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1. Introduction

Charge transfer could be argued to be one of the most impor-
tant interactions in science, underlying central processes in 
photosynthesis, photovoltaic devices, photo-catalysis, molec-
ular switches, nanoscale conductance, reactions at interfaces 
and in solvents. In some applications the excitation energies 
are primarily of interest, while in other applications a full 
account of the dynamics of the transferring charge in real 
time is critical. Note that we use the term ‘charge transfer’ in 
a somewhat casual way: first, we really only mean electron 

transfer, and second, we mean it to include electronic motion 
accompanied by nuclear motion (sometimes referred to as 
‘charge separation’) as well as when there is no accompany-
ing nuclear motion (sometimes termed ‘charge migration’). 
A quantum-mechanical treatment of the electronic system is 
necessary, yet the processes above typically involve systems 
large enough that approximate wavefunction methods that 
capture electron correlation accurately enough are not com-
putationally feasible.

Time-dependent density functional theory (TDDFT) offers 
a promising alternative, as it recasts the correlated problem 
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in terms of a non-interacting problem in an in-principle exact 
way with the use of an exchange-correlation functional [1]. 
In practise, approximations must be made for the latter, and 
the success of TDDFT hinges on both the general accuracy 
of the approximation made and its computational efficiency. 
A beautiful example of the interpretive and predictive value 
TDDFT has had for a charge-transfer process is the break-
through explanation of the dual fluorescence of 4-dimethyl- 
aminobenzonitrile (DMABN) by Rappoport and Furche in 
2003 [2], which finally put to rest a forty-year old debate 
about the mechanism. When this molecule is placed in a polar 
solvent, in addition to a ‘normal’ emission band that is always 
present, it had been observed experimentally that an additional 
red-shifted band appears, dubbed ‘anomalous’ (see figure 1). 
It had been thought, since its experimental discovery [3], that 
this band was due to an intramolecular charge-transfer state 
but the nature of this state (twisted, or planar quinoidal) had 
been, until [2], very controversial, as it was difficult to resolve 
without accurate but computationally-efficient first-principles 
methods for excited states. Comparing results from transient 
spectroscopy measurements with TDDFT predictions of emis-
sion energies, excited dipole moments and vibrational fre-
quencies, the authors could finally without doubt identify the 
nature, electronic and geometric, of the state and the mech-
anism that led to the dual fluorescence. (We return briefly to 
this work in section 3).

The value of the electronic excitation energies were not so 
relevant to the study above, and in fact, in practise the standard 
approximations that enter for the exchange-correlation func-
tional of TDDFT have performed poorly for charge-transfer 
excitation energies as well as in modeling the dynamics of 
a transferring electron in real time. Given the importance of 
charge transfer in physics, chemistry, and biology, the past 
decade has seen enormous effort to understand and remedy 
this problem, with the development of more reliable approxi-
mate functionals to capture charge-transfer excitations in 
many situations, but the problem is not entirely satisfactorily 

solved. Time-resolved dynamics of the transferring charge 
remains a challenge today: the system evolves far from its 
ground state, and the description must go beyond the linear 
response regime. When the charge transfers out of a system 
initially in its ground-state, features that are necessary for 
an accurate description of the dynamics develop in the exact 
exchange-correlation potential that require a spatially non-
local and time-non-local (non-adiabatic) dependence on the 
density, and this is missing in all approximations in use today. 
The prognosis for standard functionals for charge-transfer 
from a photo-excited state is better, and some success has 
been seen here, although open questions remain.

There have been reviews of progress in TDDFT for charge-
transfer excitations [4], and for non-perturbative charge-
transfer dynamics [5]. Here we provide a overview of both 
regimes, focussing on the behavior of the exact functionals 
and of approximations. We begin in section  2 with a brief 
reminder of the theory behind TDDFT and its linear response 
formalism. We then turn to the description of charge-transfer 
excitations in section 3 with an explanation of why standard 
functional approximations have difficulty, and a review of 
some recent progress in developing more suitable function-
als. Section 4 turns to the description of the charge-transfer 
process in real time, where it is necessary to step out of the 
linear response regime to capture the motion of the transfer-
ring charge.

2. TDDFT in a nutshell

TDDFT is an exact reformulation of the quantum mechanics 
of interacting identical many-particle systems, whose funda-
mental theorem states that all properties of the system evolv-
ing from a given initial wavefunction can be obtained from 
knowledge of the time-dependent one-body probability den-
sity [1, 6–9],

n(r, t) = N
N∑

i=1

∑
σi=↑↓

∫
d3r2...d3rN |Ψ(rσ1, r2σ2...rNσN , t)|2,

 (1)
a far simpler object than the complex many-particle time-
dependent wavefunction Ψ. Attempting to numerically solve 
Schroödinger’s equation for Ψ for systems of more than a few 
electrons, one rapidly hits an exponential wall. The theorem 
was derived for systems with Hamiltonians of the form

Ĥ(t) = T̂ + V̂ee + V̂ext(t) (2)

where T̂ = − 1
2

∑N
i ∇2

i  is the kinetic energy operator and 
V̂ee is the particle–particle interaction; in particular, for elec-

trons, V̂ee =
1
2

∑
i �=j

1
|ri−rj|. Note that atomic units are used 

throughout this review, e2 = � = me = 1. The external poten-
tial V̂ext(t) =

∑N
i vext(ri, t) is the term that distinguishes sys-

tems of a fixed type of particle: for electrons, it represents 
the potential the electrons experience due to the nuclei and to 
any field applied to the system, and the theorems state that a 
given density evolution n(r, t) of a system composed of this 
type of particle, beginning in a given initial state, can at most 

Figure 1. Photo-induced intramolecular charge-transfer, leading 
to dual fluorescence in DMABN when placed in a polar solvent. 
The band labelled ‘B’ is from fluorescence due to a largely local 
excitation, while that labelled ‘A’ is reached via crossing of the 
excited energy surfaces and is due to fluorescence from a charge-
transfer excitation (see text). Reprinted with permission from [2]. 
Copyright 2004, American Chemical Society.
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be reproduced by one vext(r, t). This means that the one-body 
density n(r, t) completely identifies the many-particle sys-
tem, since it points to a unique external potential, therefore 
to a unique H(t) and therefore, to the time-dependent many-
particle wavefunction Ψ(t) whose one-body density is n(r, t). 
The implication is that if we could find directly the one-body 
density, then, in principle, we would be able to extract from 
it, together with the initial many-body wavefunction Ψ(0), 
all properties of the interacting many-body system, i.e. every 
observable is a functional of the density and the initial state, 
O[n;Ψ(0)].

One can formulate an exact evolution equation  for the 
density, but the terms in it require the kinetic and interaction 
stress tensors of the many-particle wavefunction [10], which 
are challenging to accurately approximate as functionals of 
the density. Instead, in practise, TDDFT operates via the non-
interacting Kohn–Sham system, similar to that in ground-state 
DFT [11, 12] but now time-dependent: the density of the true 
interacting system is obtained as the density of this auxiliary 
system of non-interacting fermions, evolving in a one-body 
potential. One begins by choosing an initial state (typically a 
Slater determinant of orbitals {φi(r, 0)}) for the Kohn–Sham 
propagation, Φ(0), that must have the same density and first 
time-derivative of the density as the physical initial state Ψ(0). 
The latter condition arises because, due to the equation of con-
tinuity that states ∂tn(r, t) = −∇ · j(r, t), where j is the one-
body current-density, the initial wavefunction fixes both the 
initial density as well as its initial time-derivative. Then one 
solves

(
−∇2

2
+ vS(r, t)

)
φi(r, t) = i∂tφi(r, t) (3)

where the Kohn–Sham potential vS(r, t) is usually written as

vS(r, t) = vext(r, t) + vH[n](r, t) + vXC[n,Ψ(0),Φ(0)](r, t).
 (4)

Here vH[n](r, t) =
∫

d3r′ n(r′,t)
|r−r′| is the Hartree potential, and 

vXC[n;Ψ(0),Φ(0)](r, t) is the exchange-correlation (xc) 
potential. If the exact functional was known, then solu-
tion of these equations  would yield orbitals which, at each 
time, yield the exact density of the interacting system via 
n(r, t) =

∑N
i=1 |φi(r, t)|2.

In practice, approximations enter first when selecting an 
initial Kohn–Sham state (the exact initial density and time-
derivative are generally only known approximately, e.g. via a 
ground-state DFT calculation, if the calculation begins in the 
ground state, or, more generally, via a correlated many-body 
calculation for Ψ(0)), and second in approximating the xc 
functional. It is known that the exact xc functional has ‘mem-
ory-dependence’: that is, at time t, vXC[n,Ψ(0),Φ(0)](r, t) 
depends on the history of the density n(t′ < t) as well as the 
physical initial state Ψ(0) and the choice of Kohn–Sham initial 
state Φ(0). Almost always however, this memory dependence 
is neglected (exceptions include e.g. [13–15]), and an adiaba-
tic approximation is used, which inserts the time-dependent 
density into a ground-state (gs) approximation:

vA
XC[n,Ψ(0),Φ(0)](r, t) = vgs

XC[n(t)](r) (5)

For example, in the simplest approximation, adiabatic local-den-

sity approximation (ALDA), vALDA
XC (r, t) = d(nεunif

XC [n])
dn |n=n(r,t) 

where εunif
XC [n] is the xc energy per particle of a uniform elec-

tron gas of density n. In real-time propagation, almost always 
an adiabatic local or semi-local approximation is used, but not 
always (e.g. [16, 17]). Calculations that use hybrid function-
als which mix in a fraction of Hartree–Fock exchange, within 
a generalized Kohn–Sham framework, may be thought of 
as containing some memory-dependence in their exchange-
comp onent, in the sense that the instantaneous orbital is a 
functional of the history of the density and the Kohn–Sham 
initial state. Rarely, when a ground-state functional is used 
that is an explicit orbital-functional (e.g. as in exact exchange, 
or self-interaction corrected LDA) within TDOEP or KLI 
[18–22], then likewise such an approximation contains some 
memory dependence.

In any adiabatic approximation there are then two sources 
of error: one from making the adiabatic approximation itself 
(neglecting memory), and the second from the choice of 
ground-state xc functional approximation. To disentangle 
the effects of these two errors, it is instructive to define the 
‘adiabatically-exact’ (AE) potential, where the instantaneous 
density is inserted in the exact ground-state xc functional. 
Finding this potential is only possible for small or model sys-
tems, and often it proceeds by finding the interacting vex.gs

ext  and 
non-interacting vex.gs

S  potentials whose ground-state density is 
exactly equal to the instantaneous density [6, 23, 24], and then

vAE
XC[n](r, t) = vex.gs

S [n(t)](r)− vex.gs
ext [n(t)](r)− vH[n(t)](r).

 (6)

There are several intriguing foundational properties  
(v-representability and the existence of the Kohn–Sham sys-
tem, assumptions of time-analyticity underlying the proof, 
choices of the initial Kohn–Sham state, known conditions that 
the exact xc functional satisfies, for example) that have been 
uncovered in recent years, and we refer the reader to the recent 
review [6] for a discussion and references to some of this 
work. We here put those considerations aside, and continue 
with the formalism for the special case of linear response, 
which is the regime that has propelled TDDFT to its fame 
in achieving an unprecedented balance between accuracy and 
efficiency in obtaining excitation spectra.

2.1. Linear response TDDFT

Linear response is measured by applying a small perturbation 
to a ground-state and measuring the change in an observable 
to first order in the perturbation. TDDFT response theory 
revolves around the response of the density, and the central 
equation [7, 25, 26] takes the form:

χ(ω) = χS(ω) + χS(ω) � fHXC(ω) � χ(ω) (7)

where χ(ω) = χ(r, r′,ω) is the density–density response 
function (or susceptibility) of the physical system, defined as 
the time-frequency Fourier transform of

χ[n0](r, r′, t − t′) =
δn(r, t)

δvext(r′, t′)

∣∣∣∣
n0(r)

, (8)

J. Phys.: Condens. Matter 29 (2017) 423001
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and χS(ω) is the analogous quantity for the Kohn–Sham sys-
tem. They are related via the Hartree-exchange-correlation 
kernel, fHXC(ω) = fH + fXC(ω) where fH(r, r′) = 1/|r − r′| 
and

fXC[n0](r, r′, t − t′) =
δvXC[n](r, t)
δn(r′, t′)

∣∣∣∣
n=n0

 (9)

is the xc kernel, a functional of the ground-state density n0(r).
Equation (7) is proven by equating the density-response 

of the physical system to an applied external perturbation 
δvext(r, t) to that of the Kohn–Sham system under the corre-
sponding Kohn–Sham perturbation. The density–density 
response function χ(ω) contains complete information 
about the excitation energies ΩI and transition densities 
〈Ψ0|n̂(r)|ΨI〉, as evident from its spectral, a.k.a Lehmann, 
representation:

χ(r, r′,ω) =
∑

I

〈Ψ0|n̂(r)|ΨI〉〈ΨI |n̂(r′)|Ψ0〉
ω − ΩI + i0+

+ c.c.(ω → −ω),

 (10)
where n̂(r) =

∑
i δ(r − r̂i) is the density operator, ΩI =

EI − E0 is the excitation frequency of the Ith excited state, 
and the sum goes over all interacting states ΨI . The notation 
c.c.(ω → −ω) means the complex conjugate of the first term 
evaluated at −ω. TDDFT thus provides a route to calculating 
excitations and transition probabilities without having to solve 
the many-body problem: instead, one solves equation (7) for 
χ(ω).

There are two steps, and each step requires in practise 
an approximation. First, the ground-state problem is solved, 
yielding the occupied and unoccupied Kohn–Sham orbitals 
that live in the one-body potential vS[n0](r). Second, the xc 
kernel is applied, and this shifts and mixes the Kohn–Sham 
excitations, which are simple orbital-energy differences (sin-
gle excitations), to yield the true ones. These are often called 
dynamical corrections. If the exact ground-state xc potential 
and xc kernel were known (as they are in simple cases), this 
process would yield the exact response of the physical sys-
tem. In practise, approximations must be made for both, and, 
technically, the approximation used for the ground-state xc 
potential and that used for the xc kernel should be linked as 
they arise from the same perturbed Kohn–Sham potential. But 
in practise, the two approximations are often treated indepen-
dently. Almost always, an adiabatic approximation is used for 
the kernel, which renders the xc kernel independent of fre-
quency. This can be seen by the fact that in such an approx-
imation, vA

XC[n](r, t) depends only on n(t) at the present time, 
so the right-hand-side of equation  (9) becomes proportional 
to δ(t − t′) and its Fourier transform frequency-independent, 
f A
XC(r, r′,ω) = fXC(r, r′).

Typically, for finite systems, equation (7) is re-cast in the 
form of matrix equations  [27, 28]. The eigenvalues of the 
matrix

Rqq′(ω) = ω2
qδqq′ + 4

√
ωqωq′ f

qq′

HXC(ω), where (11)

f qq′

HXC(ω) =
∫

d3rd3r′φi(r)φa(r) fHXC(r, r′,ω)φi′(r′)φa′(r′), lie at  
the squares of the excitation energies, and oscillator strengths 

can be obtained from the eigenvectors. Here q = (i, a) rep-
resents a double-index, with i labelling an occupied orbital 
and a an unoccupied one. Different equivalent derivations and 
form ulations appear in [29, 30]; note that the derivation in 
[29] is valid only when an adiabatic approximation is assumed 
from the outset.

For molecules, the matrix formulation is usually used, 
while for solids with their continuous spectra, equation (7) is 
usually solved. Significant progress has been made for effi-
cient solution of the matrix equations, e.g. [31] achieves the 
same scaling and similar cost per excited state as a ground-
state calculation. One can also obtain linear response spectra 
in TDDFT via real-time propagation [32] under a weak per-
turbation: applying a δ-kick to uniformly stimulate all excita-
tions, and examining peaks of the Fourier-transformed dipole 
moment which lie at the resonant frequencies. In addition to the 
matrix formulation, this is available in codes such as octopus 
[33, 34] and NWChem [35, 36]. This can be computationally 
advantageous over the matrix formulation for large systems 
especially when a broad picture of the spectrum is of inter-
est, i.e. not just the lowest excitations. Finally, another form-
ulation to obtain response from TDDFT is the Sternheimer 
approach, also known as density functional perturbation the-
ory, or coupled perturbed Kohn–Sham theory, that operates 
directly in frequency-space but avoids the calculation of many 
unoccupied orbitals by instead considering perturbations of 
the occupied orbitals in frequency-space [37–39].

3. Charge-transfer excitations

Consider a charge-transfer excitation, where compared to 
the ground state, the excited state has a significant fraction 
of electron density transferred from one part of the molecule, 
the donor, to another part, the acceptor. In the large separa-
tion limit, it is straightforward to deduce that the exact low-
est charge-transfer excitation frequency of a neutral molecule 
must approach

ΩCT = ID − AA − 1/R (12)

where ID = ED(ND − 1)− ED(ND) is the first ionization 
energy of the ND-electron donor, AA = EA(NA)− EA(NA + 1) 
is the electron affinity of the NA-electron acceptor, and −1/R 
is the electrostatic correction that is lowest-order in the sepa-
ration R between the fragments after the charge-transfer. We 
will focus only on neutral molecules throughout this review. 
The following subsections will analyse what the TDDFT lin-
ear response formalism gives for such an excitation with the 
standard approximations, properties of the exact functional 
in TDDFT responsible for yielding the correct value, and the 
recent development of approximate functionals that have had 
some success in capturing these excitations in a number of 
cases.

3.1. Charge-transfer between closed-shell fragments

We first consider the case where the molecule consists of 
two closed-shell fragments at large separation, so that, in the 

J. Phys.: Condens. Matter 29 (2017) 423001
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Kohn–Sham description of the ground-state, each fragment 
has paired electrons doubly-occupying the orbitals of interest, 
which are localized on one fragment or another. As mentioned 
above, equations (7) and (11) show that TDDFT excitations 
are obtained from shifting and mixing single-excitations of 
the Kohn–Sham system via matrix elements of fXC. A long-
range charge transfer excitation is composed of Kohn–Sham 
excitations in which the unoccupied orbitals have only little 
spatial overlap with the occupied orbitals. Then, the matrix 
elements of the conventional approximate xc kernels that are 
relevant for this excitation vanish, and the TDDFT excitation 
energy reduces to the Kohn–Sham orbital-energy difference. 
This typically yields a drastic underestimate of the excitation 
energy, up to several eV, as was first observed in the literature 
in [40]. Several useful diagnostics of the expected accuracy 
of a given functional approximation have been used to gauge 
whether the result of an approximate TDDFT calculation 
cannot be trusted for this reason; of particular note are the 
Λ-index of [41] based on considering the overlaps of molecu-
lar orbital moduli, and more recently the ∆r-index, based on 
the charge-centroids of the orbitals involved in the transition 
[42]. The particle-hole map, related to the transition-density 
map, gives a direct visualization of the origin and destination 
of electrons and holes for a given excitation, so can indicate 
the role of charge-transfer for that excitation [43, 44].

To understand this underestimation further, consider the 
case where the charge-transfer excitation is dominated by a 
single excitation from occupied Kohn–Sham orbital on the 
donor, φD ,to an unoccupied orbital on the acceptor, φA. That 
is, there is negligible mixing with other Kohn–Sham exci-
tations (which happens, for example if the charge-transfer 
excitation energy does not lie close to any other excitation 
energy). Then, it is justified to take only the diagonal element 
in the matrix (11), yielding

ΩTDDFT
SMA ≈

√
ω2

q + 4ωq f qq
HXC(ω) (13)

where

f qq
HXC =

∫
d3rd3r′φD(r)φA(r) fHXC(r, r′,ω)φD(r′)φA(r′),

 (14)
and ωq is the Kohn–Sham orbital-energy difference, εA − εD. 
Equation (13) is often referred to as the ‘small matrix approx-
imation’ (SMA) [30, 45, 46], giving a diagonal correction 
to the Kohn–Sham excitation energy for any case (not just 
charge-transfer) when coupling to other excitations is assumed 
small, and it can be a useful diagnostic tool. If we assume the 
f qq
HXC correction is small compared to the Kohn–Sham excita-

tion energy, for example for weakly-correlated systems, then 
equation (13) reduces to the single-pole approximation (SPA) 
[26, 30, 45],

ΩTDDFT
SPA = ωq + 2f qq

HXC(ωq) (15)

Now we ask, if we were to use the exact ground-state xc 
functional and the exact xc kernel, how would equation (13) 
reproduce the exact charge-transfer excitation energy, equa-
tion (12)? For the lowest charge-transfer excitation, εA is the 

lowest unoccupied molecular orbital (LUMO) energy of the 
acceptor, and εD is the highest occupied molecular orbital 
(HOMO) energy of the donor, so

ωq = εA
L − εD

H = ID − AA −∆A
XC (16)

where the second equality uses the fact that in DFT with the 
exact ground-state functional, the HOMO energy is equal to 
minus the ionization potential while the LUMO differs from 
minus the affinity by the derivative-discontinuity [47–52], i.e.

I = −εH , while A = −(εL +∆XC). (17)

The derivative-discontinuity expresses the fact that 
the ground-state energy as a function of particle num-
ber M has a piecewise linear structure, with discontinui-

ties in the slopes at integer values N: ∆ = ∂E
∂M

∣∣
M=N+δ

− 
∂E
∂M

∣∣
M=N−δ

= I − A. Recognizing that the partial derivatives 

on the right are equal to functional derivatives with respect 

to the density, ∂E
∂M = δE[n]

δn(r)

∣∣∣
M

, and that all ground-state energy 

components are continuous except for the Kohn–Sham 
kinetic energy TS[n] and possibly the xc energy EXC[n], one 
deduces that ∆XC = ∆−∆S = εH(N + 1)− εL(N), and this 
underlies the relations of I and A to εH  and εL , respectively, 
in equation (17). ∆XC plays a critical role in obtaining accu-
rate band-gaps and band-structure from DFT and dissociation 
behaviour [49–56]. A useful note for later is that since the xc 
potential is the density-functional derivative of EXC[n], then a 
derivative-discontinuity in the latter imparts a spatially-uni-
form discontinuity in vXC[n](r) at integer values of the number 
of electrons. Using the convention that vXC(N) = vXC(N − δ), 
then if a fractional number of electrons is added to the system, 
the ground-state xc potential jumps up uniformly by ∆XC: 
vXC(N + δ)− vXC(N); this in turn imparts a discontinuity on 
the xc kernel [57, 58].

Comparing equations  (16) and (15) with equation  (12) 
we see that the exact f qq

HXC matrix element must provide the 
derivative-discontinuity correction to the affinity as well as 
the −1/R tail. Within the SPA, we find that the exact kernel 
matrix element in equation (14) must be

2f qq
HXC = ∆A

XC − 1/R (18)

in the large-separation limit. Because the donor and accep-
tor orbitals have an overlap that decays exponentially with 
donor-acceptor separation R, this means that the exact ker-
nel fHXC[n0](r, r′,ωq) must diverge exponentially with inter- 
fragment separation R (Note, this need not diverge with 
|r − r′| but, rather, diverges with R, the information about 
which is contained in the density-functional dependence).

The question then naturally arises: which approximate ker-
nels have the necessary divergence? We discuss below what 
happens with various often-used TDDFT approximations.

3.1.1. LDA/GGA (and corrections on top). It is clear from 
the analysis above that with a functional that depends only 
locally or semi-locally on the density, such as LDA or GGA, 
the fXC matrix element goes to zero exponentially in R, as 
the spatial-dependence of fXC(r, r′) cannot compensate the 
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exponential decays of the donor-acceptor orbital overlaps. 
Further, although the Hartree term has a long-range Coulom-
bic tail, the donor-acceptor overlaps still kill off the integral in 
equation (14). One obtains then ΩLDA/GGA = εA

L − εD
H, simply 

the Kohn–Sham orbital energy difference.
Not only are the derivative-discontinuity and −1/R tail 

missing, but moreover εD
H  within LDA/GGA is a severe 

underestimate of the true ionization energy (and also under-
estimates the LDA/GGA ionization energy as computed from 
total energy differences). This underestimate is because the 
xc potential falls off exponentially away from the atom since 
it is proportional to the local electronic density and gradients, 
instead of as −1/r as the exact potential does. The valence 
levels get pushed upward by the too-rapid fall-off, and hence 
the LDA/GGA HOMO eigenvalue is too small [50]. (It is in 
fact possible to extract derivative discontinuities from LDA 
and GGA using ensemble theory, as has been pointed out in 
[59, 60], but this is not how these functionals are usually used.)

This is what gives rise to the notorious underestimation of 
charge-transfer excitation energies in TDDFT when the tra-
ditional functionals are used [61–64]. Tozer showed that the 
error in these functionals tends to the average of the derivative-
discontinuities of the donor and acceptor in the limit of large 

separation [62], ΩLDA/GGA − ωexact ≈ − 1
2 (∆

D
XC +∆A

XC).
An early correction was presented in [61] (which was 

one of the first papers to point out the severe underestima-
tion LDA/GGA yield). Here, configuration-interaction singles 
(CIS), which captures the −1/R asymptotic behavior, is used 
to simply shift the local/semilocal DFT values. (CIS on its 
own, tends towards the HF orbital energy difference, which is 
generally much too large [65]). Reference [64] designed a ker-
nel to be applied for charge-transfer excitations, that switches 
on an asymptotic correction to ALDA when the diagonal cou-
pling matrix of equation (14) vanishes.

3.1.2. Exact exchange. Although the required diverging 
property of the xc kernel may seem tortuous, it is in fact con-
tained in one of the fundamental approximations in TDDFT, 
time-dependent exact-exchange (TDEXX). This was first 
shown by Ipatov, Heßelmann, and Görling [66, 67] by analyz-
ing the structure of the exact-exchange kernel in terms of the 
occupied and unoccupied Kohn–Sham orbitals and eigenval-
ues [68]. Hellgren and Gross [58, 69] later showed this from 
the many-body stand-point, and we will outline their argument 
here. TDEXX is perhaps the first approximation in TDDFT 
one might consider, given that it arises in first-order perturba-
tion theory in terms of the interaction, when the perturbation 
is done within the Kohn–Sham framework, i.e. maintaining the 
same density at each order in the perturbation. This is known 
as Görling-Levy perturbation theory [70] and reference [71] 
showed that, at least within the single-pole approximation, 
excitation energies obtained from TDEXX are equal to those 
from first-order Görling-Levy perturbation theory. That is [71],

2f qq
X (ωq) = 〈φa|Σ̂x − vX|φa〉 − 〈φi|Σ̂x − vX|φi〉

−
∫

d3rd3r′
|φa(r)|2|φi(r

′)|2

|r− r′|
.

 
(19)

where Σ̂x = v̂X
HF is the non-local Fock operator. This gives 

exactly the desired exchange correction to the Kohn–Sham 
charge-transfer excitation energy: Taking φi = φD

H and 
φa = φA

L , the first term gives ∆A
X
, the second term vanishes 

[47], and the third term is an electrostatic energy that goes 
like −1/R in the limit of large separation. Hence, within SPA,

ΩTDEXX = εA
L − εD

H +∆A
X − 1/R (20)

in the large-separation limit, and is expected to be close to the 
full TDEXX result. In weakly-correlated systems, ∆X can be 
a good approximation to the full derivative discontinuity ∆XC.

It is important to realise that the frequency-dependence of 
the kernel is critical here. The exact-exchange kernel must be 
evaluated at the Kohn–Sham charge-transfer energy differ-
ence to yield this correction. If instead f qq

X (ω = 0) is used, as 
in adiabatic exact exchange (AEXX), the correction vanishes 
as R → ∞. One finds that the AEXX kernel yields a correc-
tion to the Kohn–Sham excitation energy at small and inter-
mediate fragment separations but that it falls away to zero for 
larger separations.

Reference [58] argued that the underlying feature of the 
full non-adiabatic exact-exchange kernel that allows the finite 
correction is the derivative-discontinuity of the kernel with 
respect to the particle number: Just as the ground-state xc 
potential has a discontinuity if one adds a fractional number of 
electrons to the system as discussed above, the time-depend-
ent xc potential does too [57], and so its functional-derivative 
fXC(r, r′,ω) as well has a discontinuity and this is strongly 
frequency-dependent.

The lack of the particle-number discontinuity in a functional 
has been argued to be closely related to its self-interaction 
error [72]: this is the violation of the fact that for one-electron 
systems, the exchange-energy must exactly cancel the Hartree 
energy and the correlation energy must be zero. The self-inter-
action-corrected LDA (SIC-LDA), applied within a general-
ized TD optimized effective potential scheme [73], has been 
shown to produce reasonable charge-transfer energies [21]. 
The computational effort required has prevented this method 
from being more extensively explored.

3.1.3. Global hybrids. Global hybrid functionals combine a 
uniform fraction of Hartree–Fock exchange with a local or 
semilocal xc functional so the ground-state xc energy has the 
form:

Ehyb
XC = aXEHF

X + (1 − aX)E
LDA/GGA
X + ELDA/GGA

C (21)

where parameter aX is typically chosen as 1
4. The B3-LYP 

hybrid functional [74, 75], popular for molecules, involves 
three parameters and can be written in the form

EB3−LYP
XC = a0EHF

X + aXEGGA
X + (1 − a0 − aX)ELDA

X

+ acEGGA
C + (1 − aC)ELDA

C
 

(22)

The EHF
X  is the Hartree–Fock exchange energy expression 

evaluated on Kohn–Sham orbitals that are obtained via self-
consistent calculations using equations (21) or (22). The effec-
tive potential determining the ground-state Kohn–Sham Slater 
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determinant, is therefore non-local and orbital-dependent, 
as it includes a fraction of the Hartree–Fock potential along 
with a one-body term. In this sense, it steps out of the original 
Kohn–Sham framework, but instead fits into what is known 
as a ‘generalized Kohn–Sham’ framework [53, 56, 76–78]. 
A significant advantage is that the inclusion of a fraction aX 
of Hartree–Fock exchange means that the LUMO eigenvalue 
includes this fraction of the exchange-contribution to the dis-
continuity [53]. Also, with hybrids, the HOMO eigenvalue is 
a better approximation to the ionization energy than in LDA/
GGA, because the Kohn–Sham potential seen by the hybrid 
falls away as −aX/R instead of exponentially, closer to the 
exact −1/R behavior, and so it does not push up the HOMO 
level as much.

It is important to appreciate that even with aX = 1 and 
EC taken to zero, i.e. Hartree–Fock, this is not equivalent to 
TDEXX previously discussed. TDEXX still operates within 
the original Kohn–Sham framework (local one-body poten-
tial), and unoccupied eigenvalues represent excitations of the 
neutral system as their orbital equation sees an N-electron sys-
tem, while in Hartree–Fock the unoccupied eigenvalues rep-
resent approximate electron addition energy levels (affinities), 
since their orbital equation sees an (N + 1)−electron system. 
The latter point underlies why the LUMO-value in hybrid 
functionals includes a fraction of the derivative discontinuity 
a∆X.

So, even at the level of bare (generalized) Kohn–Sham 
energy eigenvalue differences, a hybrid will reduce the under-
estimation of the charge-transfer energies. Further, the fXC 
correction is modified to include the Fock-exchange [79], 
giving, for functional of equation (21), within the single-pole 
approximation (written for GGA to avoid clutter),

2f qq hyb
XC (ωq) =

∫
d3rd3r′φi(r)φa(r)

(
f GGA
C + (1 − aX) f GGA

X

)

× φi(r′)φa(r′)− aX

∫
d3r

∫
d3r′

|φi(r)|2|φa(r′)|2

|r − r′|
.

This equation shows that, when applied to the orbitals in the 
charge-transfer excitation, the asymptotic R-dependence of 
the charge-transfer excitation energy is partially captured as 
−aX/R due to the last term; as in the LDA/GGA case, the 
other terms vanish due to the exponentially small donor-
acceptor overlap, uncompensated by the LDA/GGA kernel. 
Unless one mixes in 100% Hartree–Fock exchange, the full 
−1/R tail will not be captured. TDDFT with a hybrid func-
tional thus reduces the LDA/GGA underestimation of the 
charge-transfer excitation energy by including a fraction of 
the derivative discontinuity in the orbital energy difference, 
and incorporating a scaled tail.

In fact the calculations of [2] that enlightened the dual 
fluorescence observed in DMABN (figure 1) used B3-LYP. 
The charge-transfer energies were not the focus of the study, 
and were likely underestimated (although not as much as if 
a GGA was used). Actually the calculations were performed 
in the gas phase while the phenomenon occurs in solvent 
which would lower the excitation energy, so the discrepancy 
in the electronic excitation energy does not appear as bad as it 

would if compared with experimental values in the gas phase. 
Excited state properties such as vibrational frequencies and 
force constants appear to be generally less sensitive and very 
close to experiment in this case, which enabled the mystery of 
the nature of the charge-transfer state and dual fluorescence 
mechanism to be solved.

Double-hybrid functionals that further mix in a perturba-
tive second-order correlation part to the GGA for correlation 
have also been explored for charge-transfer excitations [80]. 
Highly-parameterized functionals such as the M06-HF meta-
GGA hybrid [81] that includes 100% Hartree–Fock exchange, 
and MN15 [82] have also been developed, using more com-
plicated functional forms with many parameters fit to datasets.

3.1.4. Range-separated hybrids (RSH). The idea of devel-
oping a DFT around a range-separated interaction dates back 
to the mid-eighties [76, 77, 83] with the motivation to cap-
ture short-range dynamical correlation using local or semi-
local DFT while using wavefunction methods for long-range 
effects. Such functionals sometimes have an LC preface, for 
‘long-range corrected’. One splits the Coulomb interaction 
into a long-range and short-range term, for example

1
|r1 − r2|

=
erf(γ|r1 − r2|)

|r1 − r2|
+

1 − erf(γ|r1 − r2|)
|r1 − r2|

 (23)

where γ is a ‘range-separation parameter’.
The first term on the right survives at long-range but is 

killed off for small (r1 − r2) while the second term picks up 
at short range and dies off at long range (See figure 2), and γ 
determines the ‘range’ of the short/long parts; the larger the 
γ the faster the short-range part vanishes. The idea then is to 
use LDA/GGA exchange for the second term, which, at short-
range, benefits from the dynamical correlation contained in 
DFT and error cancellation between exchange and correla-
tion, while using Hartree–Fock for the long-range interaction 
that is poorly captured by local/semilocal approximations 
but where exchange dominates. The parameter γ determines 
how much Hartree–Fock gets incorporated; larger γ means 
more Hartree–Fock is built in. Usually correlation is treated 

Figure 2. Illustration of the effect of range-separation. The 
Coulomb repulsion 1/r  is shown in black, while its range-separated 
form of equation (23) is shown for two parameters: γ = 0.3 (blue 
and green) and γ = 0.9 (orange and red).
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semi-locally without range-separation. More general forms 
have also been explored, e.g. including some Hartree–Fock 
at both long and short-range (see shortly, and e.g. [84] for a 
review), range-separating the correlation also. As in the case 
of global hybrids, the approach formally lies within the gener-
alized Kohn–Sham framework [85].

Tawada et al in [86] realized that RSH’s would yield the full 
correct asymptotic −1/R-dependence for charge-transfer exci-
tation energies and, similar to global hybrids, would provide 
a discontinuity correction to the LUMO orbital energy as well 
as lowering the HOMO energy compared to the local/semilo-
cal value. They also found this functional improved Rydberg 
excitation energies and oscillator strengths. In fact, the excita-
tion energies in the DMABN example discussed earlier and 
in figure  1 were revisited with a range-separated functional 
in [87]. Yanai et al combined the idea of the range-separated 
hybrid with B3LYP [88, 89] in order to incorporate the good 
performance for atomization energies of B3LYP, developing 
the ‘Coulomb-Attenuated Method’-B3LYP (CAM-B3LYP), 
which is based on the 3-parameter separation:

1
|r1 − r2|

=
α+ βerf(γ|r1 − r2|)

|r1 − r2|
+

1 − α− βerf(γ|r1 − r2|)
|r1 − r2|

 (24)

where 0 � α+ β � 1, 0 � α,β � 1. Taking β = 0 and 
α non-zero reduces to a global hybrid, while taking α = 0 
and β = 1 yields the original RSH, but having both non-zero 
allows to include a (non-uniform) fraction of Hartree–Fock 
exchange everywhere. Only when the parameters are such that 
the long-range portion is not scaled, will the correct −1/R 
be reproduced. Sometimes, charge-transfer excitations are 
improved at the expense of worsening ground-state properties 
or local valence excitations, and the choice of the parameters 
can heavily sway results in different directions. Several other 
long-range corrected functional forms have been explored e.g. 
[90, 91] that mitigate these problems.

These methods clearly involve empirical parameters, usu-
ally fit to some training set, and then applied in a system-
independent way. For example, [86] used a value of γ = 0.33, 
chosen from fitting to equilibrium dimer distances. Typically 
γ assumes a value in the range of 0.3 − 0.5a−1

0 , but the ‘best’ 
value for γ can have a strong dependence on the system, and 
so sometimes a global hybrid is more reliable. It has also 
been argued that in fact γ itself is a functional of the density  
[92, 93] but when this is done, size-consistency is violated. 
What has become the most popular way to use an RSH without 
empiricism was pioneered by Baer, Kronik, and co-workers, 
and where the value of γ is tuned to satisfy an exact condition 
for the system of interest [85, 94–96]. In what is now known 
as ‘optimally-tuned RSH’, γ is chosen to minimize

∑
i=D(ND),A(NA+1)

|εγH,i + Eγ
i (Ni − 1)− Eγ

i (Ni)|, (25)

self-consistently fitting εD
H(ND) to the ionization-potential ID 

as determined by energy-difference calculations for the same 
functional and εA

L(NA) = εH(NA + 1) to the electron-affinity 
AA. When γ is tuned in this way, the RSH is able to yield not 
only good charge-transfer excitations but also good valence 

excitations [97]. To improve the accuracy of higher charge-
transfer excitations, a state-specific tuning has been suggested 
[98]. It has been argued that tuned RSH functionals tend to 
reduce the occurrence of triplet instabilities and generally 
improve triplet excitation energies [96, 99, 100] but it has 
also been shown that the tuning procedure leads to erratic 
zig-zagging potential energy surfaces for triplets and singlets 
which do not appear when the range-separation parameter is 
fixed [101]; also ground-state properties and binding ener-
gies can be significantly in error. This, and other problems, 
in particular size-consistency violation [96, 101] arising from 
system-dependence of the tuned range-separation parameter 
and hence of the functional means caution must be applied for 
general usage.

3.2. Charge-transfer between open-shell fragments

There is a fundamental difference between the Kohn–Sham 
description of a diatomic molecule consisting of open-shell 
fragments, and that of a molecule consisting of closed-shell 
fragments. In the former, the HOMO orbital is delocalized 
over both fragments, doubly-occupied by an up- and a down- 
spin electron, while in the latter the HOMO is localized on one 
of the fragments. This means that for the open-shell-fragment 
case, the Kohn–Sham wavefunction is fundamentally dif-
ferent than the true interacting wavefunction, which is close 
to a Heitler–London form. The Kohn–Sham ground-state is 
a Slater determinant, while in the open-shell-fragment case, 
the interacting wavefunction requires minimally two Slater 
determinant states to describe it; this is referred to as static, 
or strong, correlation, and small fractions of other determi-
nants also appear to account for dynamical correlation. For 
example, for two electrons in a (fictitious) diatomic molecule 
consisting of open-shell atoms, the spatial part of the exact 
wavefunction, in the limit of large separation, has the form 
Ψgs(r1, r2) = (φa(r1)φb(r2) + φb(r1)φa(r2)) /

√
2, with φa(b) 

being the orbital on atom a(b) respectively, while the Kohn–
Sham wavefunction has the form Φgs(r1, r2) = φ0(r1)φ0(r2) 

with φ0(r) =
√

(φ2
a(r) + φ2

b(r))/2. In contrast, in the closed-

shell fragment case, the interacting wavefunction can be 
well-approximated by a single Slater determinant (i.e. can be 
weakly-correlated), depending on the individual fragments, 
but certainly strong-correlation is not introduced by the pres-
ence of the other fragment, unlike in the open-shell-fragment 
case.

The static correlation in the Kohn–Sham system makes the 
analysis of charge-transfer excitations very different than in 
the previous section in several regards: the HOMO and LUMO 
are both delocalized over the whole long-range molecule with 
substantial overlap, their orbital energy difference tends to 
zero as the molecule stretches, and any single- excitation out 
of the HOMO is near-degenerate with a double-excitation 
where the other electron occupying the HOMO transits to 
the LUMO. In the following we summarize the analysis of  
[102, 103] for this case.

At the heart of any TDDFT excitation energy calculation 
are the ground-state Kohn–Sham potential and the xc kernel. 
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These both have unusual structure for a heteroatomic mol-
ecule consisting of open-shell fragments, arising from static 
correlation in the case of the exact functionals. The ground-
state Kohn–Sham potential, in the limit of large separation, 
looks locally atomic-like near each atom up to a spatial con-
stant: in the interatomic region a step and peak structure exists 
[50, 51, 104–106], with the step size of ∆I = |Ia − Ib| in the 
limit of large separation; see figure 3.

One way to understand why this structure exists is as fol-
lows. First, within each atomic region, the HOMO orbital of 
the long-range molecule must reduce to the respective atomic 
HOMO in order to produce the correct atomic density, so 
the potential in the Kohn–Sham equation must reduce to the 
respective atomic Kohn–Sham potential up to a uniform con-
stant (plus corrections that go as 1/R). Equating the HOMO 
eigenvalue of the molecule to the negative of the ionization 
potential, which, in the large-separation limit must be the 
smaller of the two ionization potentials of the individual frag-
ment, one deduces that the uniform constant in the atomic 

regions must be such to pull the atom with the larger ioniz-
ation potential up so that the individual atomic HOMO’s then 
align, i.e. by the amount ∆I . The step structure is in the cor-
relation potential and prevents unphysical fractional charges 
in the dissociated limit; approximations like LDA/GGA that 
are unable to capture this feature suffer from the problem of 
dissociation into fractionally charged atoms instead of neu-
tral ones (unless ensemble corrections are used with a slightly 
fractional electron number [107]). Reference [105] studied 
the interatomic-separation-dependence of the step and found 
that it marks the location of an avoided crossing between the 
ground and lowest charge-transfer excited potential energy 
surface, marking the point at which the molecule transitions 
from being a single system to two individual ones; the sharper 
the crossing, the more abrupt the transition from ionic to cova-
lent character, and the sharper the step.

What are the implications of the step structure for the xc 
kernel? The re-alignment of the atomic HOMO levels creates a 
near-degeneracy of the HOMO and LUMO orbitals of the mol-
ecule, which leads to a strong frequency-dependence of fXC 
throughout the entire frequency-range. The molecular HOMO 
and LUMO orbitals have an energy  difference that falls away 
exponentially with interatomic separation R: as the limit of infi-
nite separation is approached, φH(r) ≈ (φa(r) + φb(r))/

√
2 

has a bonding nature, while φL(r) ≈ (φa(r)− φb(r))/
√

2  has 
an antibonding nature, and their energy difference goes as the 
tunnel frequency through the step, ωH→L

S = εL − εH ∼ e−cR. 
This means that in equation (13) the bare Kohn–Sham frequency 
goes to zero with an exponential dependence on the intera-
tomic separation and it is up to the matrix element f qq

HXC(ω) to 
contain the entire charge-transfer energy, equation  (12). The 
SPA equation  (15) does not hold, since the fHXC-correction 
term is much larger than the ωq; the ‘backward’ Kohn–Sham 
excitation is just as important as the ‘forward’ one since the 
excitation energy is so small.

Before going further, it is worth pointing out why the 
HOMO-LUMO transition is actually the relevant one for 
the lowest charge-transfer excitation, given their delocalized 
nature. This can be seen by considering diagonalizing the full 
Hamiltonian in the minimal subspace given by the ground-
state (double-occupation of φH), a single-excitation to the 
LUMO, and a double-excitation to the LUMO. These three 
Kohn–Sham states are near degenerate, but the electron-elec-
tron interaction in the true Hamiltonian splits the degeneracy, 
and rotates the three to yield the Heitler–London ground-state, 
and two charge-transfer states φa(r1)φa(r2), φb(r1)φb(r2). In 
TDDFT, the true excitation energies are not obtained via diag-
onalization, but rather the effect of the mixing of the Kohn–
Sham excitations is hidden in the xc kernel. Reference [102] 
showed that by effectively solving for the xc kernel in equa-
tion  (7) and keeping only the charge-transfer excitations of 
the exact system and HOMO-LUMO transition Kohn–Sham 
system in χ and χS respectively,

f qq
HXC(ω) =

1
ωS

(
δ2 +

ω1ω2 − ω2
S

4
+

ω1ω2δ
2

ω2 − ω1ω2

)
 (26)

Figure 3. Kohn–Sham potential of a model heteroatomic diatomic 
molecule (such as LiH). Note that the Kohn–Sham potential (solid 
blue) does go back down to zero eventually on the right-hand-side 
(not shown); the external potential is shown as the black dashed line 
in the upper panel while the lower panel shows the vHXC component 
at R = 10 and in the limit of infinite separation. It can be shown 
that the step structure appears in the correlation component vC, and 
has a size ∆I  that ‘re-aligns’ the atomic HOMOs, whose energies 
are indicated as the thin horizontal black lines, in the limit of large 
separation. The lowest thin blue dashed horizontal line represents 
the Kohn–Sham ground-state eigenvalue (of the bonding type 
orbital), while the one lying just above it is the lowest Kohn–Sham 
excitation which is to an antibonding type of orbital. The highest 
thin blue dashed horizontal line represents the Kohn–Sham energy 
of an excited state in the donor well; as discussed in the text, double-
excitations are necessary for even a qualitatively correct description 
of both local and charge-transfer excitations in such a system.

J. Phys.: Condens. Matter 29 (2017) 423001



Topical Review

10

where ω1 = Ib − Aa − 1/R, ω2 = Ia − Ab − 1/R are the 
charge-transfer excitation energies from fragment b to frag-
ment a and vice-versa, δ = (ω1 − ω2)/2, and ωS ∼ e−cR is 
the Kohn–Sham HOMO-LUMO gap. This matrix element 
would scare away any adiabatic approximation: not only is it 
is strongly frequency-dependent, but further it diverges expo-
nentially with interfragment separation R. The exponential 
dependence on R was a feature also of the transfer between 
two closed-shells (section 3.1), and also shows up in homo-
atomic diatomic molecules such as H2 [108] where the sym-
metry disallows charge-transfer excitations (but one may 
speak of charge-transfer resonances).

The frequency-dependent divergence with respect to sepa-
ration was also seen in the exact-exchange kernel of [58] as 
discussed in the previous section, but here the effect is in the 
correlation potential. The strong frequency-dependence arises 
in this case because the charge-transfer excitations are a linear 
combination of single and double-excitations out of the Kohn–
Sham ground state [109]: in fact every single excitation, be it 
local or charge-transfer, out of the HOMO is near-degenerate 
with a double-excitation where the other electron occupying 
the HOMO transits to the LUMO at cost exponentially small 
in R [103]. That this must be the case is evident from figure 3 
in order to avoid states which have ‘half’ an electron excess 
or deficient on one atom. This endows the exact fXC with a 
strong frequency-dependence throughout.

Of course approximate functionals do not typically yield 
Kohn–Sham potentials with the step (and as a result, yield 
unphysical fractional charges upon dissociation). Nevertheless, 
the HOMO and LUMO orbitals are still near-degenerate (see 
figure 13 in reference [105] for LDA eigenvalues of LiH) so 
using an adiabatic kernel on top would still be problematic. 
A functional with explicit dependence on occupied and vir-
tual orbitals inspired by density-matrix functional theory, was 
shown in references [110, 111] to capture the step structure.

None of the functional approximations mentioned in sec-
tion  3.1 work for charge-transfer between open-shell frag-
ments. Static, or strong, correlation is well known to be a 
difficult regime for density functional approximations in the 
ground-state, but its implication for excitation energies and 
response are clearly also very challenging. In the ground-
state, spin-symmetry breaking, as occurs in a spin-unrestricted 
calcul ation beyond a critical interfragment separation, is 
sometimes a good resort to get good energies and was shown 
to also sometimes yield good charge-transfer excitations but 
only in cases where the acceptor contains effectively one 
‘active’ electron [112], e.g. via pseudo potentials.

4. Charge-transfer dynamics

As discussed in the introduction, for many applications a fully 
time-resolved description of the charge-transfer process is 
necessary, that goes beyond merely a calculation of the exci-
tation spectrum: an electron transferring between regions in 
space hardly falls under a perturbation of the ground-state. The 
theorems of TDDFT certainly apply in the non-linear regime, 
and the dearth of alternative methods that are computationally 

feasible for systems of more than a few electrons piques the 
interest in TDDFT arguably more than in the linear response 
case.

Of course one may make an expansion of the time-depend-
ent electronic wavefunction in terms of its excited states, 
obtaining these building blocks from linear-response theory, 
but ultimately to obtain the time-dependent coefficients in the 
expansion, properties not available from linear response the-
ory are required. When this process is driven solely by nuclear 
motion (sometimes called ‘charge separation), Ehrenfest or 
surface-hopping methods are often used, in which the nuclei 
are evolved via classical equations of motion either on a mean-
field surface (Ehrenfest), or on a Born-Oppenheimer surface 
stochastically switching between them (surface-hopping). 
Non-adiabatic couplings between the ground and excited 
states can be extracted from linear response theory, but those 
between excited states cannot be. They are available from 
quadratic response theory but recently it was shown that the 
adiabatic approximation yields unphysical divergences when 
the difference between the energies of the two excited states 
equals a ground-to-excited excitation energy [113–117].

Ehrenfest dynamics with TDDFT was used to simulate the 
charge-separation dynamics in a prototypical light-harvesting 
molecule, the caretenoid-porphyrin-C60 triad [118], and in a 
conjugated polymer-fullerene blend [119]. The effect of triad 
conformation (bent versus linear) that occur in solvents, has 
been studied in [120]. Supramolecular assemblies of donor-
acceptor dyads and triads are often considered as a model 
for the photosynthetic process of photoexcitation followed 
by charge-transfer between the components. The authors of 
[118] stressed the relevance of coherent coupled electronic 
and vibronic motion in driving the dynamics; the time-scales 
gave quite good agreement with experimental time-scales 
in this case, with an oscillatory electron transfer behavior 
of about the same period as the dominant carbon backbone 
vibration, although the simulated transfer fell shy of one elec-
tron. The LDA functional was used, but somehow the typi-
cal large underestimation of the charge-transfer energy did 
not impact much the performance in the dynamics, so the 
accuracy obtained is yet to be fully understood. In general, 
surface-hopping tends to be preferred over Ehrenfest dynam-
ics in modelling electron-nuclear dynamics in photo-induced 
dynamics [121–124], because of its ability to describe branch-
ing of the nuclear wavepacket and non-radiative relaxation. 
An analysis of the subtle issues associated with developing 
consistent mixed quantum-classical dynamics schemes is 
beyond the scope of the present review, and we focus here 
only on aspects directly related to charge-transfer. Metal-
ligand charge-transfer complexes in solution have been stud-
ied in surface-hopping, but, despite the name, these are quite 
short-range and the overlap between the donor and acceptor 
orbitals is appreciable [125, 126] so GGAs gave reasonably 
good results. Photo-induced proton-coupled electron transfer 
processes in photocatalytic activity on small TiO2 clusters has 
also successfully been studied, using global hybrids [127], 
shedding light on the catalytic rates and mechanisms. In gen-
eral, the underestimated energies of TDDFT for charge-trans-
fer excitations over long range in large systems using standard 
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xc approximations would create havoc in surface-hopping, 
as the potential energy curves will have incorrect slopes and 
relative gaps, yielding erroneous nuclear dynamics. Using 
range-separated hybrids for coupled dynamics gets rapidly 
too expensive; moreover, the functional must treat both local 
and charge-transfer excitations accurately to get the coupled 
dynamics correct.

Putting aside nuclei-mediated electron-transfer, we con-
sider now electron-transfer driven by an external field. In 
some situations the electronic response to the field is fast 
enough that the nuclear motion can be neglected during the 
charge-transfer process. But even when it cannot be, it is still 
important to know whether the approximations in TDDFT are 
able to accurately reproduce the electronic dynamics. Will 
ensuring that the approximations yield good linear response 
properties mean that they also reproduce the time-resolved 
charge-transfer process well? Studies in recent years have 
shown that unfortunately the answer to this question is no, and 
it appears that an xc potential functional with a non- adiabatic 
dependence on the density is needed. A dramatic example 
of the failure of functionals that give good charge-transfer 
excitation energies but poor dynamics is in figure  4, while 
the prognosis is more subtle for charge-transfer starting in an 
excited state in figure 5.

4.1. Non-adiabatic step features

Consider first driving an electron out of the ground-state of a 
long-range molecule to an excited charge-transfer state. If the 
molecule consists of open-shell fragments (e.g. LiH), then we 
expect from the outset that this is a challenge for approximate 
TDDFT functionals, given the problems with static correlation 
and the concomitant step in the initial potential and collapse in 
the charge-transfer excitation energy, discussed in section 3.2. 
Instead, however, we might hope that if the molecule consists 
of closed-shell fragments, then the functionals that give rea-
sonably good charge-transfer excitation energies may do a 

reasonable job with charge-transfer dynamics. This is unfor-
tunately not the case, as evident in figure 4. The model system 
there is a simple double-well with two electrons, whose exact 
xc potential may be found and so allowing a detailed analysis 
to understand what is going on.

Before doing so, we point out that reference [130] showed 
a similar failure of approximate functionals to charge-transfer 
on a real molecule, LiCN. This molecule was studied in earlier 
calculations using time-dependent configuration interaction 
[131] as a test system for laser-control of dipole-switching. 
In its ground-state the dipole moment of the molecule along 
its axis is relatively large, with ionic character at equilibrium 
geometry (Li+CN−). A laser pulse is applied perpend icular to 
the molecular axis, with a frequency resonant with a molecu-
lar transition to an excited state which has a relatively large 
perpend icular transition dipole with the ground-state, and itself 
has a dipole moment along the molecular axis quite different 
from, and opposite sign, to that of the ground state. (In fact 
there are two of these states, cylindrically symmetric around 
the axis). Hence one observes the dipole switch from one sign 
to the other when the resonant laser pulse is applied. Now, 
reference [130] asked whether the approximate functionals of 
TDDFT were able to reproduce this behavior, which would be 
very useful for single-molecule switch applications in molec-
ular electronics, requiring larger molecules for which wave-
function methods are computationally unfeasible. The result 
however was very disappointing; the authors found that nei-
ther semi-local nor hybrid functionals were able to capture the 
dipole switch at all, and, not so dissimilar to the model system 
in figure 4, the approximate functionals tracked the dipole for 
a short time, but finally simply oscillated near the initial value.

Returning to the model system, we now ask what does 
the exact xc potential look like during the dynamics? As the 
system begins in the ground-state, it is most natural to also 

Figure 4. Charge-transfer from a ground-state driven by a weak 
resonant field in a model 1D molecule whose potential is sketched 
on the lower left. (Details in [128]). The TDDFT approximations 
shown yield reasonable linear response excitation frequencies 
compared with exact (inset) but propagating with them fails 
miserably. Reprinted with permission from [128], Copyright 2013, 
American Chemical Society.

Figure 5. Charge-transfer from an excited state driven by a 
weak resonant field in a model 1D molecule (Details in [129]). 
The TDDFT frequencies shown are those for the charge-transfer 
transition, as computed from the initially excited state (see 
[129]), and the calculations in this figure from the approximate 
functionals are computed at these corresponding frequencies. 
Despite being very accurate, only EXX is able to transfer the 
charge, due to the spurious changes in resonant frequencies of the 
other approximations during the dynamics. Reprinted figure with 
permission from [129], Copyright 2015 by the American Physical 
Society.

J. Phys.: Condens. Matter 29 (2017) 423001



Topical Review

12

choose a ground-state for the Kohn–Sham initial state, which 
is uniquely given via ground-state DFT. The two Kohn–Sham 
electrons occupy the same spatial orbital, and, since the 
Kohn–Sham evolution is via a one-body potential, there is 
only ever one occupied orbital: Φ(x1, x2, t) = φ(x1, t)φ(x2, t). 
If the exact xc functional was used, then this orbital repro-
duces half the exact time-dependent density of the system:

|φ(x, t)|2 = n(x, t)/2. (27)

Thinking about the true evolution, this fact immediately sug-
gests a challenge for TDDFT in charge-transfer processes in 
closed-shell molecules: a single orbital must simultaneously 
describe an electron that gradually transfers over to another 
atom and one electron which stays in the donor! A conse-
quence of this is that the exact correlation potential builds up 
an interatomic step over time, as evident in figure 6. How we 
obtained these exact potentials will be explained shortly.

Although with some similarity to the step in the ground-
state potential of a heteroatomic molecule discussed above 
(figure 3), this step in the final charge-transfer state is, on the 
one hand, distinct in that it does not appear in the ground-
state of the molecule (top left panel in figure 6), and requires 
a non-adiabatic functional to fully capture—the AE approx-
imation underestimates its size, as shown in the lower panel. 
Arguments similar to those that were made for the size of 
the step in the ground-state potential of a molecule consist-
ing of open-shell fragments (section 3.1) can be made here 
to determine the size of the step in the exact potential in the 
excited charge-transfer state in the closed-shell fragment case, 
yielding

∆CT = |ID(ND − 1)− IA(NA + 1)| (28)

in the large-separation limit. However, not even the exact 
ground-state functional can capture this step correctly as seen 
by the red curve in the figure. This is the AE potential, defined 
in equation (6). One can prove, in the limit of infinite separa-
tion, that the step in the AE potential tends to the derivative 
discontinuity of the (ND − 1)-electron donor cation,

∆AE
CT = |ID(ND − 1)− AD(ND − 1)| (29)

The argument goes as follows [128]. Consider the terms on 
the right-hand-side of equation (6) for the system in its charge-
transfer excited state; assume that somehow the state is reached 
completely by some dynamics from the ground-state, e.g. a 
weak resonant laser field, which is then turned off, leaving the 
system in this stationary excited state. The first term, vex.gs

S , is 
the potential in which two non-interacting electrons have a 
ground-state whose density equals that of the charge-transfer 
excited state, n∗

CT, while the second term vex.gs
ext  is the potential 

in which two interacting electrons have this density. Note that 
although the density is that of an excited state of the interact-
ing system in the original potential vext, on the right-hand-side 
of equation (6) we are looking for the potentials in which it 
is a ground-state density (of a non-interacting and interacting 
system of two electrons, respectively); given that n∗

CT has no 
nodes, such potentials are well-behaved [132]. From this, one 
determines that vex.gs

S  must equal the exact KS potential, since 

the KS orbital must equal 
√

n∗CT(r)/2, yet this is exactly what 
the exact orbital of equation  (27) equals, once the charge-
transfer state is fully reached. Therefore the step in the first 
term of equations (6) is exactly ∆CT  of (28). Although the KS 
state reached in the time-evolution is a ground-state of the KS 
potential that is reached, this is certainly not the case for the 
interacting system, which truly goes from a ground-state to an 
excited state during the charge-transfer process. The potential 
vex.gs

ext  must equal the atomic potentials in the respective atomic 
regions, because the interacting ground-state wavefunction 
that has density n∗

CT has a Heitler–London form, with orbitals 
locally satisfying the respective atomic Schrödinger equation. 
But vex.gs

ext  cannot be simply the sum of the atomic potentials, 
i.e. the exact vext, because the ground-state of that potential 
has two electrons in the donor well. Instead it raises the donor 
well up by the smallest constant such that the ground-state of 

Figure 6. Top panel: Exact correlation potential (dotted blue 
line) and density (black) in resonantly-driven charge-transfer in a 
model one-dimensional molecule. The model consists of two soft-
Coulomb interacting electrons in a double well, with the centers 
of the wells R = 7 au apart, where the ground-state places both 
electrons largely on the left well. A weak field resonant with the 
lowest charge-transfer excitation is applied, so that after half a Rabi 
cycle one electron has transferred to the right well, as evident in 
the density dynamics shown. A step associated with charge-transfer 
builds up in the correlation potential over time, and superimposed 
on this is a dynamical step that oscillates on the time-scale of the 
applied field (Middle plot, Reprinted with permission from [128], 
Copyright 2013, American Chemical Society.). The optical period, 
Topt = 2π/ωopt = 56 au where ωopt = 0.112 au, the frequency of the 
lowest charge-transfer excitation, while the Rabi period, TR = 4845 au.  
The lower plot isolates the exact Hartree-xc potential in the 
final charge-transfer excited state, and also the AE one, which is 
also able to build up a step feature but it has the wrong size; the 
equations on the left give the values of the two steps in the limit of 
infinite separation (compare with lower plot of figure 3 for ground-
state step feature).
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the molecule has one electron in each well. One can deduce 
this constant has a value of ID(ND)− IA(NA + 1) [128], and 
so, putting the potentials in the two terms together on the 
right-hand-side of equation  (6), we see their steps subtract, 
and find the result of equation (29).

Therefore the best adiabatic approximation fails to fully 
capture the step in the final charge-transfer state, and most adi-
abatic approximations lack the spatial non-locality required to 
capture any kind of step. However the charge-transfer excited 
state is not even reached in the dynamics, as is clear from 
figure  4 for approximate adiabatic functionals, and we will 
see shortly also for propagation under the AE xc potential. 
One finds that the time-dependent adiabatic xc potential dif-
fers significantly from the exact one, which displays not just 
the step associated with charge-transfer process but also a 
dynamical step that appears generically in dynamics [6, 128, 
133, 134]. First, we explain how the exact time-dependent xc 
potential is found.

Finding the exact time-dependent exchange-correlation 
potential that reproduces a given density evolution n(r, t) 
is, in the general case, a complex numerical problem, but in 
the case of two electrons beginning in the ground state, it is 
relatively simple. Requiring the only occupied orbital φ(x, t) 
to reproduce the same density as the true system and its first 
time-derivative

vS(r, t) =
∇2√n
2
√

n
− (∇α(r, t))2

2
− ∂tα(r, t), (30)

where ∇ · (n(r, t)∇α(r, t)) = −∂tn(r, t). (31)

Then to obtain vXC, one would subtract the external potential, 
and the Hartree and exchange potential (which for two elec-
trons occupying the same orbital, is just −vH/2) Alternatively, 
an expression directly for the xc potential may be used  
[10, 132, 135, 136]:

∇ · (n∇vXC) =∇ ·
[1

4
(∇′ −∇)

(
∇2 −∇′2) ρ1c(r

′, r, t)|r′=r

+ n(r, t)
∫

nXC(r
′, r, t)∇w(|r′ − r|)d3r′

]
,

 (32)

where ρ1c = ρ1 − ρ1,S with ρ1(r
′, r, t) = N

∑
σ1..σN

∫
d3r2..d3

rNΨ
∗(r′σ1..rNσN ; t)Ψ(rσ1..rNσN ; t) is the spin-summed 

one-body density-matrix of the true system of electrons 
with two-body interaction potential w(|r − r′|), ρ1,S(r′, r, t) 
is the one-body density-matrix for the KS system, and 
nXC(r′, r, t) is the xc hole, defined via the pair density, 

P(r′, r, t) = N(N − 1)
∑

σ1..σN

∫
|Ψ(r′σ1, rσ2, r3σ3..rNσN ; t)|2 

d3r3..d3rN = n(r, t) (n(r′, t) + nXC(r
′, r, t)) . Equation (32) is  

a Sturm–Liouville equation for vXC that has a unique solution 
for a given boundary condition [10].

The potentials plotted in figure  6 used either of these 
expressions. For cases involving more than two electrons, or 
with two electrons in an initial Kohn–Sham state chosen to 
involve more than one orbital, an iterative method must be 
used to find the exact xc potential; references [134, 137–141] 
contain examples.

Using these equations  above, the exact xc potential was 
found during the charge-transfer induced by a weak field reso-
nant with the charge-transfer excitation energy. Superimposed 
on the gradually developing step that is associated with the 
transfer of charge, a ‘dynamical’ step appears, that oscillates 
with the field. This step appears generically in non-pertur-
bative dynamics, in the presence of a field, or in field-free 
dynamics of a non-stationary state, and represents a type of 
time-dependent screening that cannot be captured by any adi-
abatic approximation [6, 133, 134, 136]. In a decomposition 
of the exact potential into kinetic terms and interaction terms, 
the largest contribution to the step comes from the kinetic 
term.

4.2. The best that an adiabatic approximation can do

Although it completely misses the dynamical step, the AE 
approximation partially captures the step associated with the 
transfer of charge, as shown in the figures. This step is impor-
tant for ‘holding’ the charge in place once it has moved over, 
as is clear from the arguments in its derivation. Is this par-
tial step enough to at least qualitatively capture the dynamics 
and transfer the charge? To answer this, we would need to 
propagate using the AE xc potential, not just to evaluate it on 
the exact density which was done in the previous figures and 
analysis. This is a very intensive process numerically, as one 
has to find at each time step, the ground-state potential of an 
interacting system whose ground-state density is equal to the 
instantaneous density at each time; the calculation is par-
ticularly difficult to converge when the density is very small 
in some regions, as in the interatomic region. Instead, one can 
make use of an asymmetric two-site Hubbard model, which 
captures the essential physics of the charge-transfer dynamics 
but within a small Hilbert space such that the exact ground 
xc potential can be computed exactly numerically as a func-
tional of the site occupation difference [142–145]. One can 
fix the bias between the two sites, together with the hopping 
param eter and on-site interaction, such that in the ground-
state almost 2 electrons occupy one site (the donor) and the 
first excited state is a charge-transfer state that has almost 
one electron on each site. Plotting the site occupation number 
difference as a function of time, while the system is driven 
by a weak field resonant with the charge-transfer excitation 
energy, one finds the characteristic change in the site occupa-
tion number difference shown in figure 7, very similar to that 
in the dipole moment in the real-space model in figure 4, and 
EXX also behaves in a very similar way to that in the real-
space molecule. A self-consistent propagation using the AE 
xc potential begins promisingly, following the exact result for 
considerably longer than the adiabatic EXX approx imation, 
but ultimately turns around, well before one electron has 
transferred [143, 144], as shown in figure 7.

It is worth noting that the charge-transfer frequency was 
very well-predicted by the AE approximation in the model of 
[143, 144] in the cases where the initial ground-state consisted 
of closed-shell sites, while the AE charge-transfer dynamics 
was poor. The frequencies were also were quite reasonable 
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in the adiabatic approximations that yielded poor dynamics 
in figure 4. Obtaining accurate dynamics for more than just 
short times needs more than just a good calculation of linear 
response. When the linear response predictions are poor, the 
dynamics will be poor too, and this is illustrated in the right 
panel of figure 7 [143, 144] where the parameters of the asym-
metric Hubbard dimer were adjusted to model charge-transfer 
in a long-range molecule consisting of two open-shell frag-
ments. There, the initial ground state has close to one electron 
on each site and driving at the exact charge-transfer frequency 
with the exact functional transfers one electron to the other 
site so the site occupation number goes from close to zero to 
close to 2. The AE dynamics fails from the start, consistent 
with the fact that the AE frequency is a drastic overestimation 
of the true frequency: the bare KS frequency is almost zero 
due to the static correlation, while the AE kernel correction 
overshoots the exact frequency considerably [144].

4.3. Charge-transfer dynamics from a photo-excited state

As mentioned in section 4.1, it is perhaps expected that full 
charge-transfer out of a ground-state is challenging in TDDFT 
because of the restriction to a single-Slater determinant; a sin-
gle valence orbital must describe both the transferring electron 
as well as the one that remains. Although it sounds a bit odd, 

one could say that time-dependent static correlation builds up, 
as over the charge-transfer process the true system deviates 
increasingly from a single-Slater determinant. The complete 
failure of the AE approximation is perhaps less expected, 
given that the exact ground-state xc functional is able to cap-
ture step-like features in the correlation potential.

Instead, it would appear that charge-transfer from a locally-
excited state, as reached in an initial photo-excitation, would 
be an easier task for TDDFT functionals. The electron that 
transfers now has its ‘own’ Kohn–Sham orbital, not tied to 
an electron that remains, so the orbitals in principle need not 
become delocalized over time. There is the question of adi-
abatic TDDFT making errors from the very start, as this uses a 
ground-state xc functional to describe an initially excited state, 
however the error from this effect can be relatively small when 
the initial Kohn–Sham configuration is chosen close to that of 
the exact wavefunction [137, 146]. In fact, real simulations 
of photo-induced processes often begin with the Kohn–Sham 
system initially excited (e.g. [118, 147]), so investigating the 
exact description for such a case is very relevant.

In [129], charge-transfer from a locally-excited state of a 
long-range molecule was investigated with the help of a one-
dimensional double-well to compare the exact dynamics with 
approximate TDDFT ones. Figure 5 provides an illustration 
of this. An electron transfers over from the excited ‘donor’ to 
the acceptor, when a weak field resonant with the energy dif-
ference between the charge-transfer state and the local excita-
tion is applied, yielding a large change in the dipole moment. 
Exact exchange is able to capture this dynamics accurately, 
however other functionals failed, even when run at their 
respective resonant frequencies. The reason for this is that 
they violate an exact condition of TDDFT, which is a condi-
tion on the non-equilibrium density-response function, stating 
that the excitation frequency of a given transition is independ-
ent of the state around which the response is taken. Within the 
TDDFT non-equilibrium response formalism [129, 148–150], 
this requires a subtle cancellation between time-dependences 
of the Kohn–Sham response function and a generalized xc 
kernel, which is not respected by most approximations. For 
this particular case of two electrons occupying different spin–
orbitals (but not in the general case), exact exchange can be 
shown to satisfy this ‘resonance condition’, and therefore 
gives good dynamics. The ability of the functional to transfer 
the charge is directly related to its degree of violation of this 
condition when the charge-transfer is resonantly induced. In 
fact, the failure of the approximations in the case of charge 
transfer out of the ground-state can also be related to the viola-
tion of the resonance condition [129, 148]. When a ‘chirped’ 
laser is applied whose frequency is adjusted from time to time 
to be that of the shifting resonance of the approximation, more 
charge is transferred [148].

Driven dynamics is difficult, with or without charge trans-
fer, for approximations in TDDFT, because of the spurious 
shifting of the resonant frequency from violation of the reso-
nance condition. But, in many cases the charge transfer is not 
resonantly driven, and follows, for example, from the coupling 
with ionic dynamics as discussed briefly earlier. For example, 
in photovoltaic processes, the standard picture is that after the 

Figure 7. Site-occupation number differences ∆n (analogous to 
‘dipole moments’) for asymmetric Hubbard dimers when driven 
with a weak ‘field’ resonant with a charge-transfer excitation to 
the other site; the time is measured in units of 1/U, the Hubbard 
parameter. On the left, labeled ‘cs–cs’, the charge-transfer occurs 
between two closed-shells, i.e. the parameters of the Hubbard dimer 
are such that almost 2 electrons are localized on the right-hand 
site in the initial ground-state, and the charge-transfer excitation 
has almost 1 electron on each site; the black curve shows the 
site-occupation number difference as the charge transfers. The 
magenta curve is the result when running with the adiabatic exact 
exchange (AEXX) approximation, not dissimilar to the behavior 
in the real-space molecule of figure 4. The small Hilbert space of 
the Hubbard dimer allows a self-consistent calculation using the 
AE approximation (red) which gets a bit further, but ultimately 
fails also to transfer the charge. On the right panel, labeled ‘os–os’, 
the Hubbard parameters are adjusted so that the ground-state has 
one electron on each site (hence two open-shell sites), while the 
charge-transfer is to a state with two electrons on the right site. In 
this case, the AE fails from very early on, consistent with the AE 
charge-transfer frequency being a significant overestimate of the 
actual. The details of the parameters and model are given in [143]. 
Reprinted figure with permission from [143], Copyright 2015 by the 
American Physical Society.

J. Phys.: Condens. Matter 29 (2017) 423001



Topical Review

15

initial photo-excitation, the system evolves in a field-free way, 
with the electron migrating through the system as a result of 
various kinds of vibrational motion, that can be quite com-
plicated with many different aspects to consider, including 
relaxation, interface effects, thermal effects [123]. The impact 
of spuriously shifting resonances on the dynamics is less obvi-
ous, given that the electron transfer process does not directly 
depend on a resonant process, and that the ionic vibrations 
broaden their positions anyway. Still, this needs to be better 
understood, to decipher and interpret discrepancies between 
experiment and theory and have confidence in the theoretical 
predictions of future experiments.

5. Concluding discussion

There has been tremendous effort in confronting the chal-
lenge of describing charge-transfer excitations and dynamics 
using TDDFT in recent years. It is now well understood why 
these excitations are severely underestimated by conventional 
functionals, and users are aware to apply caution when com-
putational restrictions require them to use such functionals. 
Several more sophisticated functionals have been proposed 
and are now extensively in use for problems where charge-
transfer is important, notably the long-range corrected, or 
range-separated hybrid functionals. However the problem 
is not completely solved, as several aspects are not quite 
resolved, from the choice of empirical parameters in some, to 
size-consistency violation in others, to the dearth of approx-
imations that work for charge-transfer between open-shell 
fragments.

Charge-transfer dynamics present yet a more challenging 
problem for approximate functionals in TDDFT. Although 
much work has been done in recent years in illuminating why 
functionals that may provide accurate charge-transfer excita-
tion energies can yield terrible charge-transfer dynamics, and 
what are the essential features of the exact functional, there 
is, as of now, no good practical solution to the problem. In 
charge-transfer out of the ground-state, non-adiabatic step-
features in the xc potential that have a spatially-nonlocal- and 
time-non-local- dependence on the density play an important 
role in capturing the correct dynamics. Charge-transfer out of 
photo-excited states is at least conceptually easier, since the 
transferring electron is no longer ‘tied’ to one that remains. 
One however runs into the problem of spuriously shifting 
resonances, which creates havoc for resonantly-driven charge-
transfer, although its impact on charge-transfer driven by ionic 
motion is yet to be carefully gauged. Orbital-functionals may 
offer an avenue to build in the required non-local spatial- and 
time-density-dependence, but likely these must go beyond a 
mixing in of exact-exchange or Hartree–Fock, such as those 
motivated by the exact decomposition of the xc potential into 
kinetic and interaction components [6].

There are several glaring omissions in this review. For 
example, we have not discussed the problem of charge-trans-
fer in solvents [151–157]. We have also said nothing about 
oscillator strengths of charge-transfer excitations, which have 
been studied e.g. [158, 159], but generally have not garnered 

so much attention in the literature compared to the value of the 
excitation energies themselves. We also did not provide many 
‘numbers’, such as mean errors for a given functional for dif-
ferent classes of systems. We expect the progress in TDDFT 
to continue, and, together with the open issues discussed in 
this review, these problems will be at the forefront of density-
functional development in the coming years.
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