
Double excitations within time-dependent density functional theory linear response
Neepa T. Maitra, Fan Zhang, Robert J. Cave, and Kieron Burke

Citation: The Journal of Chemical Physics 120, 5932 (2004); doi: 10.1063/1.1651060
View online: https://doi.org/10.1063/1.1651060
View Table of Contents: http://aip.scitation.org/toc/jcp/120/13
Published by the American Institute of Physics

Articles you may be interested in
Long-range charge-transfer excited states in time-dependent density functional theory require non-local
exchange
The Journal of Chemical Physics 119, 2943 (2003); 10.1063/1.1590951

Density-functional thermochemistry. III. The role of exact exchange
The Journal of Chemical Physics 98, 5648 (1993); 10.1063/1.464913

Perspective: Fundamental aspects of time-dependent density functional theory
The Journal of Chemical Physics 144, 220901 (2016); 10.1063/1.4953039

Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory:
Characterization and correction of the time-dependent local density approximation ionization threshold
The Journal of Chemical Physics 108, 4439 (1998); 10.1063/1.475855

An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies
of large molecules
The Journal of Chemical Physics 109, 8218 (1998); 10.1063/1.477483

Excitation energies in density functional theory: An evaluation and a diagnostic test
The Journal of Chemical Physics 128, 044118 (2008); 10.1063/1.2831900

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/56140772/x01/AIP-PT/JCP_ArticleDL_110117/AIP-3075_JCP_Perspective_Generic_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Maitra%2C+Neepa+T
http://aip.scitation.org/author/Zhang%2C+Fan
http://aip.scitation.org/author/Cave%2C+Robert+J
http://aip.scitation.org/author/Burke%2C+Kieron
/loi/jcp
https://doi.org/10.1063/1.1651060
http://aip.scitation.org/toc/jcp/120/13
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.1590951
http://aip.scitation.org/doi/abs/10.1063/1.1590951
http://aip.scitation.org/doi/abs/10.1063/1.464913
http://aip.scitation.org/doi/abs/10.1063/1.4953039
http://aip.scitation.org/doi/abs/10.1063/1.475855
http://aip.scitation.org/doi/abs/10.1063/1.475855
http://aip.scitation.org/doi/abs/10.1063/1.477483
http://aip.scitation.org/doi/abs/10.1063/1.477483
http://aip.scitation.org/doi/abs/10.1063/1.2831900


Double excitations within time-dependent density functional
theory linear response

Neepa T. Maitraa)

Department of Physics and Astronomy, City University of New York and Hunter College,
New York, New York 10021

Fan Zhang
Department of Physics and Astronomy, Rutgers University,
Piscataway, New Jersey 08854-8019

Robert J. Cave
Department of Chemistry, Harvey Mudd College, Claremont, California 91711

Kieron Burke
Department of Chemistry and Chemical Biology, Rutgers University,
Piscataway, New Jersey 08854

~Received 24 November 2003; accepted 8 January 2004!

Within the adiabatic approximation, time-dependent density functional theory yields only single
excitations. Near states of double excitation character, the exact exchange–correlation kernel has a
strong dependence on frequency. We derive the exact frequency-dependent kernel when a double
excitation mixes with a single excitation, well separated from the other excitations, in the limit that
the electron–electron interaction is weak. Building on this, we construct a nonempirical
approximation for the general case, and illustrate our results on a simple model. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1651060#

I. INTRODUCTION

Ground-state density functional theory~DFT! is an effi-
cient and popular calculational method in solid-state physics
and quantum chemistry.1 The one-to-one mapping between
densities and potentials gives rise to a Kohn–Sham~KS!
system of noninteracting electrons, whose equations can be
solved much faster than the fully interacting Schro¨dinger
equation, and which yields in principle all the properties of
the true interacting system.2,3 In practice, approximations
must be made for the unknown exchange–correlation~xc!
energy, and recent years have seen the development of in-
creasingly accurate functionals,4–6 applied to increasingly
complex systems.7 Time-dependent DFT~TDDFT! is an ex-
tension of the ground-state theory to time-dependent
potentials.8 Today this is most widely used in the linear re-
sponse regime, where excitations and oscillator strengths of
atoms, molecules, and solids are calculated. The excitations
of the ground-state KS system are not those of the true sys-
tem, but in principle, all excitations of the system may be
obtained exactly from them using the xc kernel through an
integral equation,9 or in a matrix formulation.10 The xc
kernel describes the change in the time-dependent xc
potential when a perturbation is applied to the system,
f XC@n0#(r ,r 8,t2t8)5dvXC(r t)/dn(r t8)un0

; its Fourier

transform to the frequency domain is what is needed for
these calculations. Alternatively, one may obtain the excita-

tion energies from the Fourier transform of a real-time cal-
culation where the system is subjected to a weak
perturbation.11–13

In any of these schemes an adiabatic approximation is
usually used, in which the kernel is local in time~or, in the
frequency domain, frequency-independent!; most often it is
simply the functional derivative of the ground-state xc po-
tential used in the calculation of the bare KS transitions. The
matrix formulation of TDDFT with an adiabatic functional
has been programmed in standard quantum chemical codes,
leading to hundreds of calculations of excitations~see, e.g.,
Ref. 14 for many references!. In many cases, the transition
frequencies are remarkably accurate. However the errors are
generally not well understood~although, see Ref. 15 for
some recent progress!. The accuracy of the ground-state
functional used, especially its asymptotic behavior, has been
explored in, for example, Refs. 16 and 17, but much less is
known about the validity of the adiabatic approximation for
the xc kernel;18–21 this understanding is needed in order for
TDDFT to be used for calculations of excited states with as
much confidence as DFT is used for ground-state properties.

This paper concerns the TDDFT treatment of double ex-
citations, an issue of great practical importance in quantum
chemistry, and yet one that has been puzzled over and not
well understood.22–25A natural approach is to study higher-
order response,26 but this is rather cumbersome. The need to
understand the role and importance of double excitations is
not merely of academic interest. The low-lying electronic
states of many conjugated molecules exhibit significant
double excitation character in wave function
treatments.23,24,27–30A classic example is the family of poly-a!Electronic mail: nmaitra@hunter.cuny.edu
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enes. The lowest-lying singlet state of all polyenes is not a
simple one-electron excitation from the highest occupied to
the lowest unoccupied orbital of the ground state, but has a
large zeroth-order contribution from a doubly excited deter-
minant. The two-photon absorption characteristics of these
systems support an interpretation of these states as largely
‘‘doubly excited.’’31 As discussed in Sec. II, exact linear re-
sponse TDDFT in principle produces transitions to excita-
tions of any number, but the integral~or matrix! equations
yield simple corrections to the KS response, which contains
poles at only single excitations. How are the ‘‘extra’’ poles of
the true system generated in the formalism? We show that
the exact xc kernel has strong frequency dependence in the
vicinity of double excitations that enables TDDFT to gener-
ate more poles and include transitions to states with double
excitation character. These cannot be captured when an adia-
batic approximation is used.

In Sec. III, we derive the exact frequency-dependent xc
kernel within a dressed single-pole framework, for the fol-
lowing case: when one double-excitation mixes with a
nearby single excitation, well separated from all the other
excitations in the system, in the limit that the electron–
electron interaction is weak. We build on this result to con-
struct a nonempirical approximation that goes beyond the
weak-interaction limit: this, and its generalization to cases
when more than one single excitation is nearby,32 gives a
practical scheme for including double excitations in TDDFT
linear response. We discuss when an adiabatic TDDFT
~ATDDFT! calculation provides a reasonable approximation
for states with a double excitation component. Although we
focus on double excitations, since these are of most practical
interest, the same ideas can be applied to excitations of any
number. Our results are demonstrated on a simple model
system in Sec. IV: two fermions in a one-dimensional har-
monic well interacting via a delta-function repulsion.

II. THEORY

Given a system ofN interacting electrons, the ground-
state KS potential is defined as the one-body potential in
which N noninteracting electrons live so as to produce the
exact ground-state densityn0(r ) of the interacting system.
Excitations of this KS system arenot however those of the
interacting system. Instead, the linear response theory of
TDDFT provides a route to obtaining excitation energies and
oscillator strengths of the interacting system, from knowl-
edge of only the ground-state KS potential.

Applying a small perturbing potential to a ground state,
and measuring the density response defines the susceptibility,
or density–density response function,x@n0#(r ,r 8,t2t8)
5dvext(r t)/dn(r 8t8)un0

. The susceptibility of the true inter-
acting system is related to that of its noninteracting
Kohn–Sham counterpart, xs@n0#(r ,r 8,t2t8)5dvs(r t)/
dn(r 8t8)un0

, through an integral equation, written in the fre-
quency domain as9

xJ21~v!5xJs
21~v!2 fJHXC~v!. ~1!

Here the Hartree-exchange–correlation kernelfJHXC(v) is
the sum of the Hartree kernel and the xc kernel defined ear-

lier, f HXC@n0#(r ,r 8,v)5 f H(r ,r 8)1 f XC@n0#(r ,r 8,v); the
Hartree kernel is the density-functional-derivative of the
Hartree potential,f H(r ,r 8)51/ur2r 8u. Transition frequen-
cies of the true system lie at the poles ofx~r ,r 8,v!, and
oscillator strengths may be obtained from the residues. The
poles ofxs(r ,r 8,v) are at the KS single excitations; these
are shifted to the true excitations through the action of the
Hartree-exchange–correlation kernel. So, Eq.~1! enables us
to obtain the interacting excitation energies and oscillator
strengths from the KS susceptibility and the Hartree-
exchange–correlation kernel. In principle, the exact spec-
trum of the interacting system is obtained; in practice, ap-
proximations must be made for~a! the xc contribution to the
ground-state KS potential, and~b! the xc kernelf XC(v).

In the Lehman representation,

x~r ,r 8;v!5(
I

H FI~r !FI* ~r 8!

v2v I1 i01
2

FI* ~r !FI~r 8!

v1v I1 i01J , ~2!

where,FI(r )5^0un̂(r )uI & with n̂(r ) being the one-body den-
sity operator,I labels the excited states of the interacting
system, andv I is their transition frequency. This expression
also holds for the KS susceptibility where the excited states
are excited Slater determinants and the transition frequencies
are orbital energy differences.

Due to the one-body nature of the density operatorn̂(r )
in the numerator,xs has poles only atsingleKS excitations.
For the interacting system, where exact eigenstates may be
mixtures of single, double, and higher-multiple excitations,
the susceptibility contains poles at states dominated byany
number of excitations. So, in the bound spectrum,xs has
fewer poles thanx. The failure of ATDDFT to generate more
poles and produce double excitations is most easily seen in
Casida’s matrix formulation.10 Let q5( i ,a) be an index rep-
resenting a single excitation: a transition from an occupied
KS orbital f i to an unoccupied onefa , and letvq be the
difference in the KS orbital energies,vq5ea2e i . Then, the
squares of the true transition frequenciesV I5v I

2 are the
eigenvalues of the matrix

Ṽ~v!qq85dqq8vq
214Avqvq8@qu f HXC~v!uq8#, ~3!

where

@qu f HXC~v!uq8#5E dr dr 8f i* ~r !fa~r !

3 f HXC~r ,r 8,v!f i 8~r 8!fa8
* ~r 8!. ~4!

Oscillator strengths of the true system are related to the
eigenvectors.10 Because the matrix in Eq.~3! spans only the
KS single excitations, iff HXC is frequency independent, the
number of eigenvalues of the matrix is equal only to the
number of single excitations: multiple excitation information
cannot be gained in the adiabatic approximation.22

Before resolving this problem we note that a useful ap-
proximation for the true transition frequencies is obtained by
expanding the linear response equation, Eq.~1!, around each
KS transition frequency.9,33 This ‘‘single pole approxima-
tion’’ ~SPA! can alternatively be derived from neglecting the
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off-diagonal terms in Casida’s matrix and assuming the cor-
rection due tof HXC is small compared with the bare Kohn–
Sham value. One finds

v5vq12@qu f HXC~vq!uq#. ~5!

The SPA corrects the single excitations of the KS system
toward the true ones, and, in many cases, especially those of
atoms and molecules where the transitions are ‘‘well
separated,’’15 the SPA value lies very close to the full
TDDFT value.

Consider the situation of a KS single excitation,f i

→fa , of frequencyvq5ea2e i , close to a double excita-
tion, and well separated from all other levels. Let the true
excitations,Ca , Cb , near this frequency be mixtures of the
single and double, such that as the electron–electron interac-
tion strengthl→0,

Ca5mFD1A12m2Fq ,
~6!

Cb5A12m2FD2mFq , 0,m,1,

whereFq and FD are the wave functions of the KS single
and double excitations, respectively. The fractionm deter-
mines how much double excitation character the true excita-
tions have: form2.1/2, we may say thatCa(b) is predomi-
nantly double~single!, and vice-versa. We wish to construct
the exact xc kernel at frequencies near this multiplet. For
frequencies nearvq , the Lehman sum inxs is dominated by
Fq :

xs~r ,r 8;v!'
A~r ,r 8;v!

v2vq
, ~7!

where the matrixA(r ,r 8;v) is only very weakly frequency
dependent: A(r ,r 8;v)5f i* (r )fa(r )f i(r 8)fa* (r 8)1O(v
2vq). For the interacting system atv nearvq ~andl→0!,

x~r ,r 8;v!'A~r ,r 8;v!S 12m2

v2va
1

m2

v2vb
D . ~8!

Both interacting states in the multiplet contribute tox,
whereas only the single excitation of the KS multiplet con-
tributes toxs , as discussed earlier. Note that Eqs.~7! and~8!
give the behavior of the exact susceptibilities at frequencies
nearvq . The oscillator strength of the KS single excitation
is shared between the two interacting levels, in a ratio deter-
mined by how much double excitation is mixed in@see Eq.
~8!#, with the predominantly single state being brighter. We
now define adressedSPA ~DSPA! as

v5vq12@qu f HXC~v!uq#, ~9!

where here frequency dependence is retained in the xc kernel
@cf. Eq. ~5!#. Using Eq.~1! in the DSPA Eq.~9!, we write

v5vq12~@quxs
21uq#2@qux21uq# !. ~10!

Substituting now Eqs.~7! and ~8!, and requiring that the
solutionsv equal the true interacting frequenciesva andvb ,
determines that the matrix element @quAuq#
[* dr dr 8A(r ,r 8,v)f i* (r )fa(r )f i(r 8)fa* (r 8)52. Equa-
tion ~10! then tells us that for frequencies nearvq , f HXC has
frequency dependence given by

2@qu f HXC~v!uq#5~v̄2vq!1
v̄8v̄2vavb

~v2v̄8!
, ~11!

wherev̄(v̄8) averages the true excitations weighted toward
the predominantly single~double! excitation:

v̄85m2va1~12m2!vb ,
~12!

v̄5~12m2!va1m2vb .

Equation~11! is exact: it shows the behavior of the exact xc
kernel as a function of frequency, at frequencies nearvq ,
when a double excitation interacts with an otherwise isolated
single. This is illustrated in Fig. 1. The first term on the
right-hand side of Eq.~11! is frequency independent and de-
scribes exchange and a frequency-averaged correlation con-
tribution; it is of the order of the interaction strengthl ~and
higher!. The second term contains the rest of the correlation
effects, and is of orderl2 and higher: this is strongly fre-
quency dependent.

ATDDFT approximates only the first term in Eq.~11!: at
best, it yields the weighted average toward the state of pre-
dominantly single excitation character,v̄. For states that in-
clude only a small fraction of double excitations, ATDDFT
performs well but as the double excitation component in-
creases, it begins to deviate. For example, if the two levels
are 50:50 mixtures of single and double, then ATDDFT gives
one energy approximately halfway between the true energies.
If the true energies are close then ATDDFT will appear to
give a good estimate for the state which has significant
double excitation character, just because it is close to the
single-dominated state. However, when there is strong mix-
ing and the levels are not close to each other, then ATDDFT
does not give accurate results for either excitation. Use of
this model provides a better understanding of the results in
Refs. 23 and 25.

The frequency dependence of Eq.~11! is a central result
of this paper: substituting it in the DSPA Eq.~9! recovers~by
construction! the exact interacting transition frequencies of
states that are mixtures of a single and a double. Equation
~11! shows the frequency-dependent behavior that the exact
xc kernel must have when a double excitation is close to a

FIG. 1. Frequency dependence near a double excitation~see the text!: Near
a single excitation,xs

21(v) ~upper dashed line! has one zero at the KS
transitionvq , which an adiabatic kernelf HXC

A shifts to v̄ @Eq. ~12!#. Fre-
quency dependence of Eq.~11! gives the exactx21(v) ~solid line! two
zeroes at the transition frequenciesva ,vb of the true mixed single and
double states.
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single excitation, well separated from all others. We next
derive the xc kernel for this situation, to be used in the vi-
cinity of these states, that uses only input from an adiabatic
TDDFT calculation and becomes exact in the weak-
interaction limit.

III. THE FREQUENCY-DEPENDENT KERNEL: WEAK
INTERACTION LIMIT AND BEYOND

Consider a situation where one has a KS singly excited
stateFq and a doubly excited stateFD much closer in en-
ergy to each other than to all the other states. In terms of the
KS single-particle orbitals,Fq is a Slater determinant replac-
ing one orbitalf i occupied in the ground state with an un-
occupied onefa . FD replaces two orbitals occupied in the
ground statef j , fk with two unoccupied,fb , fc . The
orbital energies are such thateb1ec2e j2ek'ea2e i .

We shall now derive, in three steps, a nonempirical ap-
proximation for the frequency-dependent xc kernel that cap-
tures both the interacting states which are mixtures of the KS
double and single states. Our result is exact in the weak-
interaction limit.

~i! Diagonalizing the Hamiltonian in this 232 block, we
find

E5Hqq1
uHqDu2

E2HDD
, ~13!

where Hqq5^FquHuFq& is the expectation value of the
HamiltonianH5T1Vee1Vext taken in the KS singly excited
stateFq . Here,T is the kinetic energy operator,Vee is the
two-body electron–electron interaction (1/ur12r2u), andVext

is the external potential on the electrons due to the nuclear
attraction. SimilarlyHDD is the expectation value taken in
the doubly excited state.HqD is the matrix element
^FquHuFD&. ~Note that if a double excitation mixes strongly
with several singles,32 one would fold into Eq.~13! the row
and column of the double into the basis spanned by the
singles: this amounts to a ‘‘partitioning’’ technique known in
configuration-interaction methods34.!

This gives the exact energies when the single and double
pair are truly isolated from all the other excitations in the
system. It also gives theexactenergies when the pair is well
separated~albeit not infinitely so! from the other excitations
in the limit of weak electron–electron interaction strength
l→0: in this limit, the matrix elements are those of theT
1l(Vee2vH2vX), wherevH is the Hartree potential, and
vX is the exchange potential. In that case, Eq.~13! agrees
with Görling–Levy perturbation theory35–37when applied to
near-degenerate states.38

~ii ! SubstitutingE5v1H00 in Eq. ~13!, whereH00 is
the expectation value of the Hamiltonian in the KS ground
state, then yields an expression for the transition frequency.
For consistency,H00 is subtracted rather than the true
ground-state energy so as not to unbalance the errors arising
from correlation resulting from the original truncation ofH
in the 232 basis. This would give

v5~Hqq2H00!1
uHqDu2

v2~HDD2H00!
. ~14!

~iii ! Finally we now replace the frequency-independent
term by the SPA, using an adiabatic kernelf XC

A ,

Hqq2H00→vq12@qu f H1 f XC
A uq#,

wherevq5ea2e i and @qu f uq# is defined as in Eq.~4!. In
this way we recover the exchange–correlation of ATDDFT
in the limit of weak coupling to the double excitation. We
thus obtain an expression for the xc kernel for frequencies
nearvq , of the form of the DSPA Eq.~9!, with

2@qu f XC~v!uq#52@qu f XC
A ~vq!uq#1

uHqDu2

v2~HDD2H00!
.

~15!

This is the second main result of this paper. It is exact for
well-separated poles in the weak-interaction limit and there
are no empirical parameters. The kernel of Eq.~15! is to be
used as ana posteriori correction to ATDDFT: one would
first perform a TDDFT calculation using an adiabatic kernel,
then scan the KS single excitations to see if the sum of any
two lies close to any of the singles. If so, one would re-
compute the transition frequencies only of this particular pair
using Eq.~15! in Eq. ~9!. In another paper, we will show how
this idea may be generalized to the case where more than one
single excitation interacts with the double excitation;32 we
are thus able to capture the significantly doubly excited
21 Ag states of butadiene and hexatriene.

IV. DEMONSTRATION ON A SIMPLE MODEL

Here, we demonstrate our results on a simple, exactly
solvable model system: two one-dimensional fermions in a
parabolic external potential, interacting via a delta-function
repulsion of strengthl:

H52
1

2 S d2

dx1
2

1
d2

dx2
2D 1

1

2
k~x1

21x2
2!1ld~x12x2!.

~16!

Transforming to center of mass and relative coordinatesR
5(x11x2)/2, u5x12x2 , the Schro¨dinger equation de-
couples into two separate equations: that inR is a simple
harmonic oscillator, and that inu can be solved numerically.
The exact eigenstates are characterized by the quantum num-
bers of excitation in theR and u coordinates,$J j% respec-
tively. Note that the energy of any pureR excitation$J0% is
given by the harmonic oscillator expressionAk(J11/2); that
for a pureu excitation$0 j % is larger thanAk( j 11/2) due to
the inter-particle repulsion. We consider here only singlet
states, which meansj is even~since with j odd, the spatial
state is antisymmetric!. The multiplet structure of the levels
is found by grouping together the singlet states that are de-
generate when the interaction is turned off~l50!. In the first
column of Fig. 2, we plot the transition frequencies to the
lowest five excited states,~$10%,$02%,$20%,$12%,$30%!, for inter-
action strengthl50.2.

From the exact ground-state density, we find the exact
KS potential by inverting the KS equation for the two elec-
trons; in the ground state they both occupy the lowest spatial
orbital. We solve for all the excited KS orbitals numerically;
the frequencies to these levels are shown in the second col-
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umn in Fig. 2. The solid lines correspond to single excita-
tions where, in ascending order, the first, second and third
excited KS orbital are singly occupied. The dashed lines are
double excitations: the lower dashed line is when both the
fermions occupy the first excited orbital and the higher
dashed line is when both the first and second excited orbitals
are occupied. The dashed lines do not appear in the KS linear
response as discussed earlier. Thetrue levels in the second
and third excited multiplets are thus mixed single and double
excitations.

The third column contains the results from an adiabatic
SPA calculation. Because the interaction strengthl is small,
we approximatef XC by exact exchange, neglecting any cor-
relation (f X is of the order ofl, but f C is of the order ofl2).
For two electrons,

f HXC
A ' f HX5

1

2
f H5

l

2
d~x12x2!. ~17!

The SPA using this kernel is almost exact for pure singles,
because the interaction is weak and KS multiplets are well
separated, as demonstrated by its accuracy for the first ex-
cited state.

The SPA fails for the second and third excited multiplets
due to the mixing of the KS single and double in each case,
producing only one level in each multiplet. The interaction
couples each pair of KS states in the multiplet. Consider the
second excited multiplet, containing two KS states: a single
excitation into the second excited KS orbital, and a double
excitation into the first excited KS orbital. The interaction
transforms each into a 50:50 mixture of a single and a
double, in thel→0 limit. Only one level, which approxi-
mates the weighted averagev̄ @Eq. ~12!# can be obtained
using ATDDFT, as shown here in the SPA column: this level
lies almost in the middle of the two true levels (m250.5).
Our DSPA of Eq.~15! in the fourth column recaptures both
levels, approximating the true levels closely. The third mul-

tiplet contains a KS single excitation into the third excited
KS orbital, and a double excitation into the first and second
KS orbitals. A weak interaction couples the single excitation
with the double, producing one state,$30%, of 1

3:
2
3 mixture of

single to double, and the other state,$12%, of 2
3:

1
3 mixture. The

SPA yields one state of frequency approximatingv̄ with m
51/A3. Again, our DSPA recovers both of the true levels
very accurately.

In this example, we chosel!1 to ensure that the system
is weakly correlated, and that perturbation theory is accurate.
The important point of our results is that DSPA provides as
accurate results for the mixed states as ATDDFT does for
single excitations. In fact, asl→0, both become exact in
their own domains, but only DSPA can accommodate double
excitations. Thus DSPA is the correct generalization of
ATDDFT to include mixtures of single and double excita-
tions.

V. DISCUSSION AND CONCLUDING REMARKS

In recent work24 transitions to states of significant
double-excitation character in linear polyene oligomers were
found to be better approximated using ATDDFT than in a
configuration-interaction singles calculation. It was also rec-
ognized there that the calculations underestimated the lowest
singlet single excitation and results were basis dependent.
Our results show the severe frequency-dependence in the xc
kernel that is needed to yield a consistent treatment of exci-
tations in this system. We have tested our approximation on
the lowest excitations of butadiene and hexatriene,32 produc-
ing much improved~and consistent! transition frequencies
for the lowest excitations.

In summary, in order to describe states of double excita-
tion character accurately, frequency dependence is essential
in the exchange–correlation kernel of TDDFT. We have
shown exactly what this frequency dependence is in the vi-
cinity of a double excitation mixing with a single excitation
and derived, and successfully tested, an approximation for it.
It is proposed that future calculations could proceed as fol-
lows: ~i! solve the linear response equations using an adia-
batic kernel,~ii ! determine whether double excitations mix in
by, for example, scanning the KS single excitations to see if
the sum of any two of them lies close to any of them, and
~iii ! then apply our DSPA correction@Eq. ~15! in Eq. ~9!# just
to the single that is coupled to the double. This should pro-
vide accurate approximations to states of double excitation
character, when a KS double mixes closely with one single,
and is well separated from the other levels~cf. conditions in
Ref. 15 for the SPA!, while leaving the treatment of largely
single excitation states unchanged from ATDDFT. Although
presented here in a single-pole framework, our kernel can be
generalized to the case when several single excitations lie
close to and mix with a double.32
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