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Propagator methods provide a direct approach to energies and transition moments for~generalized!
electronic excitations from the ground state, but they do not usually allow one to determine excited
state wave functions and properties. Using a specific intermediate state representation~ISR!
concept, we here show how this restriction can be overcome in the case of the algebraic–
diagrammatic construction~ADC! propagator approach. In the ISR reformulation of the theory the
basic ADC secular matrix is written as a representation of the Hamiltonian~or the shifted
Hamiltonian! in terms of explicitly constructable states, referred to as intermediate~or ADC! states.
Similar intermediate state representations can be derived for operators other than the Hamiltonian.
Together with the ADC eigenvectors, the intermediate states give rise to an explicit formulation of
the excited wave functions and allow one to calculate physical properties of excited states as well
as transition moments for transitions between different excited states. As for the ground-state
excitation energies and transition moments, the ADC excited state properties are size consistent so
that the theory is suitable for applications to large systems. The established hierarchy of higher-order
@ADC(n)# approximations, corresponding to systematic truncations of the IS configuration space
and the perturbation–theoretical expansions of the ISR matrix elements, can readily be extended to
the excited state properties. Explicit ISR matrix elements for arbitrary one-particle operators have
been derived and coded at the second-order@ADC~2!# level of theory. As a first computational test
of the method we have carried out ADC~2! calculations for singlet and triplet excited state dipole
moments in H2O and HF, where comparison to full CI results can be made. The potential of the
ADC~2! method is further demonstrated in an exploratory study of the excitation energies and dipole
moments of the low-lying excited states of paranitroaniline. We find that four triplet states, T1–T4,
and two singlet states, S1 and S2, lie~vertically! below the prominent charge transfer~CT!
excitation, S3. The dipole moment of the S3 state (17.0D) is distinctly larger than that of the
corresponding T3 triplet state (11.7D). © 2004 American Institute of Physics.
@DOI: 10.1063/1.1752875#

I. INTRODUCTION

For a detailed understanding of the processes following
electronic excitation of molecules in the gas phase or in a
solvent, it is important to characterize the excited states be-
yond the pure energetics also with respect to certain key
physical properties, e.g., their dipole moments. Such excited
state~ES! properties and, more general, transition moments
for transitions between different excited states~ES moments!
can readily be deduced from the excited state wave function.
In practice, however, the computation of ES properties and
moments is always a demanding task. To illustrate that point
it may be instructive to go briefly through the various ways
of how ES properties and moments are treated in the major
contemporary quantum chemical methods.

In the standard configuration interaction~CI! treatment,
the computation of ES properties and moments is straightfor-
ward. However, the applicability of the CI method to larger
molecules is restricted due to the inherent size-consistency
error ~for example, see Helgakeret al.1!, which is expected
to be even more pronounced for properties than for excita-

tion energies. It is for these limitations that the CI method
has given way to alternative, size-consistent wave function
methods, such as the coupled-cluster~CC! methods and the
complete active space second-order perturbation theory
~CASPT2! approach.2,3

The CC methods, comprising three related developments
referred to as coupled-cluster linear response~CCLR!,4–6

equation-of-motion coupled cluster~EOM–CC!,7–9 and
symmetry-adapted cluster configuration interaction
~SAC–CI!,10–12 lead to a twofold wave function representa-
tion of the excited states, corresponding to the right and left
eigenvectors of the non-Hermitian CC secular matrix. In
forming meanigful matrix elements for ES property, one has
to use both the right and left ES representations. As was
demonstrated by Kochet al.13 in the case of ground state
transition moments, the most obvious form of such matrix
elements is not size consistent. A size consistent, though
much more complicated expression was derived within the
CCLR theory by Christiansenet al.14,15 Presently, the proper
ES property and moments are available only for a part of the
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CC approximation hierarchy~CCSD and CC2! and here,
moreover, restricted to singlet excitations.

Another widely used wave function method for elec-
tronic excitation in molecules is the CASPT2 method estab-
lished by Roos and collaborators.2,3 As a specific feature of
the CASPT2 method, one uses individually optimized sets of
molecular orbitals~MO! for different states. This has the
consequence that the evaluation of transition moments for
such states can become quite cumbersome. An indication of
this and other difficulties may be seen in the instance that in
most if not all of the previous CASPT2 studies the results
reported for transition moments and excited state properties
have been obtained at the lower CASSCF level of theory.

Methods not being based on a wave function~WF! ap-
proach have proved to be a viable alternative in the treatment
of electronic excitation in molecules. An increasingly popu-
lar method of the latter type is the time-dependent density
functional theory~TDDFT!.16,17 The TDDFT equations, de-
scribing the linear response of the ground-state density to a
time-dependent perturbation, allow one to compute directly
excitation energies and~ground-to-excited state! transition
moments, but do not give access to the excited state wave
functions. As far as ES properties are concerned, an obvious
way out is to determine these quantities as analytical deriva-
tives of the ~excitation! energies with respect to the
‘‘strength’’ of an additional~‘‘external’’ ! potential associated
with the property operator under consideration. Analytical
TDDFT derivatives have been worked out, for example, by
Van Caillie and Amos18,19and used by Burclet al.20 to com-
pute ES dipole moments for the furan and pyrrole molecules.
As the latter authors find, the dipole moments computed that
way are very sensitive to the form of the chosen DFT func-
tional. Apparently, much more testing and comparing with
other theoretical results, preferably FCI data, will be needed
before one can confidently rate the quality of the TDDFT ES
properties.

Other non-WF methods, deriving from the theory of the
polarization propagator,21 such as the second-order polariza-
tion propagator approach~SOPPA!22–24 and the algebraic–
diagrammatic construction~ADC! schemes,25–28 have been
used in the computation of molecular electronic excitation
spectra for a long time. As is well known, the propagator
methods allow for the direct computation of excitation ener-
gies and transition moments for transitions from the ground
state, but the underlying concept does not aim at determining
ES wave functions and properties. The latter is a real con-
straint for approximation strategies based on the characteris-
tic diagrammatic perturbation theory for the polarization
propagator, such as the ADC methods. The SOPPA method,
by contrast, being based on the so-called superoperator
formalism29 or the essentially equivalent equation-of-motion
~EOM! approach,30,31 leads to explicit representations of the
excited states that can be used to compute ES properties. It
seems, though, that attempts to exploit this potential of the
superoperator based methods have been rather scarce~see,
for example, the computations of Weiner and O¨ hrn32 for ES
dipole moment curves of the LiH molecule!.

As for the ADC approach, the unsatisfactory present sta-
tus with respect to ES properties and moments can be over-

come in both an elegant and practical way, as will be de-
scribed in this contribution. The development is based on the
finding that the ADC secular matrix can be formulated as the
representation of the Hamiltonian in terms of a basis set of
explicitely constructable intermediate states.33,34 Together
with the ADC eigenvectors, the intermediate states lead to an
explicit representation of the excited state wave functions,
which can be used to compute arbitrary ES properties and
moments provided a reliable and practical approximation for
the intermediate state representation~ISR! of the respective
property operator is available. In the following we report on
the derivation and computer implementation of the ISR for
an arbitrary one-particle operator at the level of the second-
order ADC approximation. This ISR/ADC~2! method allows
for a consistent treatment of ES properties and moments for
singly excited states through second order of perturbation
theory. For a first numerical test of the method, small model
computations were carried out for the HF and H2O mol-
ecules both at the ADC~2! and full~F! CI level of theory. The
comparison of the ADC~2! and FCI dipole moments is very
encouraging, especially when the ADC~2! dipole moment
ISR matrix is used together with the eigenvectors of the
ADC~3! secular problem. To explore the potential of the
present approach in the case of a realistic system, a large-
scale ADC~2! study was conducted for the lowest singlet and
triplet excitations in the paranitroaniline~PNA! molecule.
PNA is an interesting testing ground for any ES property
method, because, as is well known, some of its excited states
have strongly polar charge-transfer~CT! character and, thus,
large dipole moments.

An outline of the paper is as follows: The ensuing Sec. II
gives a brief review of the concept of intermediate state rep-
resentations in the case of electron excitation. In Sec. III the
ISR concept is extended to the representation of an arbitrary
one-particle operator, which allows us to determine excited
state properties and transition moments at well-defined levels
of approximation. Some general aspects of the development,
in particular, the truncation error and the size consistency of
the ISR formulation, are discussed in Sec. IV. First numerical
tests and an exemplary application to PNA are presented in
Secs. V and VI, respectively. A brief summary and some
conclusions are given in the final Sec. VII.

II. REVIEW OF INTERMEDIATE STATE
REPRESENTATIONS

The concept of intermediate state representations~ISR!
has been presented at length elsewhere~see Refs. 27, 34, and
35!, so that we may confine us here to a brief review.

In the ISR approach to electronic excitation the exact
excited statesuCn& are expanded according to

uCn&5(
J

XJnuC̃J& ~1!

in terms of a complete set of intermediate statesuC̃J&. The
intermediate states derive from the so-called correlated ex-
cited states

uCJ
0&5ĈJuC0& ~2!
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obtained by applying the ‘‘physical’’ excitation operatorsĈJ

to the exact ground stateuC0&. The manifold

$ĈJ%5$ca
†ck ; ca

†cb
†ckcl ,a,b,k, l ; . . . % ~3!

of the excitation operators comprises particle–hole (p–h),
two-particle–two-hole (2p– 2h), etc., excitations. Here the
second-quantized operatorscp

†(cp) are associated with one-
particle states~spin–orbitals! ufp&, usually ground-state
Hartree–Fock~HF! orbitals. Following a widely used nota-
tion, the subscriptsa,b,c, . . . andi , j ,k, . . . refer to unoc-
cupied~virtual! and occupied orbitals, respectively, while the
lettersp,q,r , . . . will be used in the general case.

The intermediate statesuC̃J& are constructed by applying
a specific orthonormalization procedure to the correlated ex-
cited states. The essential step here is Gram–Schmidt or-
thogonalization of the successivep–h, 2p– 2h, . . . excita-
tion classesm51,2,. . . , including the ground state as a
zeroth excitation class. For illustration let us consider the
construction of the intermediatep–h states. Orthogonaliza-
tion with respect to the ground state leads to the ‘‘precursor’’
states

uCak
# &5ca

†ckuC0&2uC0&^C0uca
†ckuC0&. ~4!

In a second step the intermediate states can be formed ac-
cording to

uC̃ak&5( uCbl
# &~S21/2!bl,ak ~5!

by symmetrical orthonormalization of the precursor states.
HereS is the overlap matrix of the precursor states,

Sak,bl5^C0uck
†cacb

†cl uC0&

2^C0uck
†cauC0&^C0ucb

†cl uC0&. ~6!

The intermediate states establish a matrix representation of
the HamiltonianĤ or likewise of the ‘‘subtracted’’ Hamil-
tonianĤ2E0 , whereE0 is the ~exact! ground state energy,

MIJ5^C̃ I uĤ2E0uC̃J&. ~7!

The Schro¨dinger equation for the excited states~1! leads to
the following Hermitian eigenvalue problem:

MX 5XV, X†X51 ~8!

for the ISR secular matrixM . HereV denotes the diagonal
matrix of eigenvaluesVn , andX is the matrix of eigenvec-
tors. Obviously, the eigenvalues can be identified as the ex-
citation energies,

Vn5En2E0 ~9!

while the eigenvector components are the expansion coeffi-
cients in the IS expansion~1! of the excited states.

For the evaluation of spectral intensities one must con-
sider transition moments of the form

Tn5^CnuD̂uC0& ~10!

for a pertinent~one-particle! operator

D̂5(
r ,s

drscr
†cs . ~11!

Here

drs5^f r ud̂ufs& ~12!

denote the one-particle matrix elements associated withD̂.
In the ISR formulation the transition moments can be written
as

Tn5(
J

XJn* FJ , ~13!

where

FJ5^C̃JuD̂uC0& ~14!

are referred to as ISR transition moments~for the operator
D̂). The latter quantities can be further expanded according
to

FJ5(
r ,s

f J,rsdrs , ~15!

where

f J,rs5^C̃Jucr
†csuC0& ~16!

are referred to as ISR transition amplitudes.
Approximations based on the ISR formulation can be

obtained by truncating the configuration space and using per-
turbation expansions for the ISR secular matrix elements and
transition amplitudes,

M5M (0)1M (1)1M (2)1¯ , ~17!

f5f(0)1f(1)1f(2)1¯ . ~18!

Here the familiar Møller–Plesset partitioning

Ĥ5Ĥ01ĤI ~19!

of the Hamiltonian is supposed. The truncation of the con-
figuration space and the truncation of the perturbation series
in the sub-blocks ofM and f can be done in a systematical
and consistent way, leading to a hierarchy of higher-order
approximation schemes.

A practical way of deriving such ISR approximations is
based on the so-called algebraic–diagrammatic construction
~ADC! procedure for the polarization propagator.21 The es-
sential idea here is to compare the IS representation~or ADC
form! of the propagator with its original diagrammatic per-
turbation series25,27 through a given ordern of perturbation
theory. This leads in a natural way to explicit perturbation–
theoretical expressions for the matrix elements ofM and f
establishing the nth order @ADC(n)# approximation
schemes. While the ADC~2! approximation has been avail-
able for a long time,25 the ADC procedure could recently be
extended to the third-order level.27

In principle, the perturbation expansions forM andf can
also be deduced from the closed-form expressions for the
sub-blocks ofM and f deriving from the ISR construction
procedure~see Ref. 33!. These expressions depend on the
exact ground stateuC0& and the ground state energyE0 , so
that the familiar Rayleigh–Schro¨dinger perturbation theory
can be used to derive the desired expansions~17! and ~18!.
However, the latter procedure becomes quite cumbersome
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beyond second order and has so far only been used to red-
erive the ADC~2! equations for the electron propagator.33

Figure 1 shows schematically the block structure of the
ISR secular matrixM and the matrix of transition amplitudes
f at the ADC~2! and ADC~3! level. In both cases the explicit
configuration space is spanned by thep–h and 2p– 2h ex-
citations. As indicated in Fig. 1, the perturbation expansions
of the ADC~2! secular matrix elements extend through sec-
ond, first, and zeroth order in thep–h diagonal block,
p–h/2p– 2h coupling block, and 2p– 2h diagonal block, re-
spectively. At the ADC~3! level, these perturbation expan-
sions are extended to third, second, and first order, respec-
tively.

It should be noted that the ADC–ISR method can also be
used to compute absolute energies. For this purpose one
needs the IS representation ofĤ, which according to

H̃IJ5^C̃ I uĤuC̃J&5MIJ1E0d IJ ~20!

differs from M by the constant diagonal matrixE01.

III. PHYSICAL PROPERTIES OF EXCITED STATES
AND EXCITED STATE TRANSITION MOMENTS

To characterize an excited stateuCn& with respect to a
physical quantity other than the energy, e.g., the dipole mo-
ment, one has to evaluate the expectation value

Dn5^CnuD̂uCn& ~21!

for the corresponding operatorD̂. Here and in the following
we will confine us to the case of a one-particle operator as
given by Eq.~11!. In the ISR formulationDn is obtained
according to

Dn5X–n
†D̃X–n ~22!

from thenth eigenvectorXI n of the ADC secular problem and
the matrixD̃,

D̃IJ5^C̃ I uD̂uC̃J& ~23!

referred to as IS representation ofD̂. In a similar way, one
may express the transition moments between two~distinct!
excited states according to

Tnm5^CnuD̂uCm&5X–n
†D̃X–m , nÞm. ~24!

It is useful to writeD̃ in the form

D̃IJ5D0d IJ1DIJ , ~25!

where

D05^C0uD̂uC0& ~26!

is the ground-state expectation value ofD̂ and D is the IS
representation of the ‘‘subtracted’’ operatorD̂2D0 . This
form of the ISR matrix elements will be retrieved in a natural
way in the perturbation–theoretical developments discussed
below. It allows one to write the total excited state expecta-
tion value,Dn , as the sum of a ground state contribution,
D0 , and a transition contribution,DDn5Dn2D0 . In the
expression for the transition moments, Eq.~24!, D̃ can obvi-
ously be replaced byD.

In analogy to Eq.~18! there is a perturbation expansion

D5D(0)1D(1)1D(2)1¯ , ~27!

for the matrixD. Our aim is to deduce the explicit perturba-
tion expansions for the matrix elements ofD required at the
second-order@ADC~2!# level of approximation. Together
with the ADC~2! eigenvectors this will yield consistent ex-
cited state expectation values and transition moments for sin-
gly excited states through second order. In contrast to the
case of the secular matrix, one cannot make use of the ADC
procedure and its diagrammatic techniques here but rather
must resort to the more tedious approach via the explicit
construction of the intermediate states. Obviously, the fol-
lowing contributions have to be considered in the subblocks
of D ~see Fig. 2!:

D115D11
(0)1D11

(1)1D11
(2) ,

D125D12
(0)1D12

(1) ,

D225D22
(0) .

Here the subscripts 1,2 label collectivelyp–h and 2p– 2h
entries, respectively.

FIG. 1. Block structure of the second-order ADC~2! secular matrixM and
transition amplitude matrixf. The numbers in brackets indicate the orders of
terms to be considered in the perturbation expansions of the matrix ele-
ments.

FIG. 2. Block structure of the second-order ISR@or ADC~2!# matrix D for a

single-particle operatorD̂. The numbers in brackets indicate the orders of
terms to be considered in the perturbation expansions of the matrix ele-
ments.
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The zeroth-order contributions can readily be evaluated,
as here the intermediate states are given by the HF configu-
rations,

uCJ
(0)&5ĈJuF0&5uFJ& ~28!

yielding

DIJ
(0)5^F I uD̂uFJ&2d IJ^F0uD̂uF0&. ~29!

Here uF0& denotes the HF ground state. Inspection of the
first-order contributions shows thatD11

(1)50, and it remains
to determine the second-order contributions in thep–h di-
agonal block,D11

(2) , and the first-order contributions in the
p–h/2p– 2h coupling block, D12

(1) . Clearly the most de-
manding task is posed byD11

(2) . Here the the intermediate
statesuC̃ak& must be expanded through second order. To get
an idea of how to proceed let us consider the following result
obtained from Eqs.~4!, ~5!, and ~6! by omitting third- and
higher order contributions:

uC̃ak&5~ca
†ck2rka

(2)!uC0&

2 (
a8k8

ca8
† ck8uC0&

1
2 Sak,a8k8

(2)
1O~3!. ~30!

Here we have used that the precursor overlap matrixS has a
perturbation expansion of the formS511S(2)1O(3), so
that S21/2512 1

2S
(2)1O(3); r(2) is the second-order one-

particle density matrix. Now the explicit Rayleigh–
Schrödinger expansionuC0&5uC0

(0)&1uC0
(1)&1uC0

(2)& can
be used on the rhs of Eq.~30!, discarding terms beyond
second order. The resulting expression may finally be in-
serted in the desired matrix element^C̃akuD̂uC̃a8k8&, where
again third- and higher order contributions are omitted. A
brief sketch of the somewhat lengthy, though straightforward
algebra required in these derivations and the final results are
given in the Appendix.

Let us briefly comment on the evaluation of the ground-
state expectation valueD0 entering the diagonal of the ISR
matrix according to Eq.~25!. As is well known, this quantity
may be written as

D05Tr~dr!, ~31!

wherer is the ground-state one-particle matrix,

rsr5^C0ucr
†csuC0&, ~32!

andd is the matrix of one-particle integralsdrs @Eq. ~12!#. A
strictly consistent treatment ofD0 at the ADC~2! level would
require to evaluate the density matrix through second order
of perturbation theory,r(2)5r(0)1r(2) ~note that the first-
order contribution vanishes!. In general, however, it is advis-
able to resort to an improved treatment of the ground-state
density and corresponding ground-state properties~see, for
example, the discussion given in Sec. II B of Ref. 28!. As the
method of choice we here use the so-called Dyson expansion
method~DEM! based on the third-order ADC approximation
@ADC~3!# for the one-particle Green’s function~electron
propagator!. For a detailed description the reader is referred
to Ref. 36 and to Sec. V A of Ref. 37. The DEM/ADC~3!
approximation for the ground-state density matrix is consis-

tent through third order of perturbation theory and considers
higher-order contributions in the form of infinite partial~in-
complete! summations.

IV. ASPECTS OF THE EXCITED STATE
ISR FORMULATION

The ADC approximation schemes combine the eigen-
value problem~diagonalization! of a Hermitian secular ma-
trix and perturbation theory for the secular matrix elements.
Two properties referred to as compactness and separability
establish the usefulness of these methods.34,38 The former
property means that the truncation error associated with re-
stricting the configuration space to them lowest excitation
classes is of the order 2m ~for singly excited states!. The
separability property, on the other hand, ensures size-
consistent~size-intensive! results for excitation energies and
transition moments. In Secs. IV A and IV B the correspond-
ing properties for the excited states are discussed. A brief
analysis of the dipole sum rule and the equivalence of the
length and velocity forms of the transition moments in the
excited state ISR formulation is given in Sec. IV C. Finally,
in Sec. IV D three more aspects of the present development
are addressed.

A. Truncation error

To analyze the perturbation–theoretical consistency of
systematical~classwise! truncation of the explicit configura-
tion space, one has to inspect the so-called order relations for
the quantities of interest. For example, the order relations for
the ADC secular matrix are given by34

Mmm85O~ um2m8u!, m,m851,2, . . . ~33!

which means that in the matrix elements of the blockMmm8
the lowest nonvanishing contributions are of the order
um2m8u. These ‘‘canonical’’ order relations34 are shown
schematically in Fig. 3. The canonical order relations for the
secular matrix lead to the order relations

X–m5O~m21!, m51,2, . . . ~34!

FIG. 3. Order relations for the blocks of the ADC secular matrix. The
numbers in the blocks indicate the lowest nonvanishing order of perturba-
tion theory.
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for the eigenvectors of singly excited states. Following the
proof given in Appendix A of Ref. 34 one can easily estab-
lish the order relations

Dmm85O~ um2m8u21!, um2m8u>1 ~35!

for the ISR of an arbitrary one-particle operator,D̂ ~see Fig.
4!; the diagonal blocks (m5m8) are, of course, of zeroth
order. Let us note that the order relations~35! are less strin-
gent than those of the secular matrix as there is zeroth-order
coupling between adjacent excitation classes. To determine
the truncation errors for an excited state expectation value,
Dn , or transition moment,Tmn , one has to consider the ex-
pression

Tmn5X–m
† DX–n ~36!

obtained by multiplying the ISR matrixD with the respective
eigenvectors. Using the order relations~34!, the truncation
error for matrix elementsTmn of singly excited states is seen
to be 2m21, wherem is the highest explicit configuration
class. More specifically, this means that at the ADC~2! level
of theory (m52) the ~singly! excited state are treated con-
sistently through second order. However, third-order consis-
tency cannot be reached at the ADC~3! level, the explicit
configuration space being here the same as in the ADC~2!
case.

The analysis can readily be generalized to excited state
transition moments involving one or two doubly excited
states. In a similar way one can analyze the case of a two-
particle operator. The results are summarized in Table I.

B. Separability and size consistency

For the analysis of the separability property we consider,
as usual, a systemS consisting of two noninteracting~sepa-
rate! parts ~fragments! A and B. The Hamiltonian ofS is
given by the sum

Ĥ5ĤA1ĤB ~37!

of the fragment HamiltoniansĤA and ĤB , and the same
partitioning applies to any other physical operator, i.e.,

D̂5D̂A1D̂B . ~38!

Note that for the following considerationsD̂ needs not be
restricted to be a one-particle operator. One can further as-
sume a localized one-particle basis set, that is, the one-
particle states~orbitals! are either localized onA or onB. As
a consequence, one can distinguish three classes of
N-electron configurations,J[JA ,JB , and JAB , where JA

andJB denote configurations local onA or B, respectively,
while JAB refers to a nonlocal~or mixed! configuration in-
volving both fragments,A and B. To proceed let us briefly
review the essential localization properties of the intermedi-
ate states.38

For a local configurationJA on A the intermediate state
is given by the product

uC̃JA
&5uC̃JA

A &uC0
B& ~39!

of the ground state of fragmentB, uC0
B&, and the intermedi-

ate state,uC̃JA

A & of fragmentA. ~Note that the antisymmetri-

zation of the total wave function is of no importance here.!

An analogous expression,uC̃JB
&5uC̃JB

B &uC0
A& applies to a

local excitation onB. While seemingly plausible, it is a non-
trivial result38 that the product form

uC̃JAB
&5uC̃JA

A &uC̃JB

B & ~40!

holds for the nonlocal excitations,JAB[JAJB . It should be
noted that this result comprises the case, whereJA and JB

refer to general non-neutral excitations on the respective
fragments, such as ionization onA and electron attachement
on B. An immediate consequence of the product form~40! of
the intermediate states is the separability property of the
ADC secular matrix~see Fig. 5!. Besides the fact that there is
no coupling between the local configurations, i.e.,MAB50,
also the coupling between local and nonlocal configurations
vanishes, that is,MA,AB5MB,AB50. Moreover, the diagonal
A andB subblocks ofM are identical to the fragment secular
matrices,MAA5MA, MBB5MB. Obviously the resulting ex-
citation energies are size intensive, that is, the result for a
local excitation, say onA, is independent of whether the
method is applied to the entire system or to fragmentA.

A similar result is found for the~ground-to-excited-state!
transition moment of a local excitation. The eigenvector of a
local excitationn, say onA, has nonvanishing components
only for configurations,XJAn , being local onA. Thus, the
transition moment becomes

FIG. 4. Order relations for the blocks of the ISR~or ADC! matrix for a

single-particle operatorD̂. The numbers in the blocks indicate the lowest
nonvanishing order of perturbation theory.

TABLE I. Analysis of the ADC truncation error for excited state moments
involving singly (p–h) and doubly (2p– 2h) excited states. Given is the
perturbation–theoretical order of the error resulting from truncating the ex-
pansion manifold after excitation classm; first and second line corresponds
to one- and two-particle property operators, respectively.

Operator type p–h/p–h p–h/2p– 2h 2p– 2h/2p– 2h

1p 2m21 2(m21)a 2(m21)21a

2p 2(m21)a 2(m21)21a 2(m22)b

aFor m>2.
bFor m>3.
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Tn5(
JA

XJAnFJA
, ~41!

where

FJA
5^C̃JA

uD̂uC0&5^C̃JA

A uD̂AuC0
A& ~42!

is equal to the fragment ISR transition moment,FJA

A .

Now let us consider excited state matrix elements of a
general physical operatorD̂. As a consequence of the prod-
uct forms~39! and ~40! the ISR matrixD of the subtracted
operatorD̂2D0 has the block structure shown in Fig. 6; here
D0 is the ground-state expectation value ofD̂. Obviously,D
is not of the separable form as the secular matrixM : while
there is no direct coupling of the two local blocks (DAB

50), there may arise nonvanishing coupling matrix elements
for local and nonlocal configurations. But this is not detri-
mental to matrix elements of two excited statesm and n,
being both local excitations on, say, fragmentA, because the
multiplication with the corresponding eigenvectors projects
out any nonlocal matrix elements:

Tmn5X–Am
† DAAX–An . ~43!

Here X–An denotes the nonvanishing~local! part of the full
eigenvectorX–n . It remains to inspect the relation of theDAA

block to the fragment ISR matrix,D(A). A general matrix
element of two local~on A) intermediate states,

DI AJA
5^C̃ I A

uD̂uC̃JA
&2d I AJA

D0 ~44!

can be evaluated further using the product forms@Eqs.~39!,
and ~40!# of the intermediate states to yield

DI AJA
5^C̃ I A

A uD̂AuC̃JA

A &2d I AJA
D0

A , ~45!

whereD0
A5^C0

AuD̂AuC0
A& denotes the ground state expecta-

tion value of D̂ for fragmentA. Note thatD05D0
A1D0

B .
This result, which may be written more compactly as

DAA5DA ~46!

means that the local block of the ‘‘global’’ ISR matrix is
identical to the fragment ISR matrix. For the ISR matrix of
the original ~unshifted! operatorD̂ one must consider also
the diagonalD0 contribution,

D̃AA5D̃A11D0
B . ~47!

An excited state expectation value,Dn , computed for the
entire systemS is the sum of the corresponding fragment (A)
expectation value and the ground state expectation value of
the other~unaffacted! fragment (B), as is to be expected. In
the case of excited state transition moments (mÞn), the
global moments are equal to the fragment moments as the
latter term on the right-hand side of Eq.~46! does not lead to
a contribution due to the orthogonality of the excited states.

To conclude, the ISR formulation of excited state prop-
erties and transition moments is size consistent. Moreover, as
can be easily seen, that property not only applies to the for-
mally exact formulation but also to the ADC(n) approxima-
tion schemes.

C. Dipole sum rule and the equivalence
of length and velocity forms

The well-known Thomas–Reiche–Kuhn~TRK! or di-
pole sum rule is usually applied to transitions from the
ground state. But it may as well be formulated for the more
general case where the initial state is an excited state, reading
here

Sn
1~z!5(

m
~Em2En!u^CmuẐuCn&u25

1

2
N. ~48!

HereẐ denotes thez component of the dipole operator andN
is the number of electrons. The summation over states on the
right-hand side includes the ground state (m50). The sum
rule ~48! may serve as a test for the quality of the method
used to compute the excited state energies and transition mo-
ments. For this purpose it is convenient to replace the sum-
over-states expression~48! by the following compact form:

Sn
1~z!5X–n

†~ Z̃MZ̃ 2~En2E0!Z̃2!X–n , nÞ0. ~49!

HereX–n is thenth eigenvector of the ISR matrixM ; Z̃ and
Z̃2 denote the ISR matrices ofẐ and Ẑ2, respectively.

In a similar way, the relation between the dipole length
(L) and dipole velocity (V) forms of the transition moments
can be formulated for transitions between excited states. As
is well known, that relation is a consequence of the operator
identity,

FIG. 5. Block structure of the ADC secular matrixM with respect to the
partitioning of the configuration space into local and nonlocal configurations
in a two-fragment system,S5A1B.

FIG. 6. Block structure of the ISR~or ADC! matrix D for a single-particle

operatorD̂ with respect to the partitioning of the configuration space into
local and nonlocal configurations in a two-fragment system,S5A1B.
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@Ĥ,Ẑ#52 i P̂z , ~50!

whereP̂z is thez component of the momentum operator. For
the transition between the excited statesm andn one obtains
the explicit relations

~En2Em!^CnuẐuCm&52 i ^CnuP̂zuCm&, ~51!

which in turn can be transformed into the following global
identity:

MZ̃ 2Z̃M52 i P̃z ~52!

which is independent of the individual transitions. HereP̃z is
the ISR matrix ofP̂z .

D. Other features

A useful test of the explicit ISR expressions is provided
by the special case of the particle-number operator,

N̂5(
r

cr
†cr . ~53!

Since the intermediate states are eigenfunctions ofN̂, the
ISR matrix elements are of the form

^C̃ I uN̂uC̃J&5Nd IJ . ~54!

These relations must be fulfilled~in each order! by the
perturbation–theoretical expressions for the special choice,
drs5d rs , of the one-particle matrix elements. Of course, this
test pertains only to those terms involving diagonal one-
particle elements,dpp .

Let us next consider the ISR of the operator productÂB̂

of two physical operatorsÂ, B̂,

~ÂB̂! IJ5^C̃ I uÂB̂uC̃J&

5^C̃ I uÂuC0&^C0uB̂uC̃J&1(
K

^C̃ I uÂuC̃K&

3^C̃KuB̂uC̃J&. ~55!

Here the last line is obtained by inserting the ISR resolution
of identity, uC0&^C0u1(KuCK&^CKu51̂. This result can be
written in the form

~ÂB̂! IJ5FI~A!FJ~B!* 1~ÃB̃! IJ , ~56!

whereFI(A)5^C I uÂuC0& is the ~ground state! ISR transi-
tion moment for the operatorÂ and Ã, B̃ denote the corre-
sponding ISR matrices. IfÂ andB̂ are one-particle operators,
the ISR of the productÂB̂ can readily be evaluated at the
ADC~2! level using the ADC~2! expressions for ground-state
transition moments@Eqs. ~B1!–~B13! in Ref. 25# and the
second-order ISR expressions given in the Appendix.

The present ISR development allows one to extend the
original HamiltonianĤ ~underlying the generation of the in-
termediate states! by an arbitrary one-particle operator,Û,
representing, for example, an external potential:Ĥ→Ĥx

5Ĥ1Û. Because the~excited! intermediate states now may

couple to the ground state, the IS configuration space must
be enlarged byuC0&. The additional ISR secular matrix ele-
ments read

M00
x 5U0 , MI0

x 5^C̃ I uÛuC0&5FI~U !, IÞ0, ~57!

where the subscript 0 refers to the ground state andFI(U)
are the ISR ground-to-excited-state transition moments for
the operatorÛ. The matrix elements in the excited state
block are obtained by adding the ISR matrix ofÛ to the
original secular matrixM :

MIJ
x 5MIJ1ŨIJ , I ,JÞ0. ~58!

It should be noted that for a parameter dependent operator,
Û5Û(l), the Hellmann–Feynman relation is valid in the
form

d

dl
En~l!5Y–n

†~l!Ũ8~l!Y–n~l!, ~59!

where Ũ8 is the extended ISR matrix of (]/]l)Û and YI n

denotes thenth eigenvector of the extended secular matrix,
M x. In the special case,Û(l)→lÛ, the energy derivatives
at l50 simply become

d

dl
EnU

l50

5X–n
†ŨX–n , nÞ0 ~60!

that is, excited state expectation values ofÛ. The latter equa-
tion provides the starting point for analytical ES energy de-
rivatives in the case of fixed~‘‘unrelaxed’’! HF orbitals.

V. COMPUTATIONS

A. Coding of the properties ISR

An excited state properties code at the ADC~2! level of
approximation was written as an extension of the existing
ADC~3! program28 for electron excitation. The major new
parts are routines required for the evaluation of the property
ISR matrix elements, that is, zeroth- and second-order terms
in thep–h diagonal block,D11, zeroth- and first-order terms
in the p–h/2p– 2h coupling blocks,D12, and zeroth-order
terms in the 2p– 2h diagonal block,D22. In addition to or-
bital energies and Coulomb integrals, the one-particle inte-
grals, drs , of the considered property operator,D̂, are re-
quired as input data for these matrix elements.

Before coding, the explicit spin–orbital expressions for
the ISR property matrix elements~as given in the Appendix!
had to be written in a form exploiting the underlying spin
~and spatial! symmetry properties of the matrix elements.
Assuming a spin-independent property operator, spin-free
working equations were derived using standard angular mo-
mentum algebra techniques. In a first step, the property ISR
matrix is transformed from the original spin–orbital~or
‘‘primitive’’ ! form to a representation associated with spin-
adapted singlet (S50) and triplet (S51) intermediate
states. In this spin-adapted form the ISR matrix is decoupled
with respect toS50 and 1; moreover, the triplet block de-
composes into three equalMS subblocks,MS51, 0, 21.
Subsequently, the spin summations in the perturbation–
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theoretical expressions can be performed, yielding the de-
sired spin-free expressions for the ISR matrix elements. The
generation of the spin-free expressions was done in a semi-
automatic way using a specially devised computer program.
Spatial symmetry reductions are considered in the present
code only to the extent of Abelian groups or subgroups, hav-
ing only one-dimensional irreducible representations.

In devising the present prototypical ISR property code,
emphasis was laid on an utmost secure and error-free real-
ization rather than on efficiency. The development of a
follow-up program aiming at higher efficiency is the logical
next step.

An obvious example for the need of improvement is the
strategy used to perform the matrix3vector ~MV ! product,
DX–n , in the evaluation of Eqs.~22! and~24!. In the present
program version, theD matrix elements are evaluated once
and then the MV product is formed. The computational
bottleneck here is thep–h diagonal block,D11, having;N4

nonvanishing matrix elements, whereN denotes the number
of orbitals. As the evaluation of each of its matrix elements
scales asN3 the overall cost for computingD11 scales asN7.
A more advantagous technique would be to break the MV
product into intermediate quantities obtained by multiplying
the eigenvector components with suitable parts of the
second-order expressions for theD11 matrix elements~for a
similar procedure see Sec. III A of Ref. 28!. Using such tech-
niques the scaling behavior of the property part at the
ADC~2! level reduces toN5.

The present ADC code is interfaced to theGAMESS39 ab
initio program package generating the HF input data@orbital
energies, one and two-electron molecular orbital~MO! inte-
grals# for the ensuing ADC calculations.

B. Comparison with full CI results

For a first test and validation of the present development
we have performed both ADC and full configuration–
interaction ~FCI! computations for the H2O and HF mol-
ecules at the small 3-21G40 AO basis set level. The FCI
computations were done with the determinantal FCI code41

of the GAMESS program package.39 The following geometri-
cal parameters were used:ROH50.957 Å, /HOH
5104.5°,RHF50.917 Å. In both the FCI and ADC compu-
tations the 1s core orbitals were kept frozen. The largest
dimension of the FCI space was 245 025~for the H2O exci-
tations at C1 symmetry!.

Table II collects the computed ground-state energies and
dipole moments (z component!, D0(z). For the dipole mo-
ments, the HF and FCI results can be compared to the values
obtained by evaluating Eq.~31! using the strict second-order
@PT~2!# expansion for the ground-state one-particle matrix,
r, and the DEM/ADC~3! treatment, respectively. For both
molecules the PT~2! and DEM results differ only slightly, the
latter being in excellent agreement with the FCI values. It
should be emphasized, however, that, in general, the PT~2!
approximation forD0 will be less satisfactory than in the

TABLE II. Full CI and Hartree–Fock~HF! results for the ground-state energies and dipole moments of the H2O
and HF molecules using the 3-21G basis set; dipole moments have been computed also at the levels of second
order of perturbation theory@PT~2!# and the Dyson expansion method~DEM! ~see text!.

Molecule

Ground-state energy~a.u.! Dipole moment (D)

FCI HF FCI HF PT~2! DEM

H2O 275.714 959 275.585 378 22.30 22.44 22.36 22.32
HF 299.584 768 299.459 752 2.03 2.16 2.08 2.04

TABLE III. FCI and ADC results for~vertical! excitation energies~eV! and excited state dipole moments of H2O and HF. The ADC excitation energies are
given relative to the FCI values.

State/transition

Excitation energies~eV! Excited state dipole moments (D)

FCI ADC~1! ADC~2! ADC~3! FCI ADC~1! ADC~2! ADC~3/2!

H2O 1 1A1→
1 1B1 1b1–a1 8.75 0.90 0.07 0.02 0.17 0.76 0.35 0.24
1 1A2 1b1–b2 10.95 0.61 0.12 20.01 20.19 0.27 0.01 20.15
2 1A1 3a1–a1 11.44 0.80 0.02 20.01 0.50 1.15 0.72 0.60
1 1B2 3a1–b2 13.77 0.50 0.11 20.11 0.24 0.64 0.45 0.26
2 1B2 1b2–a1 16.02 20.02 0.08 20.15 20.54 20.24 20.44 20.52
1 3B1 1b1–a1 7.90 0.67 0.02 0.01 0.15 0.69 0.32 0.22
1 3A1 3a1–a1 10.20 0.22 20.02 20.05 0.59 0.80 0.68 0.61
1 3A2 1b1–b2 10.37 0.45 0.09 20.01 20.12 0.22 0.03 20.08
1 3B2 3a1–b2 12.29 20.13 0.00 20.04 0.37 0.32 0.42 0.39
HF 1 1S1→
1 1P 1p–s 10.94 0.88 0.03 0.02 21.80 22.42 22.07 21.84
1 1S1 3s–s 16.69 0.67 0.03 20.05 21.28 22.13 21.66 21.31
1 3P 1p–s 10.21 0.63 20.03 0.01 21.82 22.34 22.06 21.87
1 3S1 3s–s 13.46 20.44 20.06 20.03 21.65 21.54 21.68 21.65
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present case. An example, where the PT~2! approximation
fails, is the CO molecule. At the FCI level using a minimal
basis set~STO-3G40! the ground-state dipole moment is
found to be20.63D. Here the DEM result (20.67D) gives
a very good approximation, whereas the PT~2! value of
21.30D is grossly off the mark. In the ensuing calculations
of the excited state dipole moments the DEM/ADC~3! results
for the D0(z) contributions are used throughout.

In Table III the excitation energies and dipole moments
are listed of some low-lying excited singlet and triplet states
of H2O and HF as computed at the FCI and different ADC
levels. As for the excitation energies, the reader is referred to
a recent more comprehensive study28 of the performance of
the ADC methods, where—at a distinctly better AO basis set
level—also the H2O and HF molecules have been addressed.
In the present small basis set computations the ADC~2! and
ADC~3! results are rather similar and the deviations from the
FCI excitation energies are well below the average ADC~3!
error of 0.2 eV found in the larger study.

For the excited state dipole moments, the FCI results in
Table III are compared to the results of three distinct ADC
treatments. At the lowest level, referred to as ADC~1!, the
ADC eigenvectors~having onlyp–h components! are com-
bined with the zeroth-order ISR property matrix, that is,D11

(0)

~note that the first-order contributions to thep–h diagonal
block vanish!. The ADC~1! results in Table III are seen to
differ quite substantially from the FCI values, which indi-
cates that the ADC~1! scheme is hardly a useful approxima-
tion. A distinctly improved description is obtained at the
ADC~2! level, where the full ADC~2! property matrix as de-
rived here is used together with the ADC~2! eigenvectors of
the electronic excitation problem. The role of the eigenvec-
tors in the computation of excited state properties can be
seen by comparing the ADC~2! dipole moments to the results
obtained by combining the ADC~2! property matrix with the
eigenvectors of the ADC~3! secular matrix. These ADC~3/2!
results~last column of Table III! agree indeed extremely well
with the FCI standard, the mean absolute and the maximal
deviation being 0.04D and 0.1D, respectively, for the mani-
fold of states listed in Table III. The good accuracy record of
the ADC~3/2! results suggests that the quality of the ADC~2!
property matrix itself is very satisfactory and the errors in the
excited state properties at the ADC~2! level will be mainly
due to insufficiencies of the ADC~2! eigenvectors.

VI. APPLICATION TO PARANITROANILINE

As a test of greater practical importance, we have per-
formed ADC~2! calculations for the lowest excited singlet
and triplet states of the paranitroaniline~PNA! molecule~see
Fig. 7!. PNA is a prototypical ‘‘push–pull’’ chromophore,
having a donor (NH2) and an acceptor (NO2) group con-
nected by the conjugatedp system of the phenyl ring. Char-
acteristic for such a system is the occurrence of strong in-
tramolecular charge transfer upon electronic excitation,
giving rise to extraordinary linear and nonlinear optical re-
sponse properties.42–53 The excitation induced charge trans-
fer will also be reflected in a substantial change of the ex-
cited state dipole moments. In the prominent 21A1

excitation, for example, the dipole moment of PNA increases
from the already large ground state value of;6D to about
14–15 D.42,43 Clearly, the latter property renders PNA an
interesting test case for the present ISR property method.

In the present computations, the ground-state geometri-
cal parameters of PNA were optimized using DFT at the
level of the B3LYP functional54,55 and the cc-pVDZ basis
set56 ~six-component representation ofd functions!. The op-
timization was carried out using theGAUSSIAN program
package.57 ADC calculations were performed both at the
ADC~1! and ADC~2! level using the 6-31G basis set58 and
the DFT nuclear conformations. A characterization of the
highest occupied and lowest unoccupied MOs is given in
Table IV. In the ADC~2! calculations theK-shell orbitals
were kept frozen. The dimension of the ADC secular matri-
ces ranged from 332 700 (1A2) to 592 445 (3A1). Comple-
menting calculations were performed at the ADC~1! level to
check for basis set limitations and conformational effects
~see below!. Moreover, the singlet excitations were com-
puted also at the extended ADC~2! level ~see Ref. 28! in
order to have a further check of the admixtures of doubly
excited configurations. The extended ADC~2! calculations
were carried out in a direct mode avoiding the storage of the
large first-order part,M22, of the secular matrix.

As our ground-state calculations~see Table V! predict,
the symmetricC2v conformation of PNA is not a stable sta-
tionary point, but rather a transition state separating two
equivalentCs structures associated with a nonplanar configu-
ration of the amino group. In view of the rather small stabi-

FIG. 7. The structure of paranitroaniline~PNA!.

TABLE IV. Orbital energies~eV! and MO assignment for the 6-31G HF
results.

MO 2e @eV# Notation Character~atomic localization!

Occupied
4b1 8.78 p6 C~nitro!/C–C~amino!/N~amino!
2a2 10.12 p5 C–C~benzene!
1a2 11.77 n(p) O~lone pair!
3b1 13.04 p4 N~amino!/C–C~amino!
11a1 13.05 s O/C–N~nitro!
9b2 13.08 n(s) O~lone pair!
Virtual
5b1 p nitro/benzene
3a2 p C–C–C–C~benzene, antibonding!
6b1 p nitro/benzene/amino
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lization energy, being only 3.7 kcal/mol, the out-of-plane dis-
tortion, predicted to be 34.5°, is remarkably large. In fact,
the Cs minima are very shallow and not stable if zero-point
vibrations are taken into account. In the latter case, our cal-
culations find that theC2v structure of PNA is by 1.2 kcal/
mol below the nonplanarCs configurations. In any case, the
nonplanarity of the PNA ground state hardly affects the
ground and excited state energies, and it should be legitimate
to set out from the more symmetricalC2v conformation in
the present vertical electronic computations. The ADC~1! re-
sults given in Table VI show that theC2v andCs excitation
energies are almost identical. Obviously, the dipole moments
are more sensitive to the nuclear conformation. Here both the
ground and excited state dipole moments at theCs confor-
mation are somewhat below the correspondingC2v values,
the differences being in the range of 0.4–0.7D. It should be
noted that theC2v structure was the preferred choice in pre-
vious theoretical work on PNA.44,46,47,51,53,59

To check the adequacy of the relative small 6-31G basis
set ~basisA) for the description of the lowest valence-type
excitations in PNA we compare in Table VI the ADC~1!
results using basisA with those obtained using the somewhat
larger 6-31G1 basis set58,60 ~basisB) containing a set of
diffuse s and p functions. Concerning the excitation ener-
gies, a noticeable basis set effect is seen only for the third
and fourth state in Table VI, for which the diffuse functions
lead to an energy lowering of about 0.2 eV. As seen in Table
VI, also the dipole moments are little affected by enlarging
the basis, the maximal change being 0.2D for the 21A1 state.

From these results we may conclude that the 6-31G basisA
should essentially be adequate to treat the lowest four excited
singlet states and their triplet counterparts.

The ADC~2! results for the excitation energies, oscillator
strengths, and dipole moments of the four lowest excited
singlet states~S1–S4! are presented in Table VII. The in-
spection of the eigenvectors shows that these states are char-
acterized as single excitations@the admixture of doubly ex-
cited configurations at the extended ADC~2! level is in the
range of 16–18 %#. The lowest two singlet states, 21A2(n
2p* ) and 11B1(s2p* ), are dipole forbidden or have an
extremely small oscillator strength, respectively, so that it
will be difficult to observe them in an ordinary photon ab-
sorption spectrum. The dominant role in the low-energy ex-
citation regime is played by the third excited singlet state,
2 1A1 , corresponding top –p* excitation and associated
with a large charge transfer~CT!. The oscillator strength for
the transition to the S3 CT state is 0.392 as computed at the
ADC~2! level. Due to its paramount spectral strength, the
2 1A1 state has often~incorrectly! been referred to as S1. The
computed vertical excitation energy~4.55 eV! for the 21A1

state is in good agreement with the maximum~4.25 eV! of
the broad absorption band in the gas phase spectrum of
Farztdinovet al.50 The calculated transition dipole moment
for the 21A1 state is 5.2D, which should be compared to the
experimental value of 4.4D.48 Slightly above the S3 state our
computations predict a furtherp –p* excitation, 11B2 ,
however, having a much smaller oscillator strength than the
S3 state.

The results for the four lowest triplet excitations~T1–
T4! are given in Table VIII. Obviously, their energetical or-
der deviates from that of the corresponding singlet states.
While S1,T1 and S3,T3 are related singlet–triplet pairs, and
T4 corresponds to S2, there is no match for T2 and S4
among the four lowest singlet and triplet states, respectively.
Most remarkable is the appearance of then(p) –p* triplet
excitation, 13B2 , at the second position~T2! in the triplet
spectrum. At the ADC~1! level ~basisA) a corresponding
singlet state is found as the fifth root at 7.00 eV. The com-
parison to the ADC~1! energy of the T2 state~Table VIII!
reveals a very large~first-order! singlet–triplet splitting of
about 4.5 eV.

Whereas various theoretical studies have been devoted
to the linear and nonlinear optical properties of
PNA44–47,50,53,59dealing, in particular, with the strong sol-
vent dependence of these properties,46,47,50,53,59the theoreti-
cal work on the electronic excitations in PNA appears to be

TABLE V. Ground state energyE ~a.u.!, ZPVE correction~a.u.!, and dipole
moment (D) for theC2v andCs stationary points of PNA as obtained at the
B3LYP and HF level of theory using the cc-pVDZ, 6-31G, and 6-31G1
basis sets.

Structure E umua ZPVE E1ZPVE

B3LYP/cc-pVDZ/optimized geometry
C2v 2492.154 617 7.4 0.118 772 2492.035 845
Cs

b 2492.155 206 6.9 0.119 545 2492.035 661
HF/6-31G/B3LYP geometry
C2v 2488.990 308 8.1c

Cs 2488.986 764 7.6
HF/6-31G1/B3LYP geometry
C2v 2488.008 056 8.1
Cs 2488.004 779 7.6

aExpt. value 6.3D ~Ref. 48!.
bAngle between C–N and the bisector of NH2 : 34.5°.
cResult of DEM/ADC~3! method: 7.2D.

TABLE VI. ADC ~1! results for the vertical excitation energiesV ~eV! and dipole momentsumu (D) of the
lowest excited singlet states of PNA in theC2v andCs conformations using the 6-31G(A) and 6-31G1(B)
basis sets.

State/transition V(C2v) um(C2v)u V(Cs) um(Cs)u

C2v Cs A B A B A A

1 1A2 1 1A9 n(s) –p* 4.82 4.79 5.7 5.7 4.80 5.3
1 1B1 2 1A8 s –p* 5.03 5.01 6.3 6.4 5.02 5.9
2 1A1 3 1A8 p6–p* 5.44 5.23 14.3 14.5 5.49 13.6
1 1B2 2 1A9 p6–p* 5.91 5.75 10.6 10.6 5.92 10.2
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rather scarce. Serrano-Andre´s et al.59 have performed large-
scale CASPT2 calculations on PNA excitations, but they re-
port only results for the CT state~see Table VIII!. The
CASPT2 result for the excitation energy of the CT state is
0.75 eV below the present ADC~2! value. Discrepancies of
that magnitude between CASPT2 and other results, including
ADC~2!, have been found previously forp –p* excitation
energies in several molecules,61–64 and there is an ongoing
debate on that issue. Compared to the experimental~gas
phase! result of Farztdinovet al.,50 the CASPT2 value is
0.45 eV too low, whereas the present ADC~2! result over-
shoots by 0.3 eV. The random phase approximation~RPA!
and multiconfiguration self-consistent field~MCSCF! was
used in a series of PNA response properties studies,45–47dis-
closing again only the results for the CT state. The RPA and
MCSCF values of 5.04 eV and 5.18 eV, respectively, re-
ported here~see Mikkelsenet al.46! appear much too large.
More recently, Saleket al.51 and Moranet al.53 have carried
out time-dependent density functional theory~TDDFT! com-
putations of the lowest singlet excitations in PNA, apparently
yielding very satisfactory results for the excitation energy
~4.13 eV and 4.07 eV, respectively! and the oscillator
strength~0.332 and 0.313, respectively! of the CT state. Un-
fortunately, for other states the comparison to the TDDFT
results is impeded by the instance that neither symmetry nor
orbital specifications have been given. One may also consult
recent semiempirical results obtained by Farztdinovet al.50

using the SAM1~semi ab initio model!.65 In spite of an
incidental coincidence of the excitation energies for the S1
and the CT states and the corresponding ADC~2! values,
little consistency is seen between the SAM1 and our results.
For example, the SAM1 calculation places the CT state en-
ergetically at the fourth position~S4! and assigns it to the

1B1 symmetry species. As far as the triplet states are con-
cerned, we are not aware of any previousab initio calcula-
tions.

Let us finally take a look at the excited state dipole mo-
ments listed in Tables VII and VIII, respectively. Most con-
spicuous is, of course, the large dipole moment of the S3
state reflecting clearly a large intramolecular charge transfer
accompanying thep6–p* excitation. As is well known, the
excited S3 state corresponds to a zwitterionic, quinoid struc-
ture of the molecule, the amino and nitro groups bearing
formal charges of1e and2e, respectively. The~classical!
dipole moment of such a structure is easily estimated to be in
the order of 30D. The computed~vertical! dipole moment of
17.0D, being in good agreement with the corresponding
CASPT2 value59 of 17.3D, may be somewhat too large. As
can be seen at the ADC~1! level ~Table VI!, a reduction in the
order of 0.7D may result if the dipole moment is computed
at theCs conformation rather than atC2v . As was discussed
in Sec. V, the computed dipole moments depend quite sensi-
tively on the quality of the ADC eigenvectors. Replacing the
ADC~2! eigenvector by that of the extended ADC~2! level
gives a somewhat smaller value (16.0D), and an even fur-
ther reduction of the S3 dipole moment might result if the
ADC~3! eigenvector could be used.

Interestingly, the T3 triplet counterpart to the CT singlet
state, S3, has a distinctly smaller dipole moment, 11.7D,
according to the present results. This indicates that apart
from the spin multiplicities these states differ also to some
extent with respect to their charge distributions.

Experimental dipole moments for the singlet excited CT
state of PNA in different solutions, lying in the range of
14–15D, have been reported, among others, by Liptay43 and
Wortmannet al.48 An experimental value of 11D was esti-
mated by Schuddeboomet al.49 for the ‘‘pure’’ 3p –p* state.
It should be clear, however, that one must be very cautious
when comparing the theoretical results with experimental
data. Besides the solvent effects not accounted for in the
present theory, the theoretical dipole moments are static
quantities computed for the ground-state conformation of the
molecule, which means that any effects associated with the
nuclear motion of the electronically excited molecule are dis-
regarded. For PNA it is known that a complex nuclear dy-
namics is triggered upon excitation of the CT state~see, for
example, Schuddeboomet al.49!, involving intersystem
crossing ~ISC! and possibly also internal conversion~IC!

TABLE VII. Vertical excitation energiesV ~eV!, dipole momentsumu (D), and oscillator strengths of the lowest
excited singlet states of PNA as obtained at the ADC~2! and ADC~1! level of theory using the 6-31G basis set.

State/Transition S/Da

ADC~1! ADC~2!

V umu V umu f

1 1A2 ~S1! n(s) –p* 84/16 4.82 5.7 3.84 4.9
1 1B1 ~S2! s –p* 84/16 5.03 6.3 4.35 5.1 ,0.001
2 1A1 ~S3! p6–p* 82/18 5.44 14.3 4.55b,c 17.0d 0.392
1 1B2 ~S4! p5,6–p* 83/17 5.91 10.6 4.88 9.0 0.011

aPercentage of single~S! and double~D! excitations in the eigenvectors of the extended ADC~2! version.
bExpt. value~absorption maximum in vapor!: 4.25 eV~Ref. 50!.
cCASPT2 result: 3.80 eV~Ref. 59!.
dCASPT2 result: 17.3D ~Ref. 59!.

TABLE VIII. Low-lying triplet states of PNA: ADC~2! and ADC~1! results
~6-31G basis set! for vertical excitation energiesV ~eV! and dipole moments
umu (D).

State/Transition

ADC~1! ADC~2!

V umu V umu

1 3A2 ~T1! n(s) –p* 4.21 5.7 3.55 4.9
1 3B2 ~T2! n(p) –p* 2.44 5.5 3.65 4.5
1 3A1 ~T3! p6–p* 3.38 9.0 3.73 11.7
1 3B1 ~T4! s –p* 4.44 6.4 4.11 5.2
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processes. In view of the present results, predicting four trip-
let states, T1–T4~and two singlet states, S1 and S2!, below
the CT singlet state populated in photoabsorption, it is by no
means clear how the experimental signal can be attributed to
a distinct excited state so that previous experimental assess-
ments have to be reconsidered.

VII. CONCLUSIONS

The ISR reformulation of the ADC propagator method
allows for a direct approach to excited state wave functions
and properties, thereby overcoming certain constraints of the
original propagator formalism. The concept is based on a
well-defined construction procedure~basically Gram–
Schmidt orthogonalization of successive excitation classes!
transforming the so-called ‘‘correlated’’ excited states, i.e.
states obtained by applying HF excitation operators to the
exact~correlated! ground state, into a complete set of inter-
mediate states. These intermediate states define a Hermitian
matrix representation of the Hamiltonian, referred to as ADC
secular matrix, which is amenable to perturbation–
theoretical expansions at successively higher levels of con-
sistency@ADC(n) approximations#. Solving the eigenvalue
problem of the ADC secular matrix gives access to the~ex-
citation! energies in the form of the eigenvalues; combined
with the intermediate basis states, the eigenvectors form an
explicit representation of the excited states. In this work the
ISR concept has been extended to the representation of an
arbitrary one-particle~property! operator, which is required
for evaluating ES properties and moments from the IS basis
expansion of excited states. More specifically, the explicit
ISR property matrix has been constructed and implemented
at the second order or ADC~2! level of theory. In combina-
tion with ADC~2! or ADC~3! eigenvectors, this leads to a
consistent second order treatment of ES properties and mo-
ments for singly excited states. First test calculations pre-
sented here indicate that especially the ADC~3/2! scheme
using the ADC~3! eigenvectors gives very satisfactory
results.

From a methodological point of view, the ADC approxi-
mations combine diagonalization~of a secular matrix! and
perturbation theory~for the elements of the secular and prop-
erty matrices!. The ISR formulation makes apparent that—
apart from the possible subtraction of the ground state en-
ergy,E0 , in the diagonal of the secular matrix—perturbation
theory comes into play only in the construction of the inter-
mediate states, being completely determined by the exact
ground state and the underlying basis of one-particle states
~HF orbitals!. This means that the perturbation expansions
for the various ADC matrices are entirely based on the per-
turbation theory for the ground state. As a consequence, the
convergence behavior of the ADC expansions is similar to
that of the the ground state perturbation theory. This has been
termed the regularity of the ADC perturbation expansions.

The usefulness of the ADC method is based on two basic
features, refered to as separability and compactness. The
separability~of the secular matrix! guarantees size-consistent
~more precisely, size intensive! results for excitation energies
and GS transition moments. As the present analysis has
shown, the size consistency pertains as well to the excited

state properties and transition moments. This means, for ex-
ample, that in a system consisting of noninteracting frag-
ments the total dipole moment of a locally excited state is
obtained as the sum of the dipole moment of the excited
fragment and the ground-state dipole moments of the other
fragments. The compactness, on the other hand, means that
the truncation error arising from restricting the IS expansion
manifold to the lowest, saym, excitation classes is minimal.
In the case of the ES properties and moments the truncation
error ~for singly excited states! is of the order 2m21, which
is to be compared with the 2m truncation error for the exci-
tation energies and the GS transition moments.

Another option offered by the present development is the
possibility to augment the ADC secular matrix by the ISR of
an arbitrary one-particle operator, say, an ‘‘external’’ poten-

tial Û. This allows one to treat the secular problem of the

extended Hamiltonian,Ĥ1Û, in a very simple and appeal-
ing way. An important aspect here is that the IS manifold
itself, being based entirely on the ground state, can be kept as

constructed for the original Hamiltonian,Ĥ. This is reflected
by the form of the additional part of the secular matrix, be-

ing, of course, linear in the external potentialÛ. More gen-
erally speaking, the ISR approach introduces a clear distinc-
tion between the treatment of the ground state and the
corresponding construction of the intermediate states, on the
one-hand side, and the final state problem, on the other hand.
In principle, one could use completely different Hamilto-
nians for either part of the problem. In the usual propagator
formalism, by contrast, ground and final state aspects are
entangled in a hardly separable way, as can be seen, for
example, in their diagrammatic perturbation expansions. In-

troducing an additional external potentialÛ leads inevitably

to diagrams corresponding to higher orders inÛ, and there is
no a priori procedure for distinguishing ground and final
state contributions.

It should be noted that the present development also lays
the foundation for an ADC formulation of higher response
properties of molecules in the ground state. Using the ISR
property matrices, one can easily recast the exact response
functions into closed-form ADC expressions, which so far
was possible for the linear response only.

Of course, the property ISR concept, developed here for
~neutral! electronic excitations, can readily be generalized to
other cases, such as~single-electron! ionization or electron
attachment. In the former case, for example, the IS states are
constructed from ‘‘correlated’’ ionic states formed by the ac-
tion of HF ionization operators on the exact~neutral! ground
state. For more details of the ISR formulation of the ioniza-
tion part of the electron propagator, also referred to as non-
Dyson ADC method, the reader is refered to Ref. 35; explicit
expressions for the ionic property ISR at the ADC~2! level
will be presented in a forthcoming publication.66

To summarize, the ISR property extension of the ADC
propagator method is a conceptually simple approach to
properties of molecules in excited states. Maintaining the
advantages of propagator theory, one gains the full flexibility
of a wave function description. The approximative ADC~2!
level worked out here should prove a practical and suffi-
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ciently accurate means of computation of ES properties and
transition moments, being of particular interest for the treat-
ment of larger molecules, as the present exploratory study of
the PNA excitations may have demonstrated. Based on a
more efficient program version, we hope to be able to present
further tests of the method in the near future.
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APPENDIX: SECOND-ORDER INTERMEDIATE
STATE REPRESENTATION OF A GENERAL
ONE-PARTICLE OPERATOR

In the following we collect the explicit expressions for
the matrix elements of a general one-particle operator:

D̂5( drscr
†cs ~A1!

with respect to the second-order ISR. Some remarks on the
derivation procedure are given at the end of this section.

The general form of the ISR matrix elements ofD̂ is

D̃IJ5^C̃ I uD̂uC̃J&5d IJD01DIJ , ~A2!

whereD05^C0uD̂uC0& in the diagonal term is the ground
state expectation value ofD̂ @see Eqs.~31! and~32!# andDIJ

denote the ISR matrix elements of the shifted operator
D̂2D0 . At the second- and third-order level the explicit ISR
configuration space comprises thep–h and 2p– 2h states.
The matrix elements in thep–h diagonal block, the
p–h/2p– 2h block, and the 2p– 2h diagonal block are
needed through second, first, and zeroth order, respectively.
For notational convenience the abbreviation

vpqrs5
Vpq[ rs]

ep1eq2e r2es
~A3!

is used in the following, whereVpq[ rs]5Vpqrs2Vpqsr de-
notes the antisymmetrized Coulomb integrals~in ‘‘1212’’
form! and ep are HF orbital energies. As before, the sub-
scriptsa,b,c, . . . andi , j ,k, . . . refer to unoccupied~virtual!
and occupied orbitals, respectively, while the letters
p,q,r , . . . will be used in the general case.

~a! p–h diagonal block,

Dak,a8k85dkk8daa82daa8dk8k1(
i 51

7

dak,a8k8
(2,i ) , ~A4!

where the seven second-order contributionsDak,a8k8
(2,i ) are

given by

Dak,a8k8
(2,1)

52dkk8(
l

r la8
(2)dal2daa8(

b
rk8b

(2) dbk1h.c.,

~A5!

Dak,a8k8
(2,2)

52
1

4
dkk8 (

c,d,i , j
vcdi j* vadi jdca81h.c., ~A6!

Dak,a8k8
(2,3)

52
1

2
dkk8 (

c,d,i , j
va8ci j

* vadi jdcd

1dkk8 (
d,i , j ,l

va8di j
* vadl jdli , ~A7!

Dak,a8k8
(2,4)

5
1

4
daa8 (

c,d,i , j
vcdi j* vcdk jdk8 i1h.c., ~A8!

Dak,a8k8
(2,5)

52daa8 (
c,c8,d, j

vcdk8 j
* vc8dk jdcc8

1
1

2
daa8 (

c,d,i , j
vcdk8 j

* vcdkidi j , ~A9!

Dak,a8k8
(2,6)

5
1

2 (
c,d, j

vcdk8 j
* vadk jdca8

2
1

2 (
d,i , j

va8di j
* vadk jdk8 i1h.c., ~A10!

Dak,a8k8
(2,7)

52 (
d,i , j

va8dk8 j
* vadkidi j 1 (

c,d, j
va8ck8 j

* vadk jdcd .

~A11!

In Eq. ~A5!, rka
(2) denotes second-order contributions to the

one-particle density matrix elements@Eq. ~32!#. It is advis-
able to evaluate these contributions using the DEM/ADC~3!
approximation as discussed in Sec. III rather than the strict
second-order expression. Note that there is no first-order
contribution to the diagonalp–h block.

~b! p–h/2p– 2h coupling block,

Dak,a8b8k8 l 852daa8dkk8S dl 8b82(
d, j

vb8dl8 j
* dd j D

1daa8dkl8S dk8b82(
d, j

vb8dk8 j
* dd j D

1dab8dkk8S dl 8a82(
d, j

va8dl8 j
* dd j D

2dab8dkl8S dk8a82(
d, j

va8dk8 j
* dd j D

2daa8(
c

vcb8k8 l 8
* dck1dab8(

c
vca8k8 l 8

* dck

2dkk8(
j

va8b8 j l 8
* da j1dkl8(

j
va8b8 jk8

* da j .

~A12!
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~c! 2p– 2h diagonal block,

Dabkl,a8b8k8 l 85dbb8dkk8d l l 8daa82dba8dkk8d l l 8dab8

1daa8dkk8d l l 8dbb82dab8dkk8d l l 8dba8

2daa8dbb8d l l 8dk8k1daa8dbb8d lk8dl 8k

2daa8dbb8dkk8dl 8 l1daa8dbb8dkl8dk8 l .

~A13!

The PT expressions given here can be derived in a
straightforward, though somewhat tedious way using
Rayleigh–Schro¨dinger PT for the ground stateuC0& in the
general ISR terms. A few remarks on the procedure may be
appropriate.

Let us consider thep–h diagonal block,D̃11, of the ISR
matrix, reading in matrix notation

D̃115S2 1/2D11
# S2 1/2. ~A14!

HereS is the overlap matrix@Eq. ~6!#,

Sak,bl5^C0uck
†cacb

†cl uC0&2rakr lb ~A15!

of the precursor states@Eq. ~4!#,

uCak
# &5~ca

†ck2rka!uC0& ~A16!

andD11
# is the precursor state representation ofD̂,

Dak,bl
# 5^C0uck

†caD̂cb
†cl uC0&2r lb^C0uck

†caD̂uC0&

2rak^C0uD̂cb
†cl uC0&1rakr lb^C0uD̂uC0&.

~A17!

Let us note that thep–h components,

rka5^C0uca
†ckuC0&;O~2! ~A18!

of the one-particle density matrix are of second order of PT,
so that the last term on the rhs of Eq.~A17! does not come
into play before fourth order. As can readily be seen, the
perturbation expansion ofS is of the form

S511S(2)1O~3!. ~A19!

Using

S2 1/2512 1
2S

(2)1O~3! ~A20!

we find

D̃115D11
#(0)1D11

#(1)1D11
#(2)

2 1
2 ~S(2)D11

#(0)1D11
#(0)S(2)!1O~3! ~A21!

for the expansion ofD11 through second order. Here the
zeroth-order contribution is simply given by

Dak,bl
#(0) 5^F0uck

†caD̂cb
†cl uF0&, ~A22!

whereuF0& denotes the HF ground state. As can readily be
seen, the first-order contribution vanishes:Dak,bl

#(1) 50. In the
second-order part,

Dak,bl
#(2) 5^C0

(2)uck
†caD̂cb

†cl uF0&1h.c.

1^C0
(1)uck

†caD̂cb
†cl uC0

1&2r lb
(2)dak2rak

(2)dbl

2 1
2 ~S(2)D11

#(0)1D11
#(0)S(2)!ak,bl ~A23!

one has to deal with four different contributions~i!–~iv!: The
first ~i! and second~ii ! contribution arise from the PT expan-
sion of the first term on the right-hand side of Eq.~A23!;
contribution~iii ! comprises the twor (2)d terms arising from
the orthogonalization of the intermediate states with respect
to uC0&, while the twoS(2)D#(0) terms associated with the IS
normalization are collected in contribution~iv!. For treating
~i! and ~ii ! it is helpful to use the commutator relation

@ck
†ca ,D̂#5(

s
dasck

†cs2(
r

drkcr
†ca ~A24!

and replaceck
†caD̂ in ~i! and ~ii ! according to

ck
†caD̂5D̂ck

†ca1(
s

dasck
†cs2(

r
drkcr

†ca . ~A25!

Thereby one avoids having to evaluate matrix elements ofD̂
with respect to triple excitations on the HF ground state.
Moreover, several distinct contributions split off in a quite
natural way:

• dabdkl^C0uD̂uC0&
(2) @ from ~i! and ~ii !#,

• part of ~i! cancels exactly~iii !,

• ~dkldab2dabdlk!^C0uC0&
(2)

50 @ from ~i! and ~ii !#,

• the contribution~iv! is canceled completely by
terms arising from~ii !.

The evaluation of~i! is simple; note that only thep–h part
of uC0

(2)& comes into play. The result~after cancellations! is
given by Eq.~A5!. The ~ii ! part is more intricate. The parti-
tioning according to Eq.~A25! leads to three distinct parts,
~A!–~C!. Here part~A! contributes to all six Eqs.~A6!–
~A11!, ~B! to ~A6! and ~A10!, and ~C! to ~A8! and ~A10!.
Note that in~A! one has to deal with matrix elements of the
type ^2p– 2huD̂u2p– 2h&.

For the p–h/2p– 2h matrix elements,̂ C̃akuD̂uC̃abkl&,
the intermediate states are needed through first order only,

uC̃ak&5ca
†ckuF0&1ca

†ckuC0
(1)&1O~2!, ~A26!

uC̃abkl&5ca
†cb

†ckcl uF0&2uF0&^C0
(1)uca

†cb
†ckcl uF0&1O~2!.

~A27!

The ensuing evaluation of the matrix elements~through first
order! is straightforward.
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