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All-electron GW methods implemented in molecular orbital space: Ionization energy and electron
affinity of conjugated molecules
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An efficient all-electron G0W 0 method and a quasiparticle self-consistent GW (QSGW) method for molecules
are proposed in the molecular-orbital space with the full random-phase approximation. The convergence with
the basis set is examined. As an application, the ionization energy and electron affinity of a series of conjugated
molecules (up to 32 atoms) are calculated and compared to the experiment. The QSGW result improves the G0W 0

result and both of them are in significantly better agreement with experimental data than those from Hartree-Fock
(HF) and hybrid density-functional calculations, especially for electron affinity. The nearly correct energy gap
and suppressed self-interaction error by the HF exchange make our method a good candidate for investigating
electronic and transport properties of molecular systems.
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Density-functional theory (DFT) has become the most ex-
tensively used method for calculating the electronic structure
of solids and molecules1 because of its high efficiency and
reasonable accuracy. Despite its success in describing ground-
state electronic properties, DFT still faces big challenges
for some applications due to intrinsic issues, such as the
underestimated energy gap and self-interaction error (SIE),
as in its practical scheme with the local-density approximation
(LDA) or generalized gradient approximation (GGA). For
example, in the calculation of molecular conductance2–4 these
issues will lead to an incorrect molecule-lead charge transfer,
an incorrect position of the lead chemical potential in the
gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO), as
well as the broadening of the HOMO and LUMO, especially
for weakly coupled systems,4 causing a much overestimated
molecular conductance, even by orders of magnitude in some
cases.2,4 This is in strong contrast with the success of DFT
structural prediction for solids and molecules.

Physically, even an exact DFT calculation with a local
exchange-correlation potential (Vxc) cannot give a correct
HOMO-LUMO gap due to the lack of the discontinuity.
Improvement with a nonlocal Vxc is still under development
and facing challenges.4–6 Different from DFT, the Hartree-
Fock (HF) method is SIE free and can usually give a reasonable
HOMO energy (Koopmans’ theorem) but lacks electron corre-
lation and cannot predict a reasonable LUMO energy. Many-
body quasiparticle calculation in the GW approximation7–9

may provide a solution though its non-self-consistent version
(G0W 0) is not a conserving approach and may be problematic
to quantum transport calculations.10,11 Additionally, its result
is dependent on the initial input from DFT or HF. It also faces a
challenging computational effort for large molecular systems.

In spite of these issues, the G0W 0 approach has been
very successfully applied to the band-structure calculation
for bulk semiconductors,12–14 improving significantly the
result of DFT. However, its applicability and accuracy for
molecular systems is still an open problem,9,15–17 considering
the stronger electronic relaxation effect15 and the weaker

screening, compared with the case of solids. Besides the
physics, the ways of dealing with the core electrons and the
convergence to the size of the basis set are technical factors
also affecting its accuracy. For solids, the pseudopotential
approach has been quite successful in ground-state electronic
structure calculations, while for excited states its quality is
still under debate. Some calculations show that the valence-
core interaction is important and a full-potential all-electron
treatment is required to evaluate the G0W 0 approximation for
semiconductors,18 while some other calculations show that the
pseudopotential approximation can be quite safely applied to
excited-state calculations for silicon and silicon carbide.19 For
molecules, recent work shows that the core electrons play
an important role in determining accurately the molecular
excitation energies (the effect is as much as 1 eV).9

Considering the success and the problems of the GW

method and the difference between molecules and solids,
it is interesting to apply the method to study molecular
electronic properties and to see how well it works. In the
light of the existing finding about the important role of core
electrons,9 an efficient ab initio all-electron GW approach
being able to deal with large molecules is desirable. In this
regard, a localized basis set has many more advantages than a
nonlocalized basis set (for example, of plane waves) because of
the difficulty of dealing with the core electrons. Furthermore,
for molecular systems a localized basis set can achieve a
much better computational efficiency, especially the Gaussian
basis functions,20,21 for which the two-electron integrals can
be calculated analytically.

In this work, we first propose an efficient all-electron non-
self-consistent G0W 0 method based on the full random-phase
approximation (RPA) using Gaussian basis functions and a HF
input. To achieve a higher computational efficiency, it is imple-
mented in the molecular-orbital (MO) space with techniques
for reducing the error coming from the incompleteness of the
basis set. The correlation self-energy is determined first on the
imaginary energy axis and then on the real energy axis using
the analytical continuation approach which was proposed
originally for a space-time approach.22,23 The convergence
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with respect to the size of the basis set is examined by
calculating He and Be atoms using a series of basis sets.

To address the issue of initial input dependence with
the G0W 0 approach, we further implement a quasiparticle
self-consistent GW (QSGW) method,12,14,24 in which a self-
consistency is performed between the G0W 0 and a DFT-
like calculation with a nonlocal Vxc constructed from the
G0W 0 self-energy, producing an input-independent result. The
converged Vxc may help to suppress the SIE in DFT since
the real (nonlocal) exchange is used. As a real, hermitian,
and energy-independent self-energy, it may also help to some
extent with the conserving issue of the G0W 0 approach.

As an application of our methods, we investigate the
ionization energy (IE) and electron affinity (EA) of a series
of conjugated molecules. As is well known, conjugated
molecules play the most important roles in molecular electron-
ics because of their small HOMO-LUMO gap, good molecular
conductance, and tunable electronic states. The systems stud-
ied include acetylene (C2H2), ethylene (C2H4), allene (C3H4),
diacetylene (C4H2), benzene (C6H6), phenylacetylene (C8H6),
naphthalene (C10H8), biphenyl (C12H10), anthracene (C14H10),
and perylene (C20H12), for which reliable experimental data
are available.25 Comparison to the experimental data shows
that our G0W 0 and QSGW results improve the HF ones sig-
nificantly, especially for EA. The QSGW improves the G0W 0

further and shows a very good agreement between theory
and experiment. This indicates that the ab initio all-electron
GW calculation can describe very well molecular electronic
structures. The computational efficiency of our methods makes
it possible to easily deal with systems consisting of several
tens of atoms from the first principles, making the QSGW
approach a good candidate for investigating electronic and
transport properties of molecular devices.

In the present implementation the GW self-energy is
divided into a (energy-independent) bare-exchange part and
a correlation part: � = �x + �c. We first work on the
imaginary energy axis, on which the correlation part is

�c(r,r′; iω)

= − 1

2π

∫ ∞

−∞
G[r,r′,i(ω + ω′)]Wc(r,r′; iω′)dω′, (1)

where G is the Green’s function and Wc ≡ W − v is the
screened Coulomb potential minus the bare Coulomb poten-
tial. The advantage of calculating the self-energy along the
imaginary axis is that one can avoid the sharp pole structures
in both G and Wc. In the MO space (the MOs are denoted by
m, n,...) the Green’s function simply reads

Gmn(iω) = δmn

iω − εn

, (2)

due to the orthonormality of the MOs. Here εn denotes the nth
eigenvalue and the Fermi energy is set by ω = 0:

Wc
mn(iω) = [ε−1(iω)v]mn − vmn, (3)

where vmn is the two-center Coulomb integral and ε(iω) is the
dielectric function matrix which is calculated by

εmn(iω) = Imn − [P (iω)v]mn, (4)

with I being identity matrix and P the polarization function
which can be determined by RPA:

P (r,r′; iω) = 2
∑
kl

(fk − fl)
ψk(r)ψ∗

l (r)ψl(r′)ψ∗
k (r′)

iω − (εl − εk)
, (5)

where f is the occupation number and ψ are the MOs. If the
MO space is complete, P can be expressed as

Pmn(iω) = 2
∑
kl

fk − fl

εl − εk − iω
Okl

m Okl
n , (6)

in terms of the three-center overlap integrals of the MOs:

Okl
m ≡

∫
d3rψm(r)ψk(r)ψl(r). (7)

However, in practice, the incompleteness of the MO space will
cause an error in the calculation of P and, even worse, causes
a larger error in the product of Pv. To suppress this error,
we avoid the individual calculations of P (iω) and v matrices
but calculate the product as a whole in terms of the electron
integrals:

[P (iω)v]mn = 2
∑
kl

fk − fl

εl − εk − iω
Okl

m Ckl
n , (8)

where

Ckl
n ≡

∫ ∫
d3r d3r′ ψn(r)ψk(r′)ψl(r′)

|r − r′| (9)

are the three-center Coulomb integrals of the MOs. The two
kinds of three-center MO integrals are determined in terms of
the corresponding three-center integrals of the atomic orbitals
presented by the standard contracted Gaussian basis functions,
which can then be calculated analytically. In this way, the
error coming from the incompleteness of the MO space in
the calculation of the dielectric function can be suppressed.
However, in the calculation of the Wc(iω) matrix in Eq. (3),
the two-center Coulomb integral matrix v and its product with
ε−1(iω) are still needed. To avoid this, we define

W̃ c(iω) ≡ [I − P (iω)v]−1 − I, (10)

and therefore

Wc(iω) = W̃ c(iω)v. (11)

After expanding Eq. (1) in the MO space and substituting
Eq. (2) for G(iω) we have

�c
mn(iω) = −1

2π

∑
jkl

Okj
m Ojl

n

∫ ∞

−∞

Wc
kl(iω

′)
i(ω + ω′) − εj

dω′.

(12)

Substituting Eq. (11) for Wc(iω) leads to

�c
mn(iω) = − 1

2π

∑
jkl′

Okj
m

∑
l

(
vl′lO

lj
n

)
×

∫ ∞

−∞

W̃ c
kl′(iω

′)
i(ω + ω′) − εj

dω′. (13)
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By making use of the orthonormality of the MOs we get the
final expression for �c:

�c
mn(iω) = − 1

2π

∑
jkl

O
mj

k C
jn

l

×
∫ ∞

−∞

W̃ c
kl(iω

′)
i(ω + ω′) − εj

dω′ (14)

≡ − 1

2π

∑
jkl

O
mj

k Wjkl(iω)Cjn

l . (15)

The result is simply a product of the three three-dimensional
arrays, involving only the three-center overlap matrix and
the three-center Coulomb matrix without any individual
calculations of P and v. The integral Wjkl can be calculated
by the Gaussian quadrature. Because W̃ c varies extremely
smoothly as a function of ω, very few energy grids (about 100
points from 0 to ∞) are usually needed to well converge the
elements of W . In practice, the integration of W̃ c(iω′) shares
the energy grids for calculating �c(iω) (N� points from 0 to
E�) plus additional Nw points from E� to ∞. The typical value
for E� is 300 eV, and N� ∼ 100 and Nw∼ 20 are found good
enough to well converge the result. We would like to mention
that, at first glance, Eq. (15) suggests an O(N5) scaling with
the number of atoms N for a given basis set. However, we can
rearrange the summation in the following order:

∑
j

[∑
k

O
mj

k

(∑
l

WjklC
jn

l

)]
. (16)

In this way, matrix multiplication in each step will scale
as O(N4) and, therefore, an overall O(N4) scaling can be
achieved for the full �c(iω) matrix.

After having obtained �c on the imaginary energy axis,
we determine its values on the real energy axis using the
analytical continuation approach,22,23 and we least-square
fit each element to the multipole form using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimization technique:

a0 +
n∑

j=1

aj

ω − bj

, (17)

with complex parameters aj and bj . For bulk semiconductors
it was found that n = 2 is usually good enough.22,23 For
molecules, however, we find that n = 6 is generally required
to give an extremely stable and accurate fitting. Our compu-
tational code has been parallelized using a message passing
interface in two steps: The computation of W(iω) and �c(iω)
is parallelized on the energy grids and the computation of the
BFGS fitting is parallelized on the MOs.

To address the issues with the G0W 0 method, we implement
a QSGW approach, in which the G0W 0 self-energy is used
to construct a nonlocal real exchange-correlation potential
Vxc for a DFT-like calculation. In practice, we follow the
scheme proposed in Refs. 12,14, and 24, which has been
shown to be very successful for bulk semiconductors but is
now implemented in the MO space for molecules:

[Vxc]mn = Re[�c(εm) + �c(εn)]mn/2 + �x
mn, (18)

FIG. 1. Dependence of the −εHOMO of the He atom (upper panel)
and Be atom (lower panel) on the size of the basis set used in the HF
and G0W 0calculations. The experimental result of IE is shown by the
horizontal dashed line.

with �x being calculated in terms of the HF exchange operator.
The DFT-like calculation will generate new eigenvalues and
MOs which can be used for the next G0W 0 calculation. This
procedure continues until the maximum change in the Vxc

elements is smaller than the convergence criteria adopted.
Previously, the QSGW approach implemented using the full-
potential linear muffin-tin orbital method was applied to bulk
semiconductors and improved significantly the G0W 0 band
gaps.12,24 For molecules, its applicability and quality are still
unknown.

Like other correlated electronic structure methods (for
instance, the second-order Møller-Plesset theory and the
coupled-cluster method) the G0W 0 method is more sensitive
to the size of the basis set than DFT and HF methods. So
far, careful examinations for convergence behavior are still
lacking in the literature,9 probably leading to the scattering
results from different calculations and biased conclusions for
different systems. To examine the basis-set convergence of our
method, we first calculate the minus-HOMO energy −εHOMO,
i.e., IE, of He and Be atoms, adopting a series of different
basis sets:26 6-31G*, 6-311G**, cc-pvDZ, cc-pvTZ, cc-pvQZ,
aug-cc-pvQZ, cc-pv5Z, cc-pv6Z, and aug-cc-pv6Z, and we
plot the results in Fig. 1.
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TABLE I. Calculated (cc-pVTZ level) and experimental results of IE and EA (in eV) of ten conjugated molecules, as well as their
charge-induced relaxation energies 	E+ and 	E−. The experimental data are cited from Ref. 25.

IE EA

Molecules 	E+ G0W 0 QSGW HF 	HF B3LYP 	B3LYP Expt. 	E− G0W 0 QSGW HF 	HF B3LYP 	B3LYP Expt.

C2H2 0.11 11.44 11.31 11.07 9.69 8.05 11.26 11.40
C2H4 0.19 10.50 10.53 10.10 8.74 6.60 10.39 10.51
C3H4 0.57 9.95 9.78 9.74 8.24 6.91 9.51 9.69
C4H2 0.09 10.34 10.12 9.98 8.72 7.35 9.85 10.17
C6H6 0.14 9.28 9.20 9.00 7.73 6.90 9.11 9.24
C8H6 0.12 8.94 8.66 8.60 8.50 6.54 8.50 8.82
C10H8 0.09 8.16 8.07 7.78 6.82 6.02 7.85 8.14 0.12 −0.60 −0.34 −1.35 −2.17 1.46 −0.32 −0.20
C12H10 0.30 8.31 8.21 8.03 6.77 6.16 7.81 8.16 0.44 −0.66 −0.29 −1.38 −2.30 1.39 −0.36 0.13
C14H10 0.07 7.42 7.27 6.97 6.04 5.47 7.04 7.44 0.10 0.23 0.37 −0.51 −1.33 2.08 0.42 0.53
C20H12 0.08 6.94 6.77 6.50 5.19 5.17 6.58 6.96 0.09 0.65 0.91 0.13 −0.90 2.33 0.84 0.97

For the He atom, the 6-31G*, cc-pvDZ, and 6-311G** basis
sets have only 2, 5, and 6 basis functions, respectively. For such
small basis sets the G0W 0 −εHOMO fluctuates remarkably.
However, once the basis set is larger than 15 basis functions
the results of both He and Be atoms tend to be well converged
and the fluctuation is around 0.1 eV. The important thing is
that for both atoms the G0W 0 result improves significantly the
HF result: For He the −εHOMO is corrected downward while
for Be it is corrected upward, becoming much closer to the
experimental data.

The IE or EA of a molecule includes two contributions, i.e.,
the vertical IE or EA and the corresponding charge-induced
structural relaxation energy (	E+ or 	E−): IE = (IE)vert. −
	E+ and EA = (EA)vert. + 	E−. 	E+,− can be determined by
performing a structural relaxation calculation with the charge.
For the ten conjugated molecules studied in this work we first
optimize their structures on the DFT/B3LYP/cc-pvTZ level
and then calculate their 	E+ and 	E− by allowing further
relaxation with the charge. From the results listed in Table I one
can see that 	E+ is comparable with 	E− and their values
depend strongly on the molecular structure.

The results of IE and EA of the ten conjugated molecules
given by the different methods are listed in Table I together

with the available experimental data cited from Ref. 25.
For EA only the four largest molecules are studied, which
have a positive or nearly zero experimental value. The other
molecules are too small to have a positive value of EA because
the added electron is unbound, and therefore they are not
studied. The results are also plotted in Fig. 2 for a better view
and comparison.

For molecular systems the hybrid DFT/B3LYP has been
proven to be a significant improvement to DFT/LDA and
DFT/GGA because the HF exchange is partly included,
suppressing partly the SIE with LDA and GGA.4 However,
as shown in Table I and Fig. 2, the results of IE and EA of
the conjugated molecules are still far from being correct. In
spite of lacking an electron correlation, the HF method gives
a much better result of IE due to the Koopmans’ theorem, but
its result of EA is very bad, being comparable to the B3LYP
result but with an opposite trend (see Fig. 2).

For a molecule with N electrons, its IE and EA can be
explicitly determined by a total-energy-difference calculation
(i.e., the 	SCF calculation):27

IE = Etotal(N − 1) − Etotal(N ),
(19)

EA = Etotal(N ) − Etotal(N + 1).

FIG. 2. (Color online) Comparison between the calculated results and experimental data of the IE and EA of the ten conjugated molecules
in Table I.
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The accuracy will depend on the quality of the total energies
Etotal. One can see in Table I and Fig. 2 that the 	SCF
calculation using HF (	HF) improves HF for EA considerably
but the 	HF result of IE becomes much worse because of the
inaccurate total energy (a correlation is absent). On the other
hand, the 	SCF calculation using B3LYP (	B3LYP) gives
very good results of both IE and EA because of its accurate
total energy.

The G0W 0 result improves the HF result considerably for IE
and significantly for EA, showing that the correlation is more
important for the excited states. The QSGW result improves
the G0W 0 result further, being in very good agreement with
the available experimental data25 and the 	B3LYP result. This
finding is consistent with previous calculations12,14,24 which
showed a significant improvement from QSGW to G0W 0 for
fundamental band gaps in bulk semiconductors.

In a very recent GW calculation for molecules using
Gaussian basis functions20 it was found that a simple self-
consistency on eigenvalues can improve significantly the
G0W 0/LDA result, probably because the input eigenvalues
from DFT/LDA are very poor. Interestingly, this improvement
was found to be almost equivalent to a G0W 0/HF calculation.
This finding is consistent with our result that the G0W 0/HF
calculation can give quite good results for molecules. However,
our work shows that the self-consistency over G0W 0/HF (on
both eigenvalues and eigenfunctions) in the QSGW approach
can improve further the G0W 0/HF result, implying that the
self-consistency on the eigenfunctions has also some effect.

Overall, our work shows that the all-electron ab initio
G0W 0 and QSGW methods can describe very well the
electronic structures of conjugated molecules, as indicated
by the good agreement between theory and experiment.
Furthermore, the very good agreement between our QSGW
result and the 	B3LYP one confirms further the validity
of the former because the electron-removal- and electron-
addition-induced electronic relaxations are fully included in
the latter. Our finding is consistent with a recent work of
ab initio G0W 0 calculation for small molecules,9 which
showed that the inclusion of a core-valence interaction
is important in obtaining accurate excitation energies, but

different from a very recent work of a π -only model GW
calculation15 which found, however, that the accuracy of the
GW method is largely limited by the electronic relaxation.
This discrepancy in the conclusion may be understood by
considering the role played by the σ states which have a much
broader energy range. Physically, the lower dimensionality of
molecules causes much more localized electronic states which
will lead to a much stronger electronic relaxation effect than
in solids. Consequently, for conjugate molecules an accurate
description not only for the valence σ states (and therefore the
resulting π -σ relaxation) but also for the core electrons may
become important.

In summary, we have proposed an efficient non-self-
consistent G0W 0 method which is based on the full RPA and
implemented in the molecular-orbital space with techniques
for reducing the error coming from the incompleteness of the
basis set. The convergence of its result with regard to the size
of the basis set has been examined. Based on this, we have
further implemented a QSGW approach with Gaussian basis
functions. The high computational efficiency allows us to deal
with larger molecules, and we have applied our methods to
calculate the ionization energy and electron affinity of ten
conjugated molecules with up to 32 atoms. The G0W 0 result
improves the HF result significantly, especially for EA, and,
furthermore, the QSGW improves the G0W 0 and gives results
of both IE and EA in very good agreement with the available
experimental data and also with the results from the 	SCF
calculation using the B3LYP functional. This indicates that our
all-electron ab initio GW calculation can describe very well
molecular electronic structures, making the QSGW approach
a good candidate for investigating electronic and transport
properties of molecular devices.
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