.034 10.45 10.2
TCNE −0.037 −0.035 0.306 0.317 −0.076 0.099 0.172 11.99 11.79b

TCNQ −0.096 −0.092 0.194 0.213 −0.133 0.036 0.107 9.57 N/A
Anhydrides Maleic anhydride −0.113 −0.101 −0.090 −0.051 −0.306 −0.059 0.044 11.33 11.07c

Phthalimide −0.065 −0.058 0.110 0.140 −0.057 −0.017 0.000 10.08 9.90c

Phthalic anhydride −0.131 −0.126 0.147 0.162 −0.149 −0.004 0.056 10.55 10.1b

Cl4-isobenzofuranedione −0.139 −0.170 0.296 0.265 −0.150 0.000 0.064 10.05 10.8
NDCA −0.229 −0.225 0.122 0.138 −0.210 −0.061 0.002 9.14 8.92

Other Bodipy −0.163 −0.156 0.072 0.097 −0.230 −0.076 −0.011 8.07 N/A

MAEd 0.205 0.204 0.145 0.146 0.166 0.055 0.075 0.27e

MaxAEd 0.831 0.807 0.322 0.335 0.306 0.161 0.177 0.75e

aCBS value calculated by the X−3 extrapolation of aDZ and aTZ IPs.
bAdiabatic IP.
cVertical IP.
dMean and max errors relative to the CCSD(T) CBS values.
eErrors relative to the experimental values.
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IV. RESULTS AND DISCUSSION
The mean and maximum absolute basis set errors of NR2 and

NR2-F12 IPs for the O21 set are listed in Table I. Already with a
double-zeta basis the basis set error of the explicitly correlated NR2-
F12 method is almost as good as the conventional quintuple-zeta
NR2 counterpart. A triple-zeta basis is sufficient to converge the IPs
to better than 0.05 eV.

Errors in GF2-F12, NR2-F12, CCSD(T)-F12, and EOM-IP-
CCSD IPs with respect to the CBS CCSD(T) reference, along with
the experimental values, for the O21 set are reported in Table II.
As expected, NR2-F12 IPs are dramatically more accurate than
the GF2-F12 IPs, with mean/max errors of only 0.14/0.26 eV vs
0.49/1.35 eV. However, NR2-F12 is less accurate than the more
expensive CCSD(T)-F12 method. The closest counterpart to the
NR2 approach is the EOM-IP-CCSD, whose cost is iterative O(N6

).
The EOM-IP-CCSD CBS IPs are significantly more accurate than
NR2-F12, with the former’s mean absolute error (MAE) lower by
more than a factor of 2. The maximum errors of these two methods
are however comparable. It is notable that the largest deviations of
EOM-IP-CCSD CBS IPs from the reference CCSD(T) CBS IPs are
observed for linear molecules; this suggests that the unphysical loss
of axial symmetry in the CCSD(T) treatment of ionized states might
be at fault here and it is desirable to recompute the reference IPs
using EOM-IP-CC with inclusion of triples to resolve the significant
discrepancies between CCSD(T) and EOM-IP-CCSD.

The mean absolute and maximum basis set errors of NR2 and
NR2-F12 IPs for the OAM24 set are listed in Table III. The NR2-F12
IPs with only a double-zeta basis are closer to the NR2 numeri-
cal limit than the conventional quadruple-zeta NR2 IPs. The aDZ
basis is already sufficient to converge the NR2-F12 IPs to better than
0.05 eV.

Errors in GF2-F12, NR2-F12, CCSD(T)-F12, and EOM-IP-
CCSD IPs with respect to the CBS CCSD(T) reference, along with
the experimental values (where available), for the OAM24 set are
reported in Table IV. The reference CCSD(T) CBS and experimen-
tal values of IP for OAM24 dataset are used from Ref. 51. We are
not aware of any EOM-IP-CCSD data for the OAM24 dataset. The
molecules are categorized into four groups and Bodipy to gauge the
performance of methods for each subgroup of this dataset. Com-
pared to the O21 set, here, the mean accuracy of GF2-F12 IPs is
already quite high (∼0.2 eV); however, the errors are systematically
larger for acenes and a particularly large error (∼0.8 eV) is observed
for benzoquinone. NR2-F12 IPs are somewhat more accurate on
average (∼0.15 eV) and have a drastically reduced maximum error.
EOM-IP-CCSD IPs are again significantly more accurate on average
(∼0.08 eV) than NR2-F12, albeit at a higher cost. It is also notable
that the largest errors of EOM-IP-CCSD and NR2-F12 IPs are cor-
related: errors greater than 0.17 eV for EOM-IP-CCSD occur for the
same 3 molecules for which NR2-F12 errors exceed 0.3 eV, and the
signs for the errors agree in all cases. This suggests that perhaps again
unphysical polarization in the CCSD(T) treatment of cations might
be at fault here and higher-order EOM-IP-CC values are highly
desired.

V. CONCLUSIONS
We presented a simple explicitly correlated (F12) extension

of the renormalized second-order propagator (NR2) method for

computing electron detachment energies. The NR2-F12 is character-
ized by greatly reduced basis set errors compared to the conventional
NR2 method: precision of double-zeta basis NR2-F12 IPs is better
than that of quadruple- or even quintuple-zeta NR2 IPs. Accuracy of
NR2-F12 IPs is significantly higher than the nonrenormalized (non-
diagonal) GF2-F12 IPs but is still substantially lower than that of
EOM-IP-CCSD when assessed for two reference IP datasets (O2160

and OAM2451). Nevertheless, NR2-F12 is a good starting point for
higher-order models of superoperator/self-energy and can be an
attractive alternative to EOM-IP-CCSD for well-behaved systems
due to its noniterative (rather than iterative) O(N6

) cost. The EOM-
IP-CCSD CBS IP estimates for the O21 and OAM24 datasets point
out potential inaccuracies in the reference CCSD(T) CBS IP values
and call for validation against higher-order EOM-IP-CC methods.
Work along these lines is in progress.

SUPPLEMENTARY MATERIAL

See supplementary material for the numerical data used to
produce Tables I–IV.
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47F. Pavošević, C. Peng, J. V. Ortiz, and E. F. Valeev, J. Chem. Phys. 147, 121101
(2017); e-print arXiv:1708.06474.

48H. H. Corzo and J. V. Ortiz, Advances in Quantum Chemistry (Elsevier, 2017),
Vol. 74, pp. 267–298.
49J. V. Ortiz, J. Chem. Phys. 108, 1008 (1998).
50O. Dolgounitcheva, M. Díaz-Tinoco, V. G. Zakrzewski, R. M. Richard,
N. Marom, C. D. Sherrill, and J. V. Ortiz, J. Chem. Theory Comput. 12, 627
(2016).
51R. M. Richard, M. S. Marshall, O. Dolgounitcheva, J. V. Ortiz, J.-L. Brédas,
N. Marom, and C. D. Sherrill, J. Chem. Theory Comput. 12, 595 (2016).
52O. Goscinski and B. Lukman, Chem. Phys. Lett. 7, 573 (1970).
53W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997).
54W. Kutzelnigg and J. D. Morgan, J. Chem. Phys. 96, 4484 (1992).
55A. J. May, E. Valeev, R. Polly, and F. R. Manby, Phys. Chem. Chem. Phys. 7,
2710 (2005).
56E. F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
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