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We calculate single-particle excitation energies for a series of 34 molecules using fully self-consistent GW,
one-shot G0W0, Hartree-Fock �HF�, and hybrid density-functional theory �DFT�. All calculations are per-
formed within the projector-augmented wave method using a basis set of Wannier functions augmented by
numerical atomic orbitals. The GW self-energy is calculated on the real frequency axis including its full
frequency dependence and off-diagonal matrix elements. The mean absolute error of the ionization potential
�IP� with respect to experiment is found to be 4.4, 2.6, 0.8, 0.4, and 0.5 eV for DFT-PBE, DFT-PBE0, HF,
G0W0�HF�, and self-consistent GW, respectively. This shows that although electronic screening is weak in
molecular systems, its inclusion at the GW level reduces the error in the IP by up to 50% relative to unscreened
HF. In general GW overscreens the HF energies leading to underestimation of the IPs. The best IPs are
obtained from one-shot G0W0 calculations based on HF since this reduces the overscreening. Finally, we find
that the inclusion of core-valence exchange is important and can affect the excitation energies by as much as
1 eV.
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I. INTRODUCTION

Density-functional theory �DFT� �Ref. 1� with the single-
particle Kohn-Sham �KS� scheme2 is today the most widely
used approach to the electronic-structure problem of real ma-
terials in both solid-state physics and quantum chemistry.
While properties derived from total energies are accurately
predicted by DFT, it is well known that DFT suffers from a
band-gap problem implying that the single-particle KS ei-
genvalues cannot in general be interpreted as real quasipar-
ticle �QP� excitation energies. In particular, semilocal
exchange-correlation �xc� functionals severely underestimate
the fundamental gap of both insulators, semiconductors, and
molecules.3–6

The hybrid7–9 and screened hybrid10 functionals, which
admix around 25% of the �screened� Fock exchange with the
local DFT exchange, generally improve the description of
band gaps in bulk semiconductors and insulators.5,6 How-
ever, the orbital energies obtained for finite systems using
such functionals still underestimate the fundamental gap, Ip
−Ea, �the difference between ionization potential and elec-
tron affinity� by up to several electron volts. In fact, for mol-
ecules the pure Hartree-Fock �HF� eigenvalues are usually
closer to the true electron addition/removal energies than are
the hybrid DFT eigenvalues. This is because HF is self-
interaction free and because screening of the exchange inter-
action is a relatively weak effect in molecular systems.4,11,13

On the other hand, in extended systems the effect of self-
interaction is less important and the long-range Coulomb in-
teraction becomes short ranged due to dynamical screening.
As a consequence HF breaks down in extended systems lead-
ing to dramatically overestimated band gaps and a qualita-
tively incorret description of metals.14–16

The many-body GW approximation of Hedin17 has been
widely and successfully used to calculate QP band structures
in metals, semiconductors, and insulators.3,18–20 The GW ap-
proximation can be viewed as HF with a dynamically

screened Coulomb interaction. The fact that the screening is
determined by the system itself instead of being fixed
a priori as in the screened hybrid schemes, suggests that the
GW method should be applicable to a broad class of systems
ranging from metals with strong screening to molecules with
weak screening. With the entry of nanoscience the use of
GW has been extended to low-dimensional systems and
nanostructures21–31 and more recently even nonequilibrium
phenomena such as quantum transport.32–36 In view of this
trend it is important to establish the performance of the GW
approximation for other systems than the crystalline solids.
In this work we present first-principles benchmark GW cal-
culations for a series of small molecules. In a closely related
study we compared GW and Hartree-Fock to exact diagonal-
ization results for semiempirical Pariser-Parr-Pople �PPP�
models of conjugated molecules.37 The main conclusions
from the two studies regarding the qualities of the GW ap-
proximation in molecular systems are very consistent.

Most GW calculations to date rely on one or several ap-
proximations of more technical character. These include the
plasmon pole approximation, the linearized QP equation, ne-
glect of off-diagonal matrix elements in the GW self-energy,
analytic continuations from the imaginary to the real fre-
quency axis, neglect of core states contributions to the self-
energy, and neglect of self-consistency. The range of validity
of these approximations has been explored for solid-state
systems by a number of authors,38–43 however, much less is
known about their applicability to molecular systems.24 Our
implementation of the GW method avoids all of these tech-
nical approximations allowing for a direct and unbiased as-
sessment of the GW approximation itself.

Here we report on fully self-consistent GW and single-
shot G0W0 calculations of QP energies for a set of 34 mol-
ecules. The calculated IPs are compared with experimental
values as well as single-particle eigenvalues obtained from
Hartree-Fock and DFT-PBE/PBE0 theories. As additional
benchmarks we compare to second-order Möller-Plesset
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�MP2� and DFT-PBE total-energy differences between the
neutral and cation species. Special attention is paid to the
effect of self-consistency in the GW self-energy and the role
of the initial Green’s function, G0, used in one-shot G0W0
calculations. The use of PAW rather than pseudopotentials
facilitate the inclusion of core-valence exchange, which we
find can contribute significantly to the HF and GW energies.
Our results show that the GW approximation yields accurate
single-particle excitation energies for small molecules im-
proving both hybrid DFT and full Hartree-Fock results.

The paper is organized as follows. In Sec. II we describe
the theoretical and numerical details behind the GW calcula-
tions, including the augmented Wannier-function basis set,
the self-consistent solution of the Dyson equation, and the
evaluation of valence-core exchange within projector-
augmented wave �PAW�. In Sec. III we discuss and compare
the results of G0W0, GW, HF, PBE0, and PBE calculations.
We analyze the role of dynamical screening and discuss the
effect of self-consistency in the GW self-energy. We con-
clude in Sec. IV.

II. METHOD

A. Augmented Wannier-function basis

For the GW calculations we apply a basis set consisting of
projected Wannier functions �PWFs� augmented by numeri-
cal atomic orbitals �NAOs�. The PWFs, �i, are obtained by
maximizing their projections onto a set of target NAOs,
�Alm, subject to the condition that they span the set of occu-
pied eigenstates, �n. Thus we maximize the functional

� = �
i

�
A,l,m

���i��Alm��2 �1�

subject to the condition span	�i
�span	�n
occ as
described in Ref. 44. The target NAOs are given by
�Alm�r�=�Al�r�Ylm�r�, where �Al is a modified Gaussian
which vanish outside a specified cutoff radius and Ylm are the
spherical harmonics corresponding to the valence of atom A.
The number of PWFs equals the number of target NAOs. For
example, we obtain one PWF for H �lmax=0� and four PWFs
for C �lmax=1�. The PWFs mimic the target atomic orbitals
but in addition they allow for an exact representation of all
the occupied molecular eigenstates. The latter are obtained
from an accurate real-space PAW-PBE calculation.45,46

The PWFs obtained in this way provide an exact repre-
sentation of the occupied PBE eigenstates. However, this
does not suffice for GW calculations because the polarizabil-
ity, P, and the screened interaction, W, do not live in this
subspace. Hence we augment the PWFs by additional NAOs
including so-called polarization functions which have
l= lmax+1 and/or extra radial functions �zeta functions� for
the valence atomic orbitals. For more details on the defini-
tion of polarization and higher zeta functions we refer to Ref.
46. To give an example, a double-zeta-polarized �DZP� basis
consists of the PWFs augmented by one set of NAOs corre-
sponding to l=0, . . . , lmax and one set of polarization orbitals.
Note that the notation, SZ, SZP, DZ, DZP, etc., is normally
used for pure NAO basis sets but here we use it to denote our

augmented Wannier basis set. We find that the augmented
Wannier basis is significantly better for HF and GW calcula-
tions than the corresponding pure NAO basis.

The GW and HF calculations presented in Sec. III were
performed using a DZP augmented Wannier basis. This gives
a total of five basis functions per H, Li, and Na, and 13 basis
functions for all other chemical elements considered. In Sec.
III C we discuss convergence of the GW calculations with
respect to the size of the augmented Wannier basis.

B. GW calculations

The HF and GW calculations for isolated molecules are
performed using a Green’s function code developed for
quantum transport.47 In principle, this scheme is designed for
a molecule connected to two electrodes with different chemi-
cal potentials �L and �R. However, the case of an isolated
molecule can be treated as a special case by setting
�L=�R=� and modeling the coupling to electrodes by a
small constant imaginary self-energy, �L/R= i	. The chemical
potential � is chosen to lie in the highest occupied molecular
orbital-lowest unoccupied molecular orbital �HOMO-
LUMO� gap of the molecule and the size of 	, which pro-
vides an artifical broadening of the discrete levels, is reduced
until the results have converged. In this limit of small 	 the
result of the GW calculation becomes independent of the
precise position of � inside the gap.

In Ref. 47 the GW-transport scheme was described for the
case of an orthogonal basis set and for a truncated, two-index
Coulomb interaction. Below we generalize the relevant equa-
tions to the case of a nonorthogonal basis and a full four-
index Coulomb interaction. Some relevant results of many-
body perturbation theory in a nonorthogonal basis can be
found in Ref. 48.

The central object is the retarded Green’s function,

Gr�
� = ��
 + i	�S − HKS + vxc − �vH − �xc
r �G��
��−1.

�2�

In this equation all quantities are matrices in the augmented

Wannier basis, e.g., HKS,ij = ��i�ĤKS�� j� is the KS Hamil-
tonian matrix and Sij = ��i �� j� is an overlap matrix. The term
�vH represents the change in the Hartree potential relative to
the DFT Hartree potential already contained in HKS, see Ap-
pendix. The local xc potential, vxc, is subtracted to avoid
double counting when adding the many-body self-energy,
�xc�G�. As indicated, the latter depends on the Green’s func-
tion and therefore Eq. �2� must, in principle, be solved self-
consistently in conjunction with the equation for the self-
energy.

In the present study �xc is either the bare exchange poten-
tial or the GW self-energy. To be consistent with the code
used for the calculations, we present the equations for the
GW self-energy on the so-called Keldysh contour. However,
under the equilibrium conditions considered here the
Keldysh formalism is equivalent to the ordinary time-ordered
formalism.
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The GW self-energy is defined by

�ij
GW��,��� = i�

kl

Gkl��,��+�Wik,jl��,��� , �3�

where � and �� are times on the Keldysh contour, C. The
dynamically screened Coulomb interaction obeys the Dyson-
type equation

Wij,kl��,��� = Vij,klC��,���

+ �
pqrs

�
C

d�1Vij,pqPpq,rs��,�1�Wrs,kl��1,���

�4�

and the polarization bubble is given by

Pij,kl��,��� = − iGik��,���Glj���,�� . �5�

In the limit of vanishing polarization, P=0, W reduces to the
bare Coulomb interaction,

Vij,kl =� � drdr�
�r − r��

�i�r�� j
��r��k

��r���l�r�� �6�

and the GW self-energy reduces to the exchange potential of
HF theory.

From the above equations for the contour-ordered quanti-
ties, the corresponding real time components, i.e., the re-
tarded, advanced, lesser, and greater components can be ob-
tained from standard conversion rules.49,50 For completeness
we give the expressions for the real time components of the
GW equations in Appendix.

The time/energy dependence of the dynamical quantities
G, W, P, and � is represented on a uniform grid. We switch
between time and energy domains using the fast Fourier
transform in order to avoid time-consuming convolutions. A
typical energy grid used for the GW calculations in this work
ranges from −150 to 150 eV with a grid spacing of 0.02 eV.
The code is parallelized over basis functions and energy grid
points. We use a Pulay mixing scheme for updating the
Green’s function Gr when iterating Eq. �2� to self-
consistency as described in Ref. 47.

We stress that no approximation apart from the finite basis
set is made in our implementation of the GW approximation.
In particular, the frequency dependence is treated exactly and
analytic continuations from the imaginary axis are avoided
since we work directly on the real frequency/time axis. The
price we pay for this is the large size of the energy grid.

C. Spectral function

The single-particle excitation spectrum is contained in the
spectral function,

A�
� = i	Gr�
� − �Gr�
��†
 . �7�

For a molecule A�
� shows peaks at the QP energies

n=En�N+1�−E0�N� and 
n=E0�N�−En�N−1� correspond-
ing to electron addition and removal energies, respectively.

Here En�N� denotes the energy of the nth excited state of the
system with N electrons and N refers to the neutral state.

When the Green’s function is evaluated in a nonorthogo-
nal basis, like the augmented Wannier basis used here, the
projected density of states for orbital �i becomes

Di�
� = �SA�
�S�ii/2�Sii, �8�

where matrix multiplication is implied.48 Correspondingly,
the total density of states, or quasiparticle spectrum, is given
by

D�
� = Tr�A�
�S�/2� . �9�

D. Calculating Coulomb matrix elements

The calculation of all of the Coulomb matrix elements,
Vij,kl, is prohibitively costly for larger basis sets. Fortunately
the matrix is to a large degree dominated by negligible ele-
ments. To systematically define the most significant Cou-
lomb elements, we use the product basis technique of Ar-
yasetiawan and Gunnarsson.51,52 In this approach, the pair
orbital overlap matrix

Sij,kl = �nij�nkl� , �10�

where nij�r�=�i
��r�� j�r� is used to screen for the significant

elements of V.
The eigenvectors of the overlap matrix Eq. �10� represents

a set of “optimized pair orbitals” and the eigenvalues their
norm. Optimized pair orbitals with insignificant norm must
also yield a reduced contribution to the Coulomb matrix and
are omitted in the calculation of V. We limit the basis for V to
optimized pair orbitals with a norm larger than 10−5a0

−3. This
gives a significant reduction in the number of Coulomb ele-
ments that needs to be evaluated, and it reduces the matrix
size of P�
� and W�
� correspondingly, see Appendix.

The evaluation of the double integral in Eq. �6� is effi-
ciently performed in real space by solving a Poisson equation
using multigrid techniques.45,53

E. Valence-core exchange

All inputs to the GW/HF calculations, i.e., the self-
consistent Kohn-Sham Hamiltonian, HKS, the xc potential
vxc, the Coulomb matrix elements, Vij,kl, are calculated using
the real-space PAW �Ref. 54� code GPAW.45,46

In GPAW, the core electrons �which are treated scalar rela-
tivistically� are frozen into the orbitals of the free atoms, and
the Kohn-Sham equations are solved for the valence states
only. Unlike pseudopotential schemes, these valence states
are subject to the full potential of the nuclei and core elec-
trons. This is achieved by a partitioning scheme, where quan-
tities are divided into pseudocomponents augmented by
atomic corrections. The operators obtained from GPAW are
thus full-potential quantities, and the wave functions from
which the Wannier basis functions are constructed corre-
spond to the all-electron valence states. Reference 53 de-
scribes how the all-electron Coulomb elements can be deter-
mined within the PAW formalism.
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Since both core- and all-electron valence states are avail-
able in the PAW method, we can evaluate the contribution to
the valence exchange self-energy coming from the core elec-
trons. As the density matrix is simply the identity matrix in
the subspace of atomic core states, this valence-core ex-
change reads

�x,ij
core = − �

k

core

Vik,jk, �11�

where i , j represent valence basis functions. We limit the
inclusion of valence-core interactions to the exchange poten-
tial, neglecting it in the correlation. This is reasonable be-
cause the polarization bubble, P, involving core and valence
states will be small due to the large energy difference and
small spatial overlap of the valence and core states. This
procedure was used and validated for solids in Ref. 42. We
find that the elements of �x,ij

core can be significant—on average
1.2 eV for the HOMO—and are larger �more negative� for
the more bound orbitals which have larger overlap with the
core states. In general, the effect on the HOMO-LUMO gap
is to enlarge it, on average by 0.4 eV because the more
bound HOMO level is pushed further down than the less
bound LUMO state. In the case of solids, the role of valence-
core interaction has been investigated by a number of
authors.39–42,55 Here the effect on the QP band gap seems to
be smaller than what we find for the molecular gaps. We note
that most GW calculations rely on pseudopotential schemes
where these valence-core interactions are not accessible. In
such codes, the xc contribution from the core electrons are
sometimes estimated by �xc

core�vxc�n�−vxc�nval�, where nval
is the valence electron density but as the local xc potential is
a nonlinear functional of the density, this procedure is not

well justified. Instead we subtract the xc potential of the full
electon density n, and add explicitly the exact exchange core
contribution.

III. RESULTS

In Fig. 1 we compare the calculated HOMO energies with
experimental ionization potentials for the 34 molecules listed
in Table I. The geometries of the molecules, which all belong
to the G2 test set, are taken from Ref. 56. The different
HOMO energies correspond to DFT-PBE �Ref. 57� and DFT-
PBE0 �Ref. 7� eigenvalues, Hartree-Fock eigenvalues, and
fully self-consistent GW. The GW energies are obtained from
the peaks in the corresponding density of states Eq. �9� ex-
trapolated to 	=0 �	 gives an artificial broadening of the
delta peaks�.

We stress the different meaning of fully self-consistent
GW and the recently introduced method of quasiparticle self-
consistent GW.58 In fully self-consistent GW the Green’s
function obtained from Dyson’s equation Eq. �2� with
�xc�G�=�GW�G� is used to calculate the �GW of the next
iteration. In QP-self-consistent GW, �GW is always evaluated
using a noninteracting Green’s function and the self-
consistency is obtained when the difference between the non-
interacting GF and the interacting GF, is minimal.

Figure 1 clearly shows that both the PBE and PBE0 ei-
genvalues of the HOMO severely underestimates the ioniza-
tion potential. The average deviation from the experimental
values are 4.35 and 2.55 eV, respectively. The overestimation
of the single-particle eigenvalues of occupied states is a well-
known problem of DFT and can be ascribed to the insuffi-
cient cancellation of the self-interaction in the Hartree
potential.4,13 Part of this self-interaction is removed in PBE0.
However, the fact that the HF results are significantly closer
to experiments indicates that the 25% Fock exchange in-
cluded in the PBE0 is not sufficient to cure the erroneous
description of �occupied� molecular orbitals. On the other
hand PBE0 gives good results for band gaps in semiconduc-
tors and insulators where in contrast full Hartree-Fock does
not perform well.14–16 We conclude that the amount of Fock
exchange to be used in the hybrid functionals to achieve
good quasiparticle energies is highly system dependent. A
similar problem is encountered with self-interaction cor-
rected exchange-correlation functionals.13

As can be seen from Fig. 1, GW performs better than
Hartree-Fock for the HOMO energy yielding a mean abso-
lute error �MAE� with respect to experiments of 0.5 eV com-
pared to 0.81 eV with Hartree-Fock. As expected the differ-
ence between HF and GW is not large on an absolute scale
�around 1 eV on average, see Table II� illustrating the fact
that screening is weak in small molecules. On a relative scale
self-consistent GW improves the agreement with experi-
ments by almost 30% as compared to HF.

To gain more insight into the influence of screening on the
orbital energies, we compare in Fig. 2 the deviation of the
HF and GW energies from IPexp. The GW self-energy can be
split into the bare exchange potential and an energy-
dependent correlation part,

FIG. 1. �Color online� Calculated negative HOMO energy ver-
sus experimental ionization potential. Both PBE and PBE0 system-
atically understimates the ionization energy due to self-interaction
errors while HF overestimates it slightly. The dynamical screening
from the GW correlation lowers the HF energies bringing them
closer to the experimental values. Numerical values are listed in
Table I.
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�GW�r,r�;
� = vx�r,r�� + �corr�r,r�;
� . �12�

Accordingly the quasiparticle energy can be written as the
bare HF energy and a correction due to the energy-dependent
part of the GW self-energy �the dynamical screening term�,


n
QP = 
n

HF + �n
GW. �13�

In Fig. 2 the line y=x corresponds to �n
GW=0, and the verti-

cal displacement from the line thus represents the effect of
screening on the calculated HOMO energy. We first notice
that the effect of screening is to shift the HOMO level up-

TABLE I. Experimental ionization potential �first column� and HOMO energy calculated using different approximations for exchange
and correlation. “X-eig” refers to a single-particle eigenvalue while “X-tot” refers to a total-energy difference, E�N�−E�N−1�. The
G0W0�PBE� energies have been obtained from the QP equation while the GW and G0W0 energies are obtained from the DOS in Eq. �9�. Last
row shows the MAE with respect to experiments. All energies are in eV.

Molecule Expt.a PBE-eig PBE0-eig HF-eig GW G0W0�HF� G0W0�PBE�-QP MP2a PBE-tot

LiH 7.90 4.34 5.81 8.14 8.0b 8.2b 8.0 8.20 8.02

Li2 5.11 2.96 3.62 4.62 4.6 4.7 4.4 4.91 5.09

LiF 11.30 6.00 8.62 13.26 11.7 11.2 12.0 12.64 11.87

Na2 4.89 2.81 3.38 4.16 4.1 4.3 4.7 4.48 4.97

NaCl 9.80 5.24 6.92 9.78 9.0 9.2 8.8 9.63 9.37

CO 14.01 9.05 10.98 14.80 13.4 14.1 13.9 15.08 13.88

CO2 13.78 9.08 11.09 14.50 13.1 13.3 13.6 14.71 13.64

CS 11.33 7.40 9.09 12.31 10.8 11.7 11.0 12.58 11.31

C2H2 11.49 7.20 8.64 11.05 10.6 11.1 11.2 11.04 11.39

C2H4 10.68 6.79 8.11 10.11 9.8 10.4 9.6 10.18 10.67

CH4 13.60 9.43 11.29 14.77 14.1 14.4 14.4c 14.82 14.10

CH3Cl 11.29 7.08 8.80 11.68 11.0 11.4 11.1 11.90 11.10

CH3OH 10.96 6.31 8.49 12.14 10.7 10.8 10.5 12.16 10.72

CH3SH 9.44 5.60 7.09 9.50 8.8 9.0 8.4 9.73 9.29

Cl2 11.49 7.32 9.02 12.03 10.9 11.3 11.5 12.37 11.22

ClF 12.77 7.90 9.88 13.33 12.4 12.4 13.0 13.63 12.48

F2 15.70 9.43 12.42 17.90 15.2 15.2 16.2 18.20 15.39

HOCl 11.12 6.68 8.66 11.93 10.6 10.8 11.0 12.23 10.95

HCl 12.74 8.02 9.78 12.96 12.2 12.5 12.5 13.02 12.71

H2O2 11.70 6.38 8.78 13.06 11.0 11.1 11.1 13.00 11.18

H2CO 10.88 6.28 8.37 11.93 10.4 10.5 10.6 11.97 10.80

HCN 13.61 9.05 10.67 13.19 12.7 13.2 12.4 13.33 13.67

HF 16.12 9.61 12.47 17.74 16.0 15.6 15.7 17.35 16.27

H2O 12.62 7.24 9.59 13.88 12.3 12.1 11.9d 13.62 12.88

NH3 10.82 6.16 8.11 11.80 10.8 11.0 10.6 11.57 11.02

N2 15.58 10.28 12.51 16.21 15.1 15.7 15.6 16.41 15.39

N2H4 8.98 5.75 7.67 11.06 9.8 10.1 9.5 11.07 9.90

SH2 10.50 6.29 7.79 10.48 9.8 10.1 9.9 10.48 10.38

SO2 12.50 8.08 9.96 13.02 11.3 11.7 11.7 13.46 12.12

PH3 10.95 6.79 8.17 10.38 9.9 10.3 10.0 10.50 10.39

P2 10.62 7.09 8.21 9.65 9.2 9.8 9.0 10.09 10.37

SiH4 12.30 8.50 10.13 12.93 12.3 12.6 12.4e 13.25 11.95

Si2H6 10.53 7.27 8.54 10.82 10.2 10.6 9.9 11.03 10.36

SiO 11.49 7.46 9.14 11.78 10.9 11.2 11.3 11.82 11.27

MAE 4.35 2.55 0.81 0.5 0.4 0.5 0.82 0.24

aFrom Ref. 59. The MP2 calculations use a Gaussian 6-311G�� basis set.
bTo be compared with the GW value 7.85 and the G0W0�HF� value 8.19 reported in Ref. 24.
cTo be compared with the G0W0�LDA� value 14.3 reported in Ref. 21.
dTo be compared with the G0W0�LDA� value 11.94 reported in Ref. 22.
eTo be compared with the G0W0�LDA� values 12.7 and 12.66 reported in Refs. 21 and 22, respectively.
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ward in energy, i.e., to reduce the ionization potential. This
can be understood by recalling that the Hartree-Fock eigen-
value represents the energy cost of removing an electron
from the HOMO when orbital relaxations in the final state
are neglected �Koopmans’ theorem16�. In Ref. 37 we showed,
on the basis of GW and exact calculations for semiempirical
models of conjugated molecules, that �n

GW mainly describes
the orbital relaxations in the final state and to a lesser extent
accounts for the correlation energy of the initial and final
states. This explains the negative sign of �n

GW because the
inclusion of orbital relaxation in the final state lowers the
energy cost of removing an electron. We note that this is
different from the situation in extended, periodic systems
where orbital relaxations vanish and the main effect of the

GW self-energy is to account for correlations in the initial
and final states.

In Table I we list the calculated HOMO energy for each of
the 34 molecules. In addition to self-consistent GW we have
performed one-shot G0W0 calculations based on the HF and
PBE Green’s function, respectively. The best agreement with
experiment is obtained for G0W0�HF�. This is because the
relatively large Hartree-Fock HOMO-LUMO gap reduces
the �over�screening described by the resulting GW self-
energy. There are not many GW calculations for molecules
available in the litterature. Below Table I we list the few we
have found. As can be seen they all compare quite well with
our results given the differences in the implementation of the
GW approximation.

For comparison we have included the HOMO energy pre-
dicted by second-order Møller-Plesset theory �MP2� �taken
from Ref. 59� with a Gaussian 6-311G�� basis set. These are
generally very close to our calculated HF values, with a ten-
dency to lower energies which worsens the agreement with
experiment slightly as compared to HF.

We have also calculated the DFT-PBE total-energy
difference between the neutral and cation species,
E�N�−E�N−1�, see last column of Table I. This procedure
leads to IPs in very good agreement with the experimental
values �MAE of 0.24 eV�. We stress that although this
method is superior to the GW method for the IP of the small
molecules studied here, it can yield only the HOMO and
LUMO levels while higher excited states are inaccessible.
Moreover it applies only to isolated systems and cannot be
directly used to probe QP levels of, e.g., a molecule on a
surface.

In Table II we provide an overview of the comparative
performance of the different methods. Shown is the mean
average deviation between the IPs calculated with the differ-
ent methods as well as the experimental values. Note that the
numbers in the experiment row/column are the same as those
listed in the last row of Table II.

A. Linearized quasiparticle equation

In the conventional GW method the full Green’s function
of Eq. �2� is not calculated. Rather one obtains the quasipar-
ticle energies from the quasiparticle equation

TABLE II. Mean absolute deviation between the IPs of the 34 molecules calculated with the different
methods and experiment. The mean absolute deviation with respect to experiment coincide with the last row
in Table I.

Method Expt.a PBE-eig PBE0-eig HF-eig GW G0W0�HF� MP2a PBE-tot

Expt. 0.00 4.35 2.55 0.81 0.5 0.4 0.82 0.24

PBE 4.35 0.00 1.79 4.90 3.9 4.1 4.99 4.27

PBE0 2.55 1.79 0.00 3.11 2.1 2.3 3.20 2.48

HF 0.81 4.90 3.11 0.00 1.0 0.8 0.17 0.80

GW 0.5 3.9 2.1 1.0 0.00 0.3 1.1 0.4

G0W0�HF� 0.4 4.1 2.3 0.8 0.3 0.00 0.9 0.3

MP2 0.82 4.99 3.20 0.17 1.1 0.9 0.00 0.84

PBE-tot 0.24 4.27 2.48 0.80 0.4 0.3 0.84 0.00

aData taken from Ref. 59.

FIG. 2. The deviation of the calculated HOMO energy from the
experimental ionization potential in GW and HF, respectively. The
vertical displacement of points from the line x=y gives the differ-
ence between the GW and HF energies and represents the effect of
screening. Notice that the GW correction is always negative �corre-
sponding to higher HOMO energy� and that it generally overcor-
rects the HF energies. Also notice that the GW correction is larger
for molecules where HF presents the largest overestimation of the
ionization potential.
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n
QP = 
n

0 + Zn��n
0��GW�
n

0� − vxc��n
0� , �14�

where �n
0 and 
n

0 are eigenstates and eigenvalues of an ap-
proximate single-particle Hamiltonian �often the local-
density approximation Hamiltonian�, and

Zn = 1 −� ���n
DFT��GW�
���n

0�
�
 �


n
0
�−1

. �15�

Moreover the GW self-energy is evaluated nonself-
consistently from the single-particle Green’s function, i.e.,
�GW= iG0W�G0�, with G0�z�= �z−H0�−1.

The quasiparticle Eq. �14� relies on the assumption that
off-diagonal matrix elements, ��n

0��GW�
n
0�−vxc��m

0 �, can be
neglected, and that the frequency dependence of �GW can be
approximated by its first-order Taylor expansion in a suffi-
ciently large neighborhood of 
n

0. We have found that these
two assumptions are indeed fulfilled for the molecular sys-
tems studied here. More precisely, for the GW and
G0W0�HF� self-energies, the QP energies obtained from Eq.
�14� are always very close to the peaks in the density of
states Eq. �9�. We emphasize that this result could well be
related to the rather large level spacing of small molecules,
and may not hold for extended systems. An example is pre-
sented in Fig. 3 which shows the full HF and GW density of
states for NH3 together with the real part of
��HOMO

0 ��corr�
���HOMO
0 �. As explained in the following sec-

tion this is not quite the case for the G0W0�PBE� calcula-
tions.

B. G0 dependence

As stated in the previous section the GW and G0W0�HF�
energies can be obtained either from the full spectral func-
tion or from the QP equation with the same result. In this
case, returning to Table I, we see that G0W0�HF� yields sys-
tematically larger IPs than GW. This is easy to understand
since GHF describes a larger HOMO-LUMO gap than GGW,

and therefore produces less screening. When the PBE rather
than the HF Green’s function is used to evaluate the GW
self-energy, we find that the spectral function obtained from
Eq. �2� does not resemble a simple discrete spectrum. In fact
the peaks are significantly broadened by the imaginary part
of �GW and it becomes difficult to assign precise values to
the QP energies. Apart from the spectral broadening, the mo-
lecular gap is significantly reduced with respect to its value
in the GW and G0W0�HF� calculations. Both of these effects
are due to the very small HOMO-LUMO gap described by
GPBE which leads to severe overscreening and QP lifetime
reductions. A similar effect was observed by Ku and Eguiluz
in their comparison of GW and G0W0�LDA� for Si and Ge
crystals.40

The problems encountered when attempting to solve the
Dyson Eq. �2� using the G0W0�PBE� self-energy occur due
to the large mismatch between 
n

PBE and 
n
QP. On the other

hand, in the QP equation, the GW self-energy is evaluated at

n

0 rather than 
n
QP. As a consequence the unphysical broad-

ening and overscreening is avoided and a well-defined QP
energy can be obtained �last column in Table I�.

To summarize, G0 can have a very large effect on the QP
spectrum when the latter is obtained via the Dyson Eq. �2�.
In particular, the use of a G0 with a too narrow energy gap
�as, e.g., the GPBE� can lead to unphysical overscreening and
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FIG. 3. �Color online� Density of states for the NH3 molecule
calculated in HF and GW, respectively. Arrows mark the level
corresponding to the HOMO in the two calculations. The
intersection between the line y=
−
n

HF and the real part of
��HOMO

0 ��corr�
���HOMO
0 � �green curve� determines the position of

the GW level.

FIG. 4. �Color online� Convergence of the three highest occu-
pied levels of H2O obtained from GW calculations with different
sizes of the augmented Wannier-function basis. SZ denotes the
Wannier-function basis while, e.g., DZDP denotes the Wannier ba-
sis augmented by one extra radial function per valence state and
two sets of polarization functions.
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spectral broadening. When the QP levels are obtained from
the QP equation, the G0 dependence is less pronounced be-
cause �GW�G0� is evaluated at 
n

0 which is consistent with
G0. The self-consistent GW spectrum is independent of the
choice of G0 but the number of iterations required to reach
self-consistency is less when based on GHF.

C. Basis-set convergence

In Figs. 4 and 5 we show the energy of the three highest
occupied molecular orbitals of H2O and CO obtained from
self-consistent GW using various sizes of the augmented
Wannier basis. Clearly, the polarization functions have rela-
tively little influence on the QP energies while the first set of
additional zeta functions reduce the QP energies by up to 0.5
eV. The differences between DZP and TZDP are less than
0.15 eV for all the levels which justifies the use of DZP
basis.

We have also compared the eigenvalues obtained from
self-consistent HF calculations using the DZP augmented
Wannier basis to accurate HF calculations performed with
the real-space code GPAW.45 Here we obtain a MAE of 0.09
eV for the energy of the HOMO level of the 34 molecules.

IV. CONCLUSIONS

As the range of systems to which the GW method is being
applied continues to expand it becomes important to estab-
lish its performance for other systems than the solids. In this

work we have discussed benchmark GW calculations for mo-
lecular systems.

The GW calculations were performed using a scheme
based on the PAW method and a basis set consisting of Wan-
nier functions augmented by numerical atomic orbitals. We
found that a basis corresponding to double zeta with polar-
ization functions was sufficient to obtain GW energies con-
verged to within �0.1 eV �compared to triple zeta with
double polarization functions�. The GW self-energy was cal-
culated on the real frequency axis including its full frequency
dependence and off-diagonal elements. We thereby avoid all
of the commonly used approximations, such as the plasmon
pole approximation, the linearized quasiparticle equation and
analytical continuations from imaginary to real frequencies,
and thus obtain a direct and unbiased assessment of the GW
approximation itself. We found that the inclusion of valence-
core exchange interactions, as facilitated by the PAW
method, is important and affect the HF/GW HOMO levels by
−1.2 eV on average.

The position of the HOMO for a series of 34 molecules
was calculated using fully self-consistent GW, single-shot
G0W0, Hartree-Fock, DFT-PBE0, and DFT-PBE. Both PBE
and PBE0 eigenvalues grossly overestimate the HOMO en-
ergy with a MAE with respect to the experimental IPs of 4.4
and 2.5 eV, respectively. Hartree-Fock underestimates the
HOMO energy but improves the agreement with experiments
yielding a MAE of 0.8 eV. GW and G0W0 overcorrects the
Hartree-Fock levels slightly leading to a small overestima-
tion of the HOMO energy with a MAE relative to experi-
ments of 0.4–0.5 eV. This shows that although screening is a
weak effect in molecular systems its inclusion at the GW
level improves the electron removal energies by 30–50%
relative to the unscreened Hartree-Fock. The best IPs were
obtained from one-shot G0W0 calculations starting from the
HF Green’s function where the overscreening is least severe.
Very similar conclusions were reached by comparing GW,
G0W0, and HF to exact diagonalization for conjugated mol-
ecules described by the semiempirical PPP model.37
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APPENDIX: THE GW SELF-ENERGY

Let U denote the rotation matrix that diagonalizes the pair
orbital overlap Sij,kl= �nij �nkl�, i.e., U†SU=�I. The columns
of U are truncated to those which have corresponding eigen-
values �q�10−5a0

−3. We then only calculate the reduced
number of Coulomb elements,

Vqq� = �nq�
1

�r − r��
�nq�� , �A1�

where nq�r� are the optimized pair orbitals,

FIG. 5. �Color online� Same as Fig. 4 but for CO.
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nq�r� = �
ij

nij�r�Uij,q/��q, �A2�

which are mutually orthonormal, i.e., �nq �nq��=qq�.
Determining the GW self-energy proceeds by calculating

first the full polarization matrix in the time domain,

Pij,kl
� �t� = 2iGik

��t�Gjl
���t� , �A3�

Pij,kl
� �t� = Pji,lk

�� �t� . �A4�

The factor 2 appears for spin-paired systems from summing
over spin indices. This is then downfolded to the reduced
representation,

Pqq�
� = �

ij,kl

��qUij,q
� Pij,kl

� Ukl,q�
��q�. �A5�

The screened interaction can be determined from the lesser
and greater polarization matrices, and the static interaction
Vqq�, via the relations

Pr�t� = ��t��P��t� − P��t�� , �A6�

Wr�
� = �I − VPr�
��−1V , �A7�

W��
� = Wr�
�P��
�Wr†�
� , �A8�

W��
� = W��
� − Wr�
� + Wr†�
� , �A9�

where all quantities are matrices in the optimized pair orbital
basis and matrix multiplication is implied. We obtain the
screened interaction in the original orbital basis from

Wij,kl
� �t� � �

qq�

Uij,q
��qWqq�

� �t���q�Ukl,q�
� , �A10�

which is an approximation due to the truncation of the col-
umns of U. Finally the GW self-energy can be determined by

�GW,ij
� �t� = i�

kl

Gkl
��t�Wik,jl

� �t� , �A11�

�GW
r �t� = ��t���GW

� �t� − �GW
� �t�� + �t��x. �A12�

The exchange and Hartree potentials are given by

�x,ij = i�
kl

Vik,jlGkl
��t = 0� , �A13�

�H,ij = − 2i�
kl

Vij,klGkl
��t = 0� . �A14�

The Green’s functions are given by

Gr�
� = ��
 + i	�S − HKS + vxc − �vH − �GW
r �
��−1,

�A15�

G��
� = − fFD�
 − ���Gr�
� − Gr�
�†� , �A16�

G��
� = �1 − fFD�
 − ����Gr�
� − Gr�
�†� , �A17�

where fFD�
−�� is the Fermi-Dirac function and
�vH=�H�G�−�H�GDFT� is the difference between the GW
Hartree potential and the DFT Hartree potential. For self-
consistent calculations, Eqs. �A3�–�A17� are iterated until
convergence in G.
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