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A thorough analytical and numerical characterization of the whole perturbation series of one-particle
many-body Green’s function (MBGF) theory is presented in a pedagogical manner. Three distinct but
equivalent algebraic (first-quantized) recursive definitions of the perturbation series of the Green’s
function are derived, which can be combined with the well-known recursion for the self-energy. Six
general-order algorithms of MBGF are developed, each implementing one of the three recursions,
the ∆MPn method (where n is the perturbation order) [S. Hirata et al., J. Chem. Theory Comput.
11, 1595 (2015)], the automatic generation and interpretation of diagrams, or the numerical differ-
entiation of the exact Green’s function with a perturbation-scaled Hamiltonian. They all display the
identical, nondivergent perturbation series except ∆MPn, which agrees with MBGF in the diagonal
and frequency-independent approximations at 1 ≤ n ≤ 3 but converges at the full-configuration-
interaction (FCI) limit at n = ∞ (unless it diverges). Numerical data of the perturbation series are
presented for Koopmans and non-Koopmans states to quantify the rate of convergence towards the
FCI limit and the impact of the diagonal, frequency-independent, or ∆MPn approximation. The dia-
grammatic linkedness and thus size-consistency of the one-particle Green’s function and self-energy
are demonstrated at any perturbation order on the basis of the algebraic recursions in an entirely
time-independent (frequency-domain) framework. The trimming of external lines in a one-particle
Green’s function to expose a self-energy diagram and the removal of reducible diagrams are also
justified mathematically using the factorization theorem of Frantz and Mills. Equivalence of ∆MPn
and MBGF in the diagonal and frequency-independent approximations at 1 ≤ n ≤ 3 is algebraically
proven, also ascribing the differences at n = 4 to the so-called semi-reducible and linked-disconnected
diagrams. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994837]

I. INTRODUCTION

One-particle many-body Green’s function (MBGF) the-
ory,1–30 also known as electron propagator theory, is one
of the four pillars of ab initio electron-correlation theory,30

whose approximations are systematically improvable. Com-
pared with the other three pillars, i.e., configuration-interaction
(CI),30–33 coupled-cluster (CC),30,31,34,35 and many-body per-
turbation theories (MBPT),30,31,34,36 MBGF is mysterious
as its Feynman–Dyson perturbation series converges at the
exact basis-set solutions of a many-electron Schrödinger equa-
tion within the framework of a one-particle theory. Although
the solution space of a one-particle theory is apparently
much smaller than that of the many-electron Schrödinger
equation, MBGF attains exactness by rendering the one-
particle operator, specifically, its Dyson self-energy part,
frequency dependent and thereby making each one-particle
equation have multiple roots. Hence, MBGF bears similarity
with equally mysterious Kohn–Sham (KS) density-functional

a)Email: sohirata@illinois.edu

theory (DFT),37,38 which is also a formally exact one-particle
theory for a many-electron Schrödinger problem.39,40 In fact,
Sham and Schlüter proposed mapping41 of a self-energy oper-
ator onto an exchange-correlation potential of KS DFT, of
which the lowest-order (exchange-only) incarnation is the opti-
mized effective potential of Talman and Shadwick.42–45 It can
be further extended to include frequency dependence46–48 and
electron-correlation effects.49–51

What may add to the mysterious appearance of MBGF
is the fact that the highest perturbation order of its methods
developed so far is only three15,52–63 or four,20,54,64,65 the lat-
ter case using simplifying approximations. This is in contrast
with CI,66,67 CC,68–72 or MBPT,73,74 all of which can be car-
ried out at any arbitrary high order using the determinant-based
algorithm of full configuration interaction (FCI).66 Even when
limiting ourselves to efficient implementations, MBPT was
extended to sixth order [MBPT(6)] in 1985 by Laidig et al.75

and fifth-order CC was reported in 2002 by Musiał et al.,76

in contrast to full MBGF(3) being the highest today. This
means that the mathematical structure of MBGF may not be
as fully understood as those of MBPT or CC, making a reli-
able and easy-to-understand algebraic method of derivation of
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higher-order MBGF presently unavailable. This may be
one of the reasons why this theory has not been as fully
embraced by molecular scientists as MBPT or CC is today.
This situation is unfortunate because not only does MBGF
directly compute electron binding energies, key parameters
of most chemical processes, but also there is evidence
that higher-order perturbation corrections are relatively
more important in MBGF than in MBPT. Nonetheless,
MBGF has recently enjoyed a surge of interest in molec-
ular applications,39,40,77–84 sometimes in relation to CC
theory.85,86

The persistent difficulty in fully understanding and
advancing MBGF to higher orders can at least partly be traced
to its expositions, which greatly differ from those of CI, CC, or
MBPT. The latter are usually based on the time-independent
Schrödinger equation with well-defined approximations made
to their wave functions and energies. For example, MBPT
can be defined algebraically by recursion equations deriv-
able systematically by the Rayleigh–Schrödinger perturbation
theory.31,34 A typical exposition of MBGF follows a differ-
ent path.87–89 Instead of the Schrödinger equation, MBGF
is based on the Dyson equation, the central entity of which
is the self-energy. The derivation of MBGF typically starts
by accepting the full equivalence of this equation with the
Schrödinger equation and proceeds by postulating the dia-
grammatic Feynman–Dyson perturbation expansion9,17,18 of
the self-energy. Whereas the Gell-Mann–Low theorem87,89,90

offers a time-dependent perturbation-theoretical justification
of this diagrammatic derivation, it is an oblique91 argument
for our time-independent (or frequency-domain) theory of
stationary states.

Also, the diagrams of the self-energy are said to be limited
to the linked and irreducible types only. These diagrammatic
rules are often introduced on the basis of intuitive arguments
and justified by somewhat imprecise mathematical logic. For
instance, as shown in this study, the removal of reducible dia-
grams takes place as a result of systematic factorization of
denominators,31,34,91,92 much like the cancellation of unlinked
diagrams in MBPT.11,31,34,91–95 None of these delicate details
seems to have been fully discussed. Furthermore, although
diagrams are a powerful tool of derivation, they have pitfalls:
The first report of MBGF(3) included twelve self-energy dia-
grams (of the Goldstone type) that are obtained by opening
MBPT(3) diagrams by cutting one of its lines in all topologi-
cally distinct ways.53 Two years later, it was pointed out55 that
there were six additional third-order self-energy diagrams, the
so-called Σ(∞) diagrams,96 obtained by a vertex insertion (see
below) to the MBPT(2) diagrams. It is, therefore, not impossi-
ble to overlook an entire class of diagrams, which may start to
appear only at some high order (although, more precisely, they
are legitimately absent in the equation-of-motion formalism53

of MBGF).
The present authors have, therefore, been searching for

an algebraic (first-quantized) definition of MBGF in the style
of the Rayleigh–Schrödinger recursion equations of MBPT,
with a view to justifying the diagrammatic derivation and to
implementing a general-order MBGF method.

To this end, two of the present authors with two coauthors
previously implemented97 what we call the ∆MPn method,

originated by Pickup and Goscinski7 and extended by Chong
et al.,98–100 in a determinant-based, general-order algorithm.
In this method, the nth-order perturbation correction to the
electron binding energy of a Koopmans state is defined as the
difference in the MBPT(n) correlation correction between the
N- and (N ± 1)-electron systems using the same N-electron
Hartree–Fock (HF) reference. The MBPT(n) corrections are,
in turn, defined unambiguously by the Rayleigh–Schrödinger
recursion equations for any number of electrons to an arbitrary
high perturbation order.

We numerically confirmed97 that ∆MPn reduces to
MBGF(n) with the self-energy in the diagonal, frequency-
independent approximation at 1 ≤ n ≤ 3 but converges at the
nonapproximated MBGF(n) at n = ∞, whose self-energy is
nondiagonal and frequency dependent. This method, therefore,
switches from the most approximate form of the self-energy
at low orders to the nonapproximated one at an infinite order.
This intriguing behavior occurs because it contains two unex-
pected and bizarre classes of diagrams, which we call the
semi-reducible and linked-disconnected diagrams.97 They act
to recuperate the effects of off-diagonal elements and fre-
quency dependence of self-energy, respectively, in a pertur-
bative manner. This finding exacerbated our concern that we
may be missing an unknown number of important diagrams in
higher-order MBGF.

In this study, we return to the core definition88 of a
perturbation theory, which equates the nth-order perturba-
tion correction of a given quantity to the nth derivative with
respect to λ of the same quantity computed exactly with a
perturbation-scaled Hamiltonian, Ĥ = Ĥ0 + λV̂ , where Ĥ0 is
the zeroth-order Hamiltonian and V̂ is the fluctuation potential.
This implies a universal strategy of deriving an algebraic def-
inition of virtually any perturbation theory, which consists in
analytically differentiating the FCI expression of a target quan-
tity. Computationally, it also suggests the λ-variation method,
which evaluates the low-order perturbation corrections by
numerical differentiation of the FCI results of the perturbation-
scaled Hamiltonian, allowing a general-order implementation
of any perturbation theory, including perturbation series of the
Green’s function and self-energy.

Adopting this strategy, we obtain three sets of Rayleigh–
Schrödinger-like recursion equations defining a perturbation
expansion of the exact one-particle Green’s function. They
can be combined with the well-known recursion equation
for the nondiagonal, frequency-dependent (i.e., nonapproxi-
mated) self-energy9 to determine its perturbation corrections
to an arbitrarily high order. Using these algebraic defini-
tions, we show, in an entirely time-independent framework,
that unlinked-diagrammatic contributions in the Green’s func-
tions cancel with one another, leaving only linked ones,
after systematic factorization of their denominators.31,34,91,92

In other words, the factorization and linked-diagram the-
orems11,31,34,91–95 of MBPT in the time-independent form
of Manne91 hold for the one-particle Green’s function, jus-
tifying its linked-diagrammatic perturbation expansion and
proving its size-consistency.101,102 The factorization theo-
rem31,34,91,92 also holds for the self-energy, demonstrating
the mutual cancellation of reducible diagrams and thus jus-
tifying their irreducible-diagrammatic expansion. The most
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significant work in this area thus far is due to Kutzelnigg
and Mukherjee,25 whose time-independent formulation differs
from ours in that they adopt the second-quantized superoper-
ator algebra and switch to diagrammatics early, not providing
an algebraic recursion.

We also present six algorithms of general-order MBGF,
five of which give identical perturbation series of elec-
tron binding energies of both Koopmans and non-Koopmans
(shake-up or satellite) states. The first three implement the
three recursions for the one-particle Green’s function in a
determinant-based, general-order algorithm. The fourth is
based on the λ-variation method, using only slightly mod-
ified FCI code and finite-difference approximations for the
λ-differentiation. The fifth is the one that automatically gen-
erates all irreducible and linked self-energy diagrams order-
by-order and synthesizes codes that evaluate them, precisely
following three basic rules (see below) of the diagrammatic
MBGF. The fact that all these five methods agree identi-
cally up to fifth order (within the precision of the finite-
difference approximations of the λ-variation method) means
that the existing diagrammatic rules are complete and correct,
which is also implied by the linked- and irreducible-diagram
theorems for the self-energy presented in this article. The
last (sixth) general-order algorithm is the determinant-based
∆MPn method97 extended in this study to non-Koopmans
states using the Hirschfelder–Certain degenerate perturbation
theory.103 It gives a different perturbation series than MBGF
but still converges at the FCI results for both Koopmans
and non-Koopmans states. We also quantify the effect of the
diagonal and/or frequency-independent approximation on the
self-energy.

Furthermore, we illustrate a purely algebraic deriva-
tion of the first- and second-order self-energies, also high-
lighting its relationship with a diagrammatic derivation. The
algebraic derivation is far more tedious than diagrammatic
or superoperator derivation but is thoroughly systematic,
involving only simple arithmetic operations and an equiva-
lent of the Slater–Condon rules, which can thus place the
diagrammatic technique on a firm mathematical footing. It
also serves as a pedagogical example explaining some of
the basic algebraic and diagrammatic mechanisms by which
unlinked and reducible diagrams are erased. Finally, one of
the three recursions is used to elucidate the precise relation-
ship between ∆MPn and MBGF at several low perturbation
orders.

II. THEORY
A. Definitions

The exact one-particle Green’s function9,18,30 of a closed-
shell molecule is an m-by-m matrix (where m is the number of
spinorbitals) whose elements are dependent on frequency (ω),
namely,

Gpq(ω) =
〈ΨN ,0 | p̂†(ω − EN ,0 + Ĥ)−1q̂ |ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉

+
〈ΨN ,0 | q̂ (ω − Ĥ + EN ,0)−1p̂† |ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉
, (1)

where ΨN ,µ and EN ,µ are the exact (FCI) N-electron (unnor-
malized) wave function and energy for the µth state (µ = 0
being the ground state) and p̂† (q̂) is a creation (annihilation)
operator of an electron in the pth (qth) spinorbital. Through-
out this article, we adhere to the convention in which i, j, k, l,
etc., refer to a canonical spinorbital occupied in the N-electron,
ground-state HF wave function, a, b, c, d, etc., refer to a virtual
canonical spinorbital, and p, q, r, s, etc., refer to either. N is an
even number.

Inserting the resolution-of-the-identity, we can rewrite
this as

Gpq(ω) =
∑
µ

〈ΨN ,0 |p̂† |ΨN−1,µ〉〈ΨN−1,µ |q̂|ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉(ω − EN ,0 + EN−1,µ)

+
∑
µ

〈ΨN ,0 |q̂|ΨN+1,µ〉〈ΨN+1,µ |p̂† |ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉(ω − EN+1,µ + EN ,0)
, (2)

where µ runs over all exact (N ± 1)-electron states. This
indicates that the exact Green’s function diverges whenever
ω agrees with an exact electron-detachment (EN ,0 − EN−1,µ)
or electron-attachment (EN+1,µ − EN ,0) energy. Therefore, the
Green’s function matrix, which is as small as the Fock matrix,
contains an entire spectrum of electron binding energies, which
are exponentially many, by virtue of being frequency depen-
dent. The ingenuity of MBGF as an exact one-particle theory
can be traced to this definition.

There is hardly any difficulty constructing this exact
Green’s function numerically from FCI wave functions and
energies for N- and (N ± 1)-electron states and characterizing
its behavior.72,97 What is at issue is the formulation and numeri-
cal calculation of a whole series of size-consistent perturbation
approximations to this exact Green’s function. To define such a
series, we adopt the Møller–Plesset partitioning104 of the exact
Hamiltonian Ĥ,

Ĥ = Ĥ (0) + λV̂ (1), (3)

where the zeroth-order Hamiltonian Ĥ (0) is the Fock operator.
At this stage, λ, which is equal to unity, is merely there to
facilitate the determination of the overall perturbation rank of
each term (it will play a more active role in the λ-variation
method). The zeroth-order or HF Green’s function is defined
as

G(0)
pq (ω) =

〈Φ
(0)
N ,0 | p̂

†(ω − E(0)
N ,0 + Ĥ (0))−1q̂ |Φ(0)

N ,0〉

〈Φ
(0)
N ,0 |Φ

(0)
N ,0〉

+
〈Φ

(0)
N ,0 | q̂ (ω − Ĥ (0) + E(0)

N ,0)−1p̂† |Φ(0)
N ,0〉

〈Φ
(0)
N ,0 |Φ

(0)
N ,0〉

(4)

=
δpq

∆
p
ω

, (5)

where∆p
ω = ω−εp and εp is the energy of the pth canonical HF

molecular spinorbital (MO). The zeroth-order wave function,
Φ

(0)
N ,0, is the HF wave function for the ground state, and E(0)

N ,0
is the sum of occupied orbital energies (different from the HF
energy). Henceforth, we use the letter “Ψ” for a (potentially)
multi-Slater-determinant wave function and the letter “Φ” for
a single determinant wave function, and the perturbation rank
is always indicated in the parenthesized superscript and those
without such a qualifier are usually exact (FCI) counterparts.
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Equation (5) indicates that the zeroth-order Green’s function
diverges whenever ω agrees with an electron binding energy
in the Koopmans approximation.30

In a typical exposition of MBGF,9,18,30 the exact and
zeroth-order Green’s functions are said to be related to each
other via the self-energy, Σ(ω), which together satisfy the
so-called Dyson equation

G(ω) = G(0)(ω) + G(0)(ω)Σ(ω)G(ω), (6)

where every factor in this equation is an m-by-m matrix whose
elements are frequency dependent. It is, however, more accu-
rate and instructive to characterize this equation as merely
a definition of Σ(ω) in terms of G(ω) and G(0)(ω). In other
words, Σ(ω) does not contain any new information which is
not already encoded in G(ω), and we need to define G(ω) or
its perturbative approximation before we can know Σ(ω) (not
the other way around).

Multiplying from the left the inverse of G(0)(ω) and mul-
tiplying from the right the inverse of G(ω) with Eq. (6), we
obtain the inverse Dyson equation

{G(0)(ω)}−1 = {G(ω)}−1 + Σ(ω). (7)

Recall that the usefulness of the exact Green’s function lies in
the fact that it diverges when ω agrees with an exact electron
binding energy. We seek such poles of G(ω). Since G(ω) does
not have an inverse at these poles, the determinant of the left-
hand side vanishes there. The working equation for ω that
reports an exact electron binding energy, therefore, reads as

���{G
(0)(ω)}−1 − Σ(ω)��� = 0. (8)

Furthermore, since

G(0)(ω) = (ω1 − ε )−1, (9)

where 1 is an m-by-m unit matrix and ε is the diagonal Fock
matrix (εpq = δpqεp) in the canonical HF MO basis, Eq. (8)
is equivalent to an m-by-m matrix eigenvalue equation of the
form

{ε + Σ(ω)}U = Uω (10)

or
U†{ε + Σ(ω)}U = ω, (11)

where U is a unitary matrix and ω is a diagonal matrix. This
has a similar form and the same dimension as the Hartree–
Fock–Roothaan equation and may be viewed as a correlation-
corrected one-particle equation in the HF MO basis. The
self-energy, Σ(ω), is then regarded as the matrix represen-
tation of the one-particle correlation operator, not unlike a
correlation potential in KS DFT. The column vector of U
whose corresponding eigenvalue is a self-consistent solution
of Eq. (10) defines a new orbital that includes correlation
effects (again, not unlike a KS orbital), which is known as
the Dyson orbital. However, MBGF differs from KS DFT in
that the exact limit of MBGF is known and a converging, sys-
tematic series of approximations is also available for Σ(ω),
which is furthermore non-multiplicative, usually perturbative
(non-variational), and frequency dependent. The beauty of the
Dyson equation, in our view, lies in the fact that Σ(ω) defined
by it has this (DFT-like) compelling physical meaning, while
lending itself to a systematic perturbation expansion.

Equation (10) is a recursion equation in which unknown
ω appears both in the left- and right-hand sides, which is
solved typically by repeated diagonalizations in an iterative
root search for ω. There are three simplifying approxima-
tions. In the diagonal approximation, this diagonalization step
is avoided by the neglect of all off-diagonal elements of the
self-energy,

εp + Σpp(ω) = ω, (diagonal), (12)

which still requires a root search. In the frequency-independent
approximation, on the other hand, the recursive structure of
the Dyson equation is broken by substituting ω = εp in the
left-hand side,

U†{ε + Σ(εp)}U = ω, (ω-independent), (13)

which can be solved by one diagonalization for each state for
which ω ≈ εp (valid only for Koopmans states). In the diag-
onal, frequency-independent approximation, ω is obtained by
one-shot evaluation (without diagonalization or root search)
of the left-hand side of

εp + Σpp(εp) = ω, (diagonal,ω-independent). (14)

This is also appropriate only for Koopmans states.
However, the most important approximation is the per-

turbation expansion of Σ(ω). Since Σ(ω) is defined by G(ω)
through the Dyson equation, the perturbation series of Σ(ω)
is derived from the same of G(ω). Setting aside for the
moment how the latter series is obtained (which is the focus
of this work and will be thoroughly discussed below), here
we first derive the algebraic equations connecting the two
series.

First, we assume that the exact Green’s function is
expanded in a perturbation series with the same Møller–Plesset
partitioning of the Hamiltonian [Eq. (3)] as

G(ω) = G(0)(ω) + λG(1)(ω) + λ2G(2)(ω) + · · · . (15)

We also write the self-energy in a perturbation series as

Σ(ω) = λΣ(1)(ω) + λ2Σ(2)(ω) + λ3Σ(3)(ω) + · · · , (16)

in which the term proportional to λ0 is not present by defi-
nition (or it is zero). Substituting these series into the Dyson
equation (6) and collecting terms with the same power of λ, we
obtain

G(0) = G(0), (17)

G(1) = G(0)Σ(1)G(0), (18)

G(2) = G(0)Σ(2)G(0) + G(0)Σ(1)G(1), (19)

G(3) = G(0)Σ(3)G(0) + G(0)Σ(2)G(1) + G(0)Σ(1)G(2), (20)

etc., where the frequency argument is omitted for brevity.
Generally, for n ≥ 1, we have

G(n) = G(0)
n∑

i=1

Σ(i)G(n−i). (21)

This can be inverted to yield an algebraic recursive definition
of the self-energy in terms of lower-order self-energies and
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Green’s functions of the equal and lower orders,

Σ(n) = (G(0))−1G(n)(G(0))−1 −

n−1∑
i=1

Σ(i)G(n−i)(G(0))−1 (22)

= (G(0))−1G(n)(G(0))−1 −

n−1∑
i=1

Σ(i)G(0)Σ(n−i)

−

n−2∑
i=1

n−i−1∑
j=1

Σ(i)G(0)Σ(j)G(0)Σ(n−i−j) − · · · , (23)

where it should be understood (henceforth) that the terms with
null range of summation are to be neglected. This recursion
equation is considered well known.9

B. Diagrams

Adhering to the conventional exposition of MBGF, we
now switch to diagrammatic techniques. A perturbation cor-
rection to the self-energy is defined as a sum of Feynman–
Goldstone diagrams, which are enumerated and algebraically
interpreted following some sets of rules.9,11,18,87,89 These
rules are mathematically justified by the Gell-Mann–Low
time-dependent perturbation theory.90 However, this time-
dependent logic is rather incongruous with the time-
independent (frequency-domain) formulation employed up to
this point and does not offer a concrete strategy for deriv-
ing programmable working equations of even low-order self-
energies, let alone algebraic recursive definitions that can be
used to implement a general-order algorithm. The primary
objective of this work is, therefore, to fill this gap by pre-
senting exactly the latter, i.e., easy-to-understand (if tedious)
algebraic recursive definitions of both Green’s function and
self-energy, which explains (if not prove) the diagrammatic
rules rather than rely on them. Here, we delay this discussion
but document the established diagrammatic rules first.

There are three basic rules for enumerating all nth-order
self-energy diagrams. They are illustrated in Figs. 1–3, using
only skeleton diagrams in which hole/particle distinctions
are suppressed. Diagrammatic terminology is summarized in
Table I.

Rule 1 (“linked only”) states that, starting with a linked
closed diagram of the MBPT(n) correction to the energy, we
“cut” one of its lines and create an open diagram with two long
external (dangling) lines. We then “trim” these dangling lines
to obtain an nth-order self-energy diagram, containing n inter-
action vertexes (filled circles), n � 1 resolvent lines (wiggly

FIG. 1. Rule 1 (“linked only”). Linked, closed energy diagram 1 of MBPT(3)
is cut open at the red wedge symbol, creating linked, open, third-order Green’s-
function diagram 2 with two dangling lines. The dangling lines are trimmed
at the wedges (red) to expose linked, open, third-order self-energy diagram 3
with two stubs (invisible). Hole/particle distinctions are suppressed.

FIG. 2. Rule 2 (“irreducible only”). Linked, closed energy diagram 4 of
MBPT(4) is cut open at the wedge (red), and then the two dangling lines
(diagram 5) are trimmed, giving rise to reducible self-energy diagram 6, char-
acterized by an articulation line connecting two second-order self-energy
subdiagrams. Diagram 6 should be deleted. Hole/particle distinctions are
suppressed.

lines), and two short external lines (or stubs). This process is
illustrated in Fig. 1. Since the initial closed energy diagram
is linked (as per the linked-diagram theorem11,31,34,91–95 of
MBPT), the resulting open self-energy diagram is also always
linked, ensuring its size-consistency. One can loosely asso-
ciate diagram 2 of Fig. 1 with G(n) in the first term of Eq. (23).
The multiplications of (G(0))−1 from both sides of it then cor-
respond to the trimming of the dangling lines (note that the
physical meaning of a line is a zeroth-order Green’s func-
tion), exposing Σ(n) as diagram 3. However, as we show in
Appendix C, this is too simplistic an argument mathematically
speaking, although it captures the correct physics.

If we used only rule 1, we would be double-counting the
so-called reducible self-energy diagrams. A reducible diagram
is the one with at least one pair of vertexes (filled circles) con-
nected by just a single line (“articulation line”), the elimination
of which leaves the diagram disconnected. Rule 2 (“irreducible
only”) requires the deletion of all such diagrams, an example
of which is given in Fig. 2. The second and subsequent terms
in Eq. (23) are a rough physical justification of this rule,9 but
this is again not entirely accurate mathematically. A more rig-
orous justification of this rule is given in Appendix C as the
irreducible-diagram theorem.

If we used only rules 1 and 2, we could be overlooking a
whole class of diagrams. Rule 3 (“vertex insertion”) dictates
that additional nth-order self-energy diagrams are obtained
by inserting a vertex with a bubble (or a tadpole) into an (n
� 1)th-order energy diagram, cutting open the bubble, and then
trimming the dangling lines, an example of which is shown in
Fig. 3. As noted in the Introduction, such diagrams were not

FIG. 3. Rule 3 (“vertex insertion”). A vertex with a bubble is inserted into
a line of closed energy diagram 7 of MBPT(2) at the red wedge (with a
concomitant addition of a new resolvent line). The bubble is cut open (diagram
8), creating open diagram 9. The two dangling lines are trimmed, producing
open, third-order self-energy diagram 10. Alternatively, consider diagram 8
as a non-HF energy diagram of MBPT(3) and follow rule 1. Hole/particle
distinctions are suppressed.
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TABLE I. Diagrammatic terminology.

Closed diagram A diagram with no external line
Open diagram A diagram with two external lines
Disconnected diagram A diagram that consists of at least two

(either closed or open) parts, between
which no connecting path exists

Connected diagram A diagram that is not disconnected
Unlinked diagram A disconnected diagram with at least one

closed disconnected part
Linked diagram A diagram that is not unlinked,

which is connected or disconnected
with open parts only

Reducible diagram A self-energy diagram with at least one
pair of vertexes connected by a single line

Irreducible diagram A self-energy diagram that is not reducible
Insertion diagram A diagram product created by inserting

one or more inner diagrams into the outer
(principal) diagram. Its value is the product
of the values of disconnected parts whose
resolvent lines span only one part.
The outer diagram has two identical resolvent
lines above and below the point of insertion

V vertex A filled circle, which represents V̂
p vertex The terminus of the incoming dangling line,

which represents p̂†

q vertex The terminus of the outgoing dangling line,
which represents q̂

Resolvent line A wiggly line denoting a denominator
consisting of orbital energies of the external
and internal lines intersected and possibly ω

Internal line (edge) A line connecting two vertexes
Long external line A line attached to only one vertex
(dangling line)
Short external line A dangling line trimmed at the vertex,
(stub) which has no hole/particle distinction but

has in/out attribute
Articulation line A single line connecting two vertexes,

the elimination of which leaves
the diagram disconnected

included in the initial report of MBGF(3). They do not usu-
ally emerge from rule 1 because the parent closed diagrams
are zero in MBPT(3) with the HF reference and are, therefore,
usually unlisted to begin with. The corresponding self-energy
diagrams are numerically significant. Rules 1 and 3 can, how-
ever, be consolidated into one requiring to connect n vertexes in
all topologically distinct ways to produce open diagrams with
two stubs. Alternatively, rule 3 can be absorbed into rule 1
modified to first enumerate all non-HF MBPT(n) diagrams34

and cut open a bubble implicit in each of the Fock operator
vertexes.105

The resulting diagrams are algebraically interpreted by the
rules given in Table II. For instance, second-order self-energy
diagrams 11 and 12 in Fig. 4 are interpreted as the first and
second terms, respectively, of the right-hand side,

Σ
(2)
pq = (−1)1+1 1

2

∑
i,a,b

〈iq| |ab〉〈ab| |ip〉

∆ab
ωi

+ (−1)2+1 1
2

∑
i,j,a

〈aq| |ij〉〈ij | |ap〉
∆ωa

ij

(24)

TABLE II. Algebraic interpretation rules of self-energy diagrams in the
Hugenholtz style.9

(1) Label the incoming short external line with general orbital
index p and the outgoing short external line with q

(2) Label downgoing internal lines with hole indices i, j, k, etc.,
and upgoing internal lines with particle indices a, b, c, etc.

(3) Associate each vertex with 〈left out, right out | | left in, right in〉
(4) Between each adjacent pair of vertexes, draw a resolvent line
(5) Associate each resolvent line with 1/∆abc. . .

ijk . . . , if the number of

intersections is even; 1/∆ωab. . .
ijk . . . if the number of hole

intersections exceeds the number of particle intersections; 1/∆abc. . .
ωij. . .

otherwise. Here, i, j, k, . . . (a, b, c, . . .) are the labels
of the hole (particle) lines intersecting the resolvent line

(6) Sum over all internal lines
(7) Multiply (�1)h+l to the diagram with h hole lines and l loops

A fictitious loop need not be considered
(8) Multiply 1/n! for each set of n equivalent lines. Two lines are

equivalent when they start from the same vertex and end at
the same vertex as well as have the identical hole/particle attribute

with

∆
ab
ωi = ω + ε i − εa − εb, (25)

∆
ωa
ij = ε i + ε j − ω − εa. (26)

C. ∆MPn for Koopmans and non-Koopmans states

Two of the present authors with two coauthors general-
ized97 the ∆MPn method of Pickup and Goscinski7 and of
Chong et al.98–100 to higher orders. It defines the nth-order per-
turbation correction to the µth electron binding energy, denoted
by Σ̄(n)

µ , as the MBPT(n) correction difference between the
N- and (N ± 1)-electron states using the same N-electron HF
reference wave function,

Σ̄
(n)
µ = E(n)

N ,0 − E(n)
N−1,µ, (27)

Σ̄
(n)
µ = E(n)

N+1,µ − E(n)
N ,0, (28)

for n ≥ 1, where µ labels an (N ± 1)-electron state with the
MBPT(n) correction of E(n)

N±1,µ. It is well known7 that this
difference reduces (at the formalism level) to the nth-order self-
energy in the diagonal, frequency-independent approximation
at n = 2, the fact used for pedagogical purposes by Szabo
and Ostlund30 to explain the relationship between MBPT and
MBGF. Nobes et al.106 and Beste et al.107 proposed similar
methods, which account for orbital-relaxation effects and are
more practically useful.

The MBPT(n) corrections are, in turn, defined unam-
biguously by the algebraic recursion equations derivable

FIG. 4. The second-order self-energy diagrams.
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straightforwardly from the Rayleigh–Schrödinger perturba-
tion theory for the ground state of the N-electron sys-
tem and for all Koopmans states of the (N ± 1)-electron
systems,

E(0)
M,µ = 〈Ψ

(0)
M,µ |Ĥ

(0) |Ψ
(0)
M,µ〉, (29)

E(n)
M,µ = 〈Ψ

(0)
M,µ |V̂

(1) |Ψ
(n−1)
M,µ 〉, (n ≥ 1). (30)

Here, the nth-order correction to the wave function of the µth
M-electron state, Ψ(n)

M,µ, is given by the recursion equation,

(E(0)
M,µ − Ĥ (0))Ψ(n)

M,µ = V̂ (1)
Ψ

(n−1)
M,µ −

n∑
i=1

E(i)
M,µΨ

(n−i)
M,µ , (31)

which can be initiated with the zeroth-order wave function of
the form

Ψ
(0)
M,µ = Φ

(0)
M,µ, (32)

where Φ(0)
M,µ is a single Koopmans-type Slater determinant.

In our previous study,97 the above recursions were imple-
mented in a determinant-based algorithm to realize ∆MPn
at any arbitrary order (n) for Koopmans states only. Using
this method, we numerically confirmed that the ∆MPn correc-
tion (Σ̄(n)

µ ) agrees identically with the nth-order self-energy in
the diagonal, frequency-independent approximation for 1 ≤ n
≤ 3,

Σ̄
(n)
µ = Σ

(n)
pp (εp), (33)

where p labels the spinorbital that is vacated or filled in the
µth Koopmans state. As n→ ∞, ∆MPn approaches MBGF(n)
with the nondiagonal, frequency-dependent self-energy. We
speculated97 that this switch occurs because two unex-
pected classes of diagrams (the semi-reducible diagrams and
linked-disconnected diagrams) are included in ∆MPn, which,
respectively, correct the diagonal and frequency-independent
approximations systematically. Examples of such diagrams are
given in Fig. 5.

One may intuitively understand that diagram 13 recuper-
ates the effect of off-diagonal Σ(2)

pq (εp) at the fourth order,
which is already included in MBGF(2) but not in ∆MP2.
Diagrams 14 and 15 have a disconnected or an irreducible
part with two resolvent lines. The second resolvent line arises
from the differentiation of the denominator with respect to ω
because

∂

∂ω

1

∆ab
ωi

=
−1

(∆ab
ωi)

2
. (34)

FIG. 5. A fourth-order semi-reducible diagram (13) and linked-disconnected
diagram (14). Diagram 15 is an alternative way of drawing diagram 14. In
these ∆MP4 diagrams, the resolvent lines are evaluated at ω = εp (i.e.,
in the frequency-independent approximation). Hole/particle distinctions are
suppressed.

Hence, these diagrams account for the effect of frequency
dependence in the self-energy in a perturbative (Taylor-
series) manner without explicit frequency dependence. In
Appendix D, we algebraically show the equivalence of ∆MPn
and approximate MBGF(n) at 1 ≤ n ≤ 3 and that the dif-
ferences between them at n = 4 indeed correspond to these
semi-reducible and linked-disconnected diagrams.

In this study, we further extend the ∆MPn method to
non-Koopmans states, motivated by its need in two of the
three recursions of MBGF(n) to be described below. The per-
turbation corrections to the wave function and energy of a
non-Koopmans state in an (N ± 1)-electron system satisfy the
identical recursions from the Rayleigh–Schrödinger pertur-
bation theory [Eqs. (29)–(31)]. However, they alone cannot
determine the zeroth-order wave functions for degenerate non-
Koopmans states to initiate the recursion. Such zeroth-order
wave functions are not single determinants but their linear
combinations,

Ψ
(0)
M,µ =

∑
ν

U (0)
M,µνΦ

(0)
M,ν , (35)

where ν runs over all states having the same zeroth-order
energy with the µth state and U (0)

M,µν is a unitary matrix ele-
ment. These zeroth-order wave functions are determined by the
recursion plus some additional “consistency” conditions103 on
wave functions, which satisfy

〈Ψ
(0)
M,µ |Ψ

(0)
M,ν〉 = δµν , (36)

〈Ψ
(0)
M,µ |Ψ

(n)
M,µ〉 = δn0. (37)

A procedure to determine these zeroth-order wave
functions (and higher-order ones) is exceedingly complex
but is well established and unambiguously documented by
Hirschfelder and Certain.103 We will not reproduce here the
21 pages of this degenerate Hirschfelder–Certain perturba-
tion theory (HCPT), except to note that they can be imple-
mented in a determinant-based algorithm to enable ∆MPn for
non-Koopmans as well as Koopmans states at any arbitrary
order. We also emphasize that, once determined, the resulting
perturbation corrections to the wave function and energy sat-
isfy the same Rayleigh–Schrödinger recursion equations given
above and correspond to the terms in the usual expansions
in λ,

ΨM,µ = Ψ
(0)
M,µ + λΨ(1)

M,µ + λ2
Ψ

(2)
M,µ + λ3

Ψ
(3)
M,µ + · · · , (38)

EM,µ = E(0)
M,µ + λE(1)

M,µ + λ2E(2)
M,µ + λ3E(3)

M,µ + · · · , (39)

where M can be N, N + 1, or N � 1. It should be noted that
MBPT is a special case of the degenerate HCPT in that the
latter applied to a non-degenerate zeroth-order state reduces
exactly to the former. The HCPT is said to be equivalent
to several other degenerate perturbation theories variously
named.108

D. λ-variation

The λ-variation method88 can evaluate virtually any per-
turbation series numerically up to high orders. It computes the
nth-order perturbation correction of any given target quantity
as the nth λ-derivative of the same quantity calculated by the
FCI method with a scaled Hamiltonian, Ĥ (0) + λV̂ (1).
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For instance, the perturbation corrections to the Green’s
function and self-energy are evaluated as

G(n)
pq =

1
n!

∂nGpq

∂λn

�����λ=0
, (40)

Σ
(n)
pq =

1
n!

∂nΣpq

∂λn

�����λ=0
, (41)

where the exact (FCI) G and Σ are defined by Eqs. (1) and (7),
respectively, and evaluated accordingly. The derivatives are
obtained by a finite-difference numerical differentiation109,110

of these quantities calculated with a FCI program slightly mod-

ified so as to permit any given value for λ. There is a minimal
risk of introducing formulation or programming errors.

E. Algebraic recursive definition I

An algebraic recursive definition of virtually any pertur-
bation series can be obtained by analytically differentiating
with λ the exact (FCI) definition of a quantity with a scaled
Hamiltonian, Ĥ (0) + λV̂ (1). The nth derivative is identified as
the nth-order perturbation correction.

Using the resolution-of-the-identity with exact (N ± 1)-
electron wave functions, the definition of the m-by-m matrix of
the exact one-particle Green’s function (where m is the number
of orbitals) becomes

Gpq(ω) =
∑
µ,ν

〈ΨN ,0 |p̂† |ΨN−1,µ〉〈ΨN−1,µ |(ω − EN ,0 + Ĥ)−1 |ΨN−1,ν〉〈ΨN−1,ν |q̂|ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉

+
∑
µ,ν

〈ΨN ,0 |q̂|ΨN+1,µ〉〈ΨN+1,µ |(ω − Ĥ + EN ,0)−1 |ΨN+1,ν〉〈ΨN+1,ν |p̂† |ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉
. (42)

Every factor except p̂†, q̂, and ω is dependent on λ. The λ-
derivatives of the wave functions and energies of the N- and
(N ± 1)-electron states are already known; they are the pertur-
bation corrections of the respective quantities given by MBPT
or HCPT [Eqs. (38) and (39)].

Let us first consider the λ-derivative of the second factor
in the numerator of each term,

〈ΨN±1,µ |(ω ± EN ,0 ∓ Ĥ)−1 |ΨN±1,ν〉

= G (0)
N±1,µν + λG (1)

N±1,µν + λ2G (2)
N±1,µν + · · · , (43)

where G (n)
N±1,µν (the frequency argument is omitted for brevity)

is the nth-order perturbation correction to a many-particle
Green’s function, which is an M-by-M matrix where M is
the number of all (N ±1)-electron states. Hereafter, a “Green’s
function” without a qualifier refers to the one-particle Green’s
function, G or Gpq.

Since the bra and ket wave functions are the eigenfunc-
tions of Ĥ, these factors can be simplified, reducing Eq. (42)
into Eq. (2). However, we must not make such simplification
here because once these wave functions are expanded in a per-
turbation series, they are neither eigenfunctions nor orthogonal
to one another across different states. In other words, whereas
the left-hand side of Eq. (43) may be diagonal, the individual
terms in the right-hand side are not. For a similar reason, we
need to retain the normalizing denominator, 〈ΨN ,0 |ΨN ,0〉, in
each term of Eq. (42); while the exact N-electron wave func-
tion may be presumed normalized, its perturbation expansions
are not. On the other hand, the (N ±1)-electron wave functions
used in the resolution of the identity are normalized by the sec-
ond factor in each numerator of Eq. (42), which involves an
inverse operator.

Using the matrix identity,9

(A − B)−1 = A−1 + (A − B)−1BA−1 (44)

= A−1 + A−1B(A − B)−1 (45)

= A−1 + A−1BA−1 + A−1BA−1BA−1

+ A−1BA−1BA−1BA−1 + · · · (46)

with

Aµν = 〈Ψ
(0)
N±1,µ |ω ± E(0)

N ,0 ∓ Ĥ (0) |Ψ
(0)
N±1,ν〉, (47)

Bµν = −
∞∑

n=1

n∑
i=0

〈Ψ
(i)
N±1,µ |ω ∓ Ĥ (0) |Ψ

(n−i)
N±1,ν〉

±

∞∑
n=1

n−1∑
i=0

〈Ψ
(i)
N±1,µ |V̂

(1) |Ψ
(n−i−1)
N±1,ν 〉

∓

∞∑
n=1

n∑
i=0

n−i∑
j=0

E(j)
N ,0〈Ψ

(i)
N±1,µ |Ψ

(n−i−j)
N±1,ν 〉, (48)

we obtain the recursion for G (n)
N±1,µν as

G (n)
N±1,µν =

n∑
i=1

∑
κ

G (n−i)
N±1,µκV

(i)
N±1,κνG

(0)
N±1,νν (49)

with

V (n)
N±1,µν = −

n∑
i=0

〈Ψ
(i)
N±1,µ |ω ∓ Ĥ (0) |Ψ

(n−i)
N±1,ν〉

±

n−1∑
i=0

〈Ψ
(i)
N±1,µ |V̂

(1) |Ψ
(n−i−1)
N±1,ν 〉

∓

n∑
i=0

n−i∑
j=0

E(j)
N ,0〈Ψ

(i)
N±1,µ |Ψ

(n−i−j)
N±1,ν 〉, (50)

which is initiated with the zeroth-order quantities given by

G (0)
N±1,µν = δµν(ω ± E(0)

N ,0 ∓ E(0)
N±1,µ)−1, (51)
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where E(0)
N ,0 or E(0)

N±1,µ is the sum of the HF energies of the
spinorbitals occupied in the corresponding Slater determinant.

With the recursion of the many-particle Green’s function,
the same for the one-particle Green’s function can be obtained
as

G(n)
pq =

n∑
i=0

n−i∑
j=0

∑
µ,ν

z(i)∗
N−1,µpG

( j)
N−1,µνz(n−i−j)

N−1,νq

+
n∑

i=0

n−i∑
j=0

∑
µ,ν

z(i)∗
N+1,µqG

( j)
N+1,µνz(n−i−j)

N+1,νp

−

n∑
i=1

D(i)G(n−i)
pq . (52)

The reader is reminded that the above equation is valid for n
= 0 with the last term with null summation range omitted and
can, therefore, be used to initiate the recursion. Here, z’s are
the perturbation corrections to the first and third factors in each
numerator of Eq. (42) and are given by

z(n)
N−1,νq =

n∑
i=0

〈Ψ
(i)
N−1,ν |q̂|Ψ

(n−i)
N ,0 〉, (53)

z(n)
N+1,νp =

n∑
i=0

〈Ψ
(i)
N+1,ν |p̂

† |Ψ
(n−i)
N ,0 〉. (54)

In Eq. (52), D(i) originates from the normalizing denominators
of Eq. (42). Using the scalar version of Eq. (44), the reciprocal
of the denominator is expanded as

〈ΨN ,0 |ΨN ,0〉
−1 = 1 − λD(1) − λ2D(2) + λ2D(1)D(1)

− λ3D(3) + λ3D(2)D(1) + λ3D(1)D(2)

− λ3D(1)D(1)D(1) + · · · (55)

with

D(1) = 〈Ψ
(0)
N ,0 |Ψ

(1)
N ,0〉 + 〈Ψ(1)

N ,0 |Ψ
(0)
N ,0〉, (56)

D(2) = 〈Ψ
(0)
N ,0 |Ψ

(2)
N ,0〉 + 〈Ψ(1)

N ,0 |Ψ
(1)
N ,0〉 + 〈Ψ(2)

N ,0 |Ψ
(0)
N ,0〉, (57)

and so forth, or more generally,

D(n) =

n∑
i=0

〈Ψ
(i)
N ,0 |Ψ

(n−i)
N ,0 〉. (58)

This can be further simplified with 〈Ψ(n)
N ,0 |Ψ

(0)
N ,0〉 = δn0, but we

delay this simplification until Appendix B.
We have so far found it exceedingly difficult to reach

this or any of the subsequent recursions using the superopera-
tor algebra.5,7,9,18,111 In its present form, this language seems
intractable because of the ambiguity of the choice of bra and
ket wave functions when evaluating superoperator expecta-
tion values, their lack of Hermiticity, and other missing details
needed for reliable derivations at all orders. However, it should
be possible to sharpen this language into an even more use-
ful form25 perhaps with the aid of the algebraic recursions
presented here.

We have also been unsuccessful in using Löwdin’s per-
turbation theory based on the inner-projection technique112

to derive these recursions. As Öhrn and Born17 implied
and Kutzelnigg and Mukherjee25 pointed out, this tends to
treat correlation in the Green’s-function operator and ground-
state wave function differently, unlike in the diagrammatic
Feynman–Dyson perturbation theory or the foregoing λ-
derivative derivation, where these two types of correlations
are included on an equal footing. The inner-projection tech-
nique may instead be used to define a different but equally
valid (perhaps even superior) perturbation series.

The same can be said about a CC expansion to the
Green’s function,85,86 leading to frequency-independent dia-
grams, which also decouple (N + 1)- and (N � 1)-electron sec-
tors. The time- or frequency-dependence and coupling of the
two sectors is inevitable in the Feynman–Dyson perturbation
expansion of the Green’s function, given its origin as a prop-
agator in quantum electrodynamics,113–115 which “measures
the local response of the field at a given point at a later time
to a local disturbance of the field at another given point at
an earlier time.”116 The CC expansion offers an alternative,
systematic approximation series,72,117–123 which is potentially
superior to an MBPT expansion underlying the Feynman–
Dyson MBGF. See also Sec. 4.3 of Ref. 97, in which the
relationship between the ∆MPn and CC theories for electron
detachment and attachment is elucidated.

F. Algebraic recursive definition II

The resolution-of-the-identity operator inserted in Eq. (1)
may be composed of any complete set of (N±1)-electron wave
functions. Using the one made up of single Slater determinants,
we can write the exact Green’s function as

Gpq(ω) =
∑
µ,ν

〈ΨN ,0 |p̂† |Φ
(0)
N−1,µ〉〈Φ

(0)
N−1,µ |(ω − EN ,0 + Ĥ)−1 |Φ

(0)
N−1,ν〉〈Φ

(0)
N−1,ν |q̂|ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉

+
∑
µ,ν

〈ΨN ,0 |q̂|Φ
(0)
N+1,µ〉〈Φ

(0)
N+1,µ |(ω − Ĥ + EN ,0)−1 |Φ

(0)
N+1,ν〉〈Φ

(0)
N+1,ν |p̂

† |ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉
. (59)

Differentiation with respect to λ of this definition leads to
an alternative, but equivalent, recursion for G’s. This defi-
nition has an advantage over the previous one, Eq. (42), in
that the single Slater determinants do not depend on λ and

their λ-derivatives need not be taken. The resulting recursion
equations are, therefore, simpler and a general-order algorithm
implementing them tends to be more stable and efficient, not
requiring HCPT energies or wave functions.
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Perturbation corrections to the many-particle Green’s
functions are then defined as

〈Φ
(0)
N±1,µ |(ω ± EN ,0 ∓ Ĥ)−1 |Φ

(0)
N±1,ν〉

= G̃
(0)
N±1,µν + λG̃

(1)
N±1,µν + λ2G̃

(2)
N±1,µν + · · · , (60)

which are shown to obey the following recursion:

G̃
(n)
N±1,µν = ±

∑
κ

G̃
(n−1)
N±1,µκ Ṽ

(1)
N±1,κνG̃

(0)
N±1,νν

∓

n∑
i=1

G̃
(n−i)
N±1,µνE(i)

N ,0G̃
(0)
N±1,νν (61)

with

Ṽ
(1)

N±1,µν = 〈Φ
(0)
N±1,µ |V̂

(1) |Φ
(0)
N±1,ν〉. (62)

These are obtained by differentiating the left-hand side of Eq.
(60) with λ or by substituting in Eq. (44),

Aµν = 〈Φ
(0)
N±1,µ |ω ± E(0)

N ,0 ∓ Ĥ (0) |Φ
(0)
N±1,ν〉, (63)

Bµν = ±〈Φ
(0)
N±1,µ |V̂

(1) |Φ
(0)
N±1,ν〉

∓

∞∑
n=1

E(n)
N ,0〈Φ

(0)
N±1,µ |Φ

(0)
N±1,ν〉. (64)

The recursion can be initiated with the zeroth-order
conditions,

G̃
(0)
N±1,µν = δµν(ω ± E(0)

N ,0 ∓ E(0)
N±1,µ)−1. (65)

The many-particle Green’s function, G̃
(n)

, of this subsection
differs from G (n) in Sec. II E for n ≥ 1.

With the many-particle Green’s function and the perturba-
tion corrections to the first and third factors in each numerator
of Eq. (59) given by

z̃(n)
N−1,νq = 〈Φ

(0)
N−1,ν |q̂|Ψ

(n)
N ,0〉, (66)

z̃(n)
N+1,νp = 〈Φ

(0)
N+1,ν |p̂

† |Ψ
(n)
N ,0〉, (67)

we can write the recursive definition of the one-particle Green’s
function as

G(n)
pq =

n∑
i=0

n−i∑
j=0

∑
µ,ν

z̃(i)∗
N−1,µpG̃

( j)
N−1,µν z̃(n−i−j)

N−1,νq

+
n∑

i=0

n−i∑
j=0

∑
µ,ν

z̃(i)∗
N+1,µqG̃

( j)
N+1,µν z̃(n−i−j)

N+1,νp

−

n∑
i=1

D(i)G(n−i)
pq , (68)

for n ≥ 1, where D(n) is already defined by Eq. (58). This is
also valid for n = 0 with the last term omitted.

For its simplicity, this recursion is used for most numerical
calculations in this article as well as in algebraic derivations of
Σ(1) and Σ(2) in Appendix A. It also serves as the basis of the
linked-diagram and irreducible-diagram theorems of MBGF
discussed in Appendixes B and C. We can have some glimpse
of the outlines of these arguments in the recursion equations.
The second term in Eq. (61) is the so-called renormalization
term and consists of simple products (i.e., not tensor contrac-
tions with at least one common index) of lower-order MBPT
energies and many-particle Green’s functions. They, therefore,
correspond to unlinked diagrams, violating size-consistency if
they persist. That these are subtracted from the parent (first)
term suggests that the parent term also contains the same
unlinked diagrams, which are canceled exactly by the second
term, after some systematic factorization of the denominators
in the former (see Appendix B). Likewise, the last term in
Eq. (68) is another renormalization term and is unlinked, which
is expected to annihilate the same in the first two terms, after
systematic denominator factorization. The subtraction of these
manifestly unlinked terms should leave only the linked con-
tributions in the one-particle Green’s function. The details are
given in Appendix B.

G. Algebraic recursive definition III

Yet another recursive definition of the perturbation series
of the one-particle Green’s function can be obtained by insert-
ing the resolution-of-the-identity in the basis of two complete
sets of the zeroth-order and exact (FCI) wave functions of the
(N ± 1)-electron states,

Gpq(ω) =
∑
µ,ν

〈ΨN ,0 |p̂† |ΨN−1,µ〉〈Ψ
(0)
N−1,µ |(ω − EN ,0 + Ĥ)−1 |ΨN−1,ν〉〈Ψ

(0)
N−1,ν |q̂|ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉

+
∑
µ,ν

〈ΨN ,0 |q̂|ΨN+1,µ〉〈Ψ
(0)
N+1,µ |(ω − Ĥ + EN ,0)−1 |ΨN+1,ν〉〈Ψ

(0)
N+1,ν |p̂

† |ΨN ,0〉

〈ΨN ,0 |ΨN ,0〉
, (69)

where Ψ(0)
N±1,µ is the zeroth-order HCPT wave function for the

µth state, as given by Eq. (35). For a Koopmans state, it is
a single Slater determinant and may be denoted by Φ(0)

N±1,µ,
but in a more general case, it is a linear combination of

degenerate Slater determinants, whose expansion coefficients
are unknown a priori and need to be determined by the
HCPT.103 The two sets are individually complete, justifying
Eq. (69). We consider this expansion because the resulting
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recursion equations contain the ∆MPn expressions, thus clari-
fying the relationship between ∆MPn and MBGF, which is to
be fully elucidated in Appendix D.

As before, the following numerator factors can be
expanded in a perturbation series as

〈Ψ
(0)
N±1,µ |(ω ± EN ,0 ∓ Ĥ)−1 |ΨN±1,ν〉

= Ḡ
(0)
N±1,µν + λḠ

(1)
N±1,µν + λ2Ḡ

(2)
N±1,µν + · · · , (70)

where the many-particle Green’s function, Ḡ
(n)

(which differs

from either G (n) or G̃
(n)

), is defined recursively as

Ḡ
(n)
N±1,µν =

n∑
i=1

∑
κ

Ḡ
(n−i)
N±1,µκ V̄

(i)
N±1,κνḠ

(0)
N±1,νν (71)

with

V̄
(n)

N±1,µν = −(ω ± E(0)
N ,0 ∓ E(0)

N±1,µ)〈Ψ(0)
N±1,µ |Ψ

(n)
N±1,ν〉

+
n∑

i=1

〈Ψ
(0)
N±1,µ |Ψ

(n−i)
N±1,ν〉Σ̄

(i)
ν , (72)

where Σ̄(n)
ν is the ∆MPn correction for the νth state, defined by

Eq. (27) or (28). This equation can be obtained by simply set-
ting i = 0 in the summations of Eq. (50) and making use of the
recursion [Eq. (31)] of the Rayleigh–Schrödinger perturbation
theory, which is satisfied by a HCPT wave function, Ψ(n)

N±1,ν . It
is initiated with the zeroth-order quantities

Ḡ
(0)
N±1,µν = δµν(ω ± E(0)

N ,0 ∓ E(0)
N±1,µ)−1. (73)

The recursive definition of the one-particle Green’s func-
tion is then given by

G(n)
pq =

n∑
i=0

n−i∑
j=0

∑
µ,ν

x(i)
N−1,µpḠ

( j)
N−1,µνy(n−i−j)

N−1,νq

+
n∑

i=0

n−i∑
j=0

∑
µ,ν

x(i)
N+1,µqḠ

( j)
N+1,µνy(n−i−j)

N+1,νp

−

n∑
i=1

D(i)G(n−i)
pq , (74)

for n ≥ 1 (with the last term omitted when n = 0) with

x(n)
N−1,µp =

n∑
i=0

〈Ψ
(i)
N ,0 |p̂

† |Ψ
(n−i)
N−1,µ〉, (75)

y(n)
N−1,νq = 〈Ψ

(0)
N−1,ν |q̂|Ψ

(n)
N ,0〉, (76)

x(n)
N+1,µq =

n∑
i=0

〈Ψ
(i)
N ,0 |q̂|Ψ

(n−i)
N+1,µ〉, (77)

y(n)
N+1,νp = 〈Ψ

(0)
N+1,ν |p̂

† |Ψ
(n)
N ,0〉. (78)

III. GENERAL-ORDER CALCULATIONS
A. Diagrams

We have developed a symbolic computing program124

that generates self-energy diagrams according to the three
diagram-enumeration rules illustrated in Figs. 1–3. It then syn-
thesizes codes that evaluate the algebraic formulas of these

TABLE III. The nth-order perturbation correction (in Eh) to the self-energy,
Σ(n), of BH (rB-H = 1.232 Å) at ω = −0.2 Eh obtained by the automatic
generation and evaluation of diagrams. The minimal (STO-3G) basis set and
the frozen core approximation were used. The highest-occupied MO (HOMO)
corresponds to p = q = 3. The HF and FCI energies are �24.752 788 and
−24.809 629 Eh, respectively.

Σ
(2)
pq q = 2 3 4 5 6

p = 2 −0.010 239 −0.000 984 0.000 000 −0.000 000 0.011 268
3 −0.000 984 0.001 304 0.000 000 −0.000 000 0.007 050
4 0.000 000 0.000 000 0.003 328 −0.000 000 0.000 000
5 −0.000 000 −0.000 000 −0.000 000 0.003 328 −0.000 000
6 0.011 268 0.007 050 0.000 000 −0.000 000 0.015 802

Σ
(3)
pq q = 2 3 4 5 6

p = 2 −0.003 632 −0.004 702 0.000 000 −0.000 000 0.008 025
3 −0.004 702 −0.004 586 0.000 000 −0.000 000 0.005 288
4 0.000 000 0.000 000 0.012 711 −0.000 000 0.000 000
5 −0.000 000 −0.000 000 −0.000 000 0.012 711 −0.000 000
6 0.008 025 0.005 288 0.000 000 −0.000 000 0.009 849

Σ
(4)
pq q = 2 3 4 5 6

p = 2 −0.000 858 −0.004 281 0.000 000 −0.000 000 0.004 964
3 −0.004 281 −0.004 399 0.000 000 −0.000 000 0.003 296
4 0.000 000 0.000 000 0.011 417 −0.000 000 0.000 000
5 −0.000 000 −0.000 000 −0.000 000 0.011 417 −0.000 000
6 0.004 964 0.003 296 0.000 000 −0.000 000 0.005 991

Σ
(5)
pq q = 2 3 4 5 6

p = 2 0.000 316 −0.003 118 0.000 000 −0.000 000 0.003 026
3 −0.003 118 −0.003 129 0.000 000 −0.000 000 0.001 957
4 0.000 000 0.000 000 0.009 122 −0.000 000 0.000 000
5 −0.000 000 −0.000 000 −0.000 000 0.009 122 −0.000 000
6 0.003 026 0.001 957 0.000 000 −0.000 000 0.003 596

diagrams obtained with the diagram-interpretation rules in
Table II. This can be used to give order-by-order perturba-
tion corrections to the self-energy up to high orders, although
it may not be considered as a general-order algorithm, strictly
speaking.

Table III gives the numerical values of the self-energy
matrix of the BH molecule calculated in this way. The details
of the calculation are given in the table caption. From here on,
p and q label spatial orbitals and only the αα spin block of the
self-energy matrix is shown. The αβ and βα blocks are zero,
and the β β block is the same as the αα block.

B. λ-variation

Table IV lists perturbation corrections to the self-energy
of the BH molecule, the same system as Table III but
obtained with the λ-variation method. The symmetric seven-
point finite-difference formulas109,110 were used for the first
through fifth derivatives (corresponding to the first- through
fifth-order perturbation corrections to the self-energy) with an
evenly spaced grid centered at λ = 0 with the grid spacing of
∆λ = 0.01. Very tight convergence of the FCI roots is essential
for more precise results.

The fact that the two data sets in Tables III and IV
agree with each other within the precision of finite-difference
approximations (which seems no worse than 10�5 Eh at the fifth
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TABLE IV. Same as Table III but obtained by the λ-variation method.

Σ
(2)
pq q = 2 3 4 5 6

p = 2 −0.010 239 0.000 984 0.000 000 0.000 000 −0.011 268
3 0.000 984 0.001 304 0.000 000 0.000 000 0.007 050
4 0.000 000 0.000 000 0.003 328 −0.000 000 0.000 000
5 0.000 000 0.000 000 −0.000 000 0.003 328 −0.000 000
6 −0.011 268 0.007 050 0.000 000 −0.000 000 0.015 802

Σ
(3)
pq q = 2 3 4 5 6

p = 2 −0.003 632 0.004 702 −0.000 000 −0.000 000 −0.008 025
3 0.004 702 −0.004 586 −0.000 000 −0.000 000 0.005 288
4 −0.000 000 −0.000 000 0.012 711 0.000 000 −0.000 000
5 −0.000 000 −0.000 000 0.000 000 0.012 711 −0.000 000
6 −0.008 025 0.005 288 −0.000 000 −0.000 000 0.009 849

Σ
(4)
pq q = 2 3 4 5 6

p = 2 −0.000 858 0.004 281 −0.000 000 −0.000 000 −0.004 964
3 0.004 281 −0.004 398 0.000 000 −0.000 000 0.003 296
4 −0.000 000 0.000 000 0.011 416 0.000 000 0.000 000
5 −0.000 000 −0.000 000 0.000 000 0.011 417 0.000 000
6 −0.004 964 0.003 296 0.000 000 0.000 000 0.005 994

Σ
(5)
pq q = 2 3 4 5 6

p = 2 0.000 312 0.003 120 0.000 000 0.000 000 −0.003 028
3 0.003 120 −0.003 131 0.000 000 0.000 000 0.001 958
4 0.000 000 0.000 000 0.009 137 0.000 000 0.000 000
5 0.000 000 0.000 000 0.000 000 0.009 126 0.000 004
6 −0.003 028 0.001 958 0.000 000 0.000 004 0.003 593

order) strongly suggests (but never proves) that the diagram-
enumeration and diagram-interpretation rules are complete
and correct to all orders. Some off-diagonal elements of the
self-energy have their signs reversed between the two data sets
simply because of the arbitrariness of MO phases (the data in
Table III were obtained with a different HF program than the
rest of the results).

C. ∆MPn

The ∆MPn method97 was extended to non-Koopmans
states by implementing a general-order HCPT method103 using
the determinant-based algorithm.66 Our implementation was
verified by the λ-variation method, which computed up to
the fourth-order HCPT corrections to the energies of non-
Koopmans states. They were evaluated as the λ-derivatives of
the FCI energies with the forward seven- or nine-point finite
difference formulas with λ = 0 as the lower end (not the cen-
ter) of an evenly spaced grid with ∆λ = 0.01. This asymmetic
grid choice was to safeguard against the states that are degen-
erate at λ = 0 but become non-degenerate and can be ordered
differently between λ < 0 and λ > 0. These derivatives were
found to agree (within the precision of the finite-difference
approximations) with our general-order HCPT implementa-
tion at several low perturbation orders (not shown). The HCPT
wave functions and energies were also used in implementing
two of the three algebraic recursions.

Figure 6 plots the ∆MPn electron binding energies of the
electron-detached states [Eq. (27)] of the BH molecule. They

FIG. 6. The ∆MPn electron binding energies of the (N � 1)-electron states of
the BH molecule (the same as in Table III) as a function of the perturbation
order (n).

converge rapidly at the FCI results (open circles) with increas-
ing n for both Koopmans (red lines) and non-Koopmans states
(blue lines) except for several non-Koopmans states (green
lines) where they display clear signs of divergence. The most
striking observation, however, is the massive first-order cor-
rections to the energies of non-Koopmans states, bringing the
latter in line with the FCI results. This is in sharp contrast
with null first-order corrections for Koopmans states. This
underscores the extremely large orbital-relaxation effect on
non-Koopmans states, the majority of which seems to be cap-
tured by a mixing of degenerate single determinants [Eq. (35)]
at the first order.

We defer the comparison of the ∆MPn data with those
from various approximations of MBGF until Sec. III D.

D. Algebraic recursive definitions

Recursion I, II, or III was invoked to determine high-order
perturbation corrections to the one-particle Green’s function
and self-energy. Taking recursion I as an example, the com-
putational procedure is outlined as follows: (i) High-order
perturbation corrections to the ground-state wave function
and energy of the N-electron system are obtained with the
determinant-based, general-order MBPT algorithm;73 (ii) the
same for the ground and all excited states of the (N ± 1)-
electron system are then determined by the determinant-based,
general-order HCPT algorithm103 described in Sec. III C; (iii)
with these, z’s and D’s are generated68,72 up to sufficiently high
orders; (iv) for a given ω, recursion equations (49) and (50)
are evaluated68,72 to construct higher-order perturbation cor-
rections to the many-particle Green’s function (G) in the form
of M-by-M matrices; (v) next, the recursion equation [Eq. (52)]
is used to generate higher-order perturbation corrections to the
one-particle Green’s function (G) in the form of m-by-m matri-
ces; (vi) the perturbation corrections to the self-energy matrix
(Σ) can be obtained recursively using Eq. (23).

Recursion II renders step (ii) unnecessary, making the
whole calculation more stable and faster (relatively speaking
because at any order these calculations cost more than a FCI
calculation). All numerical data in this section are, therefore,
obtained with recursion II.
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Table V lists the perturbation corrections to the self-energy
of the BH molecule obtained by the general-order algorithm
outlined above using recursion II. We verified that the other
two recursions give the identical results to all shown dig-
its. They also agree with the data obtained by the automatic
generation of diagrams (Table III) apart from nonessential
sign change and also with the results of the λ-variation cal-
culations within the numerical precision of the latter. This
observation underscores the full mathematical equivalence
of the three algebraic recursions, λ-variation, and diagram-
matics.

Table VI compares the MBGF(n) electron binding ener-
gies of the HOMO (highest-occupied MO) of the same sys-
tem in various (diagonal, frequency-independent, and both)

TABLE V. Same as Table III but obtained by a general-order MBGF algo-
rithm based on the algebraic recursion II. The results obtained with recursion
I or III are identical.

Σ
(2)
pq q = 2 3 4 5 6

p = 2 −0.010 239 0.000 984 0.000 000 0.000 000 −0.011 268
3 0.000 984 0.001 304 0.000 000 −0.000 000 0.007 050
4 0.000 000 0.000 000 0.003 328 0.000 000 −0.000 000
5 0.000 000 −0.000 000 −0.000 000 0.003 328 −0.000 000
6 −0.011 268 0.007 050 −0.000 000 −0.000 000 0.015 802

Σ
(3)
pq q = 2 3 4 5 6

p = 2 −0.003 632 0.004 702 0.000 000 0.000 000 −0.008 025
3 0.004 702 −0.004 586 0.000 000 −0.000 000 0.005 288
4 0.000 000 0.000 000 0.012 711 0.000 000 −0.000 000
5 0.000 000 −0.000 000 0.000 000 0.012 711 −0.000 000
6 −0.008 025 0.005 288 −0.000 000 −0.000 000 0.009 849

Σ
(4)
pq q = 2 3 4 5 6

p = 2 −0.000 858 0.004 281 0.000 000 0.000 000 −0.004 964
3 0.004 281 −0.004 399 0.000 000 −0.000 000 0.003 296
4 0.000 000 0.000 000 0.011 417 0.000 000 −0.000 000
5 0.000 000 −0.000 000 0.000 000 0.011 417 −0.000 000
6 −0.004 964 0.003 296 −0.000 000 −0.000 000 0.005 991

Σ
(5)
pq q = 2 3 4 5 6

p = 2 0.000 316 0.003 118 0.000 000 0.000 000 −0.003 026
3 0.003 118 −0.003 129 0.000 000 −0.000 000 0.001 957
4 0.000 000 0.000 000 0.009 122 0.000 000 −0.000 000
5 0.000 000 −0.000 000 0.000 000 0.009 122 −0.000 000
6 −0.003 026 0.001 957 −0.000 000 −0.000 000 0.003 596

Σ
(6)
pq q = 2 3 4 5 6

p = 2 0.000 709 0.002 080 0.000 000 0.000 000 −0.001 836
3 0.002 080 −0.002 031 0.000 000 −0.000 000 0.001 124
4 0.000 000 0.000 000 0.007 036 0.000 000 −0.000 000
5 0.000 000 −0.000 000 0.000 000 0.007 036 −0.000 000
6 −0.001 836 0.001 124 −0.000 000 −0.000 000 0.002 117

Σ
(7)
pq q = 2 3 4 5 6

p = 2 0.000 725 0.001 318 0.000 000 0.000 000 −0.001 089
3 0.001 318 −0.001 282 0.000 000 −0.000 000 0.000 628
4 0.000 000 0.000 000 0.005 286 0.000 000 −0.000 000
5 0.000 000 −0.000 000 0.000 000 0.005 286 −0.000 000
6 −0.001 089 0.000 628 −0.000 000 −0.000 000 0.001 207

TABLE VI. The electron binding energy (in Eh) of the HOMO (p = 3 and
εp = −0.246 538 Eh) of the BH molecule (the same as in Table III) calculated
by MBGF(n) using the self-energy in the diagonal, ω-independent, both, or
no approximation (“full”). The electron binding energy of the same orbital in
the ∆MPn approximation is also shown.

Diagonal,
n Full Diagonal ω-indep. ω-indep. ∆MPn

0 −0.246 54 −0.246 54a −0.246 54 −0.246 54a −0.246 54a

1 −0.246 54 −0.246 54a −0.246 54 −0.246 54a −0.246 54a

2 −0.244 11 −0.244 07a −0.244 05 −0.244 00a −0.244 00a

3 −0.247 69 −0.247 61a −0.247 74 −0.247 66a −0.247 66a

4 −0.251 13 −0.251 13 −0.251 40 −0.251 40 −0.251 52
5 −0.253 45 −0.253 56 −0.253 92 −0.254 04 −0.254 18
6 −0.254 86 −0.255 06 −0.255 47 −0.255 71 −0.255 71
7 −0.255 69 −0.255 96 −0.256 41 −0.256 73 −0.256 51
20 −0.257 00 −0.257 37 −0.257 92 −0.258 37 −0.257 00
∞ −0.257 00a −0.257 37a −0.257 92 −0.258 37a −0.257 00a

aSee also Ref. 97.

approximations to the self-energy against the one without
any such approximations (“full”). The ∆MPn electron binding
energy of the same orbital is also included.

As described above, the self-energies were derived from
the corresponding one-particle and many-particle Green’s
functions evaluated first. The latter are always divergent in the
frequency-independent approximation atω = εp because they
contain dangling lines (and/or articulation lines) with a diver-
gent resolvent factor of 1/∆ωp (see Appendix C). Therefore,
the self-energies in the frequency-independent approximation
atω = εp were determined by a linear interpolation from those
on an evenly spaced grid ofω’s avoiding this pole. In this table,
we only show digits that are safely correct.

The MBGF(n) data with the three approximations to the
self-energy are all different from one another at n ≥ 2. These
differences persist in the n = ∞ limit. The effects of the diag-
onal and frequency-independent approximations are roughly
additive. This can be understood graphically from Fig. 7,
in which the left- and right-hand sides of the Dyson equa-
tion [Eq. (11) or (12)] are plotted as a function of ω. Let
us focus on the blue curve, which plots the left-hand side
of the Dyson equation [Eq. (11)] with the self-energy sum-
ming up to the twentieth-order perturbation correction. The
intersections (only one is visible, indicated by the blue circle)
of this curve with the diagonal line, ω, are the roots of the
Dyson equation with no approximation; the blue circle cor-
responds to the MBGF(20) electron binding energy with no
approximation, which is practically exact (FCI). The green
curve is a locus of the left-hand side of the Dyson equation
[Eq. (12)] with the self-energy in the diagonal approxima-
tion. Its intersections (again only one is visible, which is the
green cross) with the diagonal ω-line are the MBGF(20) elec-
tron binding energies in the diagonal approximation. On the
other hand, the values of these curves at ω = εp (indicated by
arrows, where p labels the HOMO) are the electron binding
energies in the frequency-independent approximation. There-
fore, the red diamond occurs at the electron binding energy in
the frequency-independent approximation, whereas the orange
square in the diagonal and frequency-independent approxima-
tions. Because of the near-perfect parallelism of the two (blue
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FIG. 7. The left-hand side of the Dyson equation [Eq. (11) or (12)] as a
function of ω for the HOMO of the BH molecule (the same as in Table III)
including up to the nth-order self-energy (n = 1, 2, 3, 4, 20). The intersections
of these curves with the diagonal line, ω, are the roots (electron binding
energies) of the Dyson equation. The vertical arrows occur atω = εp, where p
corresponds to the HOMO, indicating the roots in the frequency-independent
approximation.

and green) curves, the difference in the frequency-independent
electron binding energy with and without the diagonal approx-
imation is nearly the same in the frequency-dependent case.
This explains the near-additivity of the effects of the two
approximations.

Furthermore, the small gradients of the curves mean that
the frequency-independent approximation is accurate. Small
gradients, in turn, are the result of the absence of nearby poles
in the self-energy and may be expected to hold true for the
HOMO and LUMO (lowest-unoccupied MO) in most any sys-
tems. The errors caused by the diagonal approximation are
even smaller in this example, but it may be unsafe to gener-
alize this observation obtained using the tiny basis set with
extremely few off-diagonal self-energy matrix elements. It is,
however, probably safe to state that the perturbation expan-
sion of the self-energy tends to be the greatest source of
errors.

As already established,97 the ∆MPn self-energy agrees
with the one in the diagonal, frequency-independent approx-
imation at 1 ≤ n ≤ 3 but converges at the full self-energy in
the FCI limit. These data substantiate our speculation97 that
∆MPn does not agree with MBGF(n) or any of its approxima-
tion in the range of 4 ≤ n < ∞ and, therefore, constitutes a
distinct perturbation series.

Figures 8 and 9 plot the electron binding energies of the
HOMO and LUMO, respectively, of the BH molecule as a
function of the perturbation order calculated by MBGF(n)
and ∆MPn. For this tiny system, the diagonal approx-
imation has no effect on the LUMO electron binding
energy.

The following observations can be made from these fig-
ures: (1) The second-order corrections can have the wrong
sign, sometimes causing the second-order electron binding
energies to be surprisingly poor; (2) at the third and higher
orders, convergence is monotonic and uniform (as opposed to
staircase-like as in MBPT) but not particularly rapid, making
higher-order corrections relatively more important and worth-
while. It takes third- or even fourth-order corrections to undo

FIG. 8. The electron binding energies of the HOMO of the BH molecule (the
same as in Table III) as a function of the perturbation order.

the errors introduced at the second order; (3) the errors caused
by the diagonal and/or frequency-independent approximations
increase with the perturbation order but always stay much less
than the variation with the perturbation order. These errors
may be underestimated by low-order MBGF studies and will
not reach their full magnitudes until at the tenth order or so;
(4) for the HOMO, surprisingly, ∆MPn converges noticeably
more rapidly than full MBGF, despite the fact that the former
includes the off-diagonal elements and frequency dependence
of the self-energy more approximately than the latter especially
at low orders. This is, however, likely the result of cancella-
tion of errors between the diagonal and frequency-independent
approximations (which underestimate the electron binding
energies) and low-order perturbation approximations (which
overestimate the same). In fact, ∆MPn converges more slowly
than full MBGF for the LUMO.

An important property of MBGF is the presence of
multiple roots to a one-particle Dyson equation owing to
the frequency dependence of the self-energy. If it were
not for this, no one-particle equation could describe an
exact theory as it would have very few roots as compared
with far more electron-detached and attached many-electron
states.

FIG. 9. The electron binding energies of the LUMO of the BH molecule (the
same as in Table III) as a function of the perturbation order. The effect of the
diagonal approximation to the self-energy is null in this tiny example.
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FIG. 10. Same as Fig. 7 in a wider range of ω.

Figure 10 is the same as Fig. 7 with the displayed range of
ω expanded to include the other roots of the Dyson equation
than the Koopmans state. Here, the colorful curves (including
the flat black line) are the left-hand side of the Dyson equation
in the diagonal approximation [Eq. (12)], whereas the black
diagonal line is ω itself. The intersections between them seen
in ω < −1.2 Eh are the roots corresponding to non-Koopmans
states, whereas those around ω ≈ −0.25 Eh are the Koopmans
state (the area enlarged in Fig. 7).

Figure 11 plots the same but for the LUMO. In this figure,
non-Koopmans solutions are visible both in ω < −0.7 Eh and
ω > 1.2 Eh, while the Koopmans roots are concentrated in
a small area around ω ≈ 0.27 Eh. Although the perturbative
self-energies beyond the first order are invariably divergent
at many ω’s, the intersections (roots) can never be divergent
for the simple reason that they must also be on the diago-
nal ω-line, which is analytic everywhere. This is how MBGF
can describe a strongly correlated wave function, while being
a perturbation theory (recall that non-Koopmans states are
multi-determinantal even in their zeroth-order wave functions
and are deemed strongly correlated). Put another way, since
MBGF(n) is exact at n = ∞, it cannot be divergent even at
n < ∞.

FIG. 11. Same as Fig. 7 or 10 but for the LUMO.

FIG. 12. A non-Koopmans solution of the Dyson equation in the diagonal
approximation to the self-energy for the LUMO of the BH molecule (the same
as in Table III) as a function of the perturbation order. The ∆MPn electron
binding energy for the same state is also plotted.

Interestingly, because of the symmetric and antisym-
metric forms of the poles in the odd- and even-order self-
energies, respectively, the intersections corresponding to non-
Koopmans roots seem to exist only in even-order MBGF,
which is not too surprising considering that MBGF(0) and
MBGF(1) clearly cannot have any non-Koopmans roots.
Figure 12 plots the positions of these intersections around
ω ≈ −0.8 Eh in Fig. 11 as a function of the perturbation
order, together with the ∆MPn electron binding energies of
what is likely the same state. For the reason stated above, we
have the MBGF(n) data only at even n’s (data for n > 8
were unavailable owing to too sharp a rise of the poles).
∆MPn, in contrast, reports electron binding energies of non-
Koopmans states at any order, including at the zeroth, first,
and odd orders. Furthermore, for this particular example, it is
more rapidly convergent at the FCI limit. These observations
may be taken to support ∆MPn over MBGF(n), but it should
be recalled that the former is frequently divergent, while the
latter (without the frequency-independent approximation) is
not.

FIG. 13. The electron binding energies of the HOMO�1 of the H2O molecule
(rO–H = 0.967 Å, aH–O–H = 107.6◦) as a function of the perturbation order.
The minimal (STO-3G) basis set and the frozen core approximation were
used. The HOMO�1 corresponds to p = q = 4. The HF and FCI energies are
�74.962 663 and −75.012 842 Eh, respectively.
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FIG. 14. Same as Fig. 13 but for the LUMO.

Figures 13 and 14 plot the electron binding energies of
the HOMO�1 and LUMO, respectively, of the H2O molecule
as a function of the perturbation order. They generally sup-
port the conclusions drawn from the BH molecular data.
MBGF(2) tends to overcorrect the correlation in electron bind-
ing energies much more than MBPT(2) does in total energies,
sometimes performing as poorly as MBGF(0) (i.e., Koop-
mans’ theorem). This makes MBGF(3) more important than
MBPT(3); we do not observe the staircase-like convergence
in MBGF but a more monotonic and uniform convergence
after the second order. The errors incurred by the diagonal
and/or frequency-independent approximation are less signifi-
cant than those from low-order perturbation approximations
but can be comparable to the fourth-order corrections. In
these two examples, ∆MPn converges less rapidly than full
MBGF, reaffirming that the opposite case found in Fig. 8 is
accidental.

IV. CONCLUDING REMARKS

Much of modern many-body physics depends on quantum
field theory,113–115 in which a time- or frequency-dependent
Green’s function plays a crucial role,116,125 which is rep-
resented by a (dressed) line in a linked Feynman diagram
expressing a size-consistent perturbation correction. This arti-
cle reports advances in the analytical, algorithmic, and numer-
ical aspects of high-order MBGF for nonrelativistic molecular
quantum mechanics.

The advances in the analytical aspect include the deriva-
tion of three distinct algebraic recursive definitions of pertur-
bative corrections to the one-particle Green’s function. It is
to be combined with the well-known recursion for the per-
turbative self-energy. On the basis of one of the three recur-
sions, we have derived, purely algebraically, the spinorbital
expressions of the first- and second-order self-energies. The
derivation is tedious but first-principles and extensible to any
order.

We have also shown that the one-particle Green’s
function and self-energy are diagrammatically linked and
size-consistent at any order, by applying the factorization
theorem with insertion to unlinked diagrams, which are
then found to cancel exactly the renormalization terms.

The linked-diagram theorem in a time-independent picture
just like the one by Manne91 for MBPT also holds for
MBGF.

The sum of the one-particle Green’s-function diagrams
that differ from one another in the time orderings of the p
or q vertex is shown to be the one in which the spans of
the resolvent lines are broken, facilitating the “trimming” of
those dangling lines and exposing a self-energy diagram. The
same systematic factorization of the resolvent lines intersect-
ing articulation lines justifies the removal of all reducible
self-energy diagrams. These are the main assertions of the
irreducible-diagram theorem.

We have also presented an algebraic proof of the equiv-
alence of ∆MPn and MBGF(n) in the diagonal, frequency-
independent approximation at 1 ≤ n ≤ 3 and the assign-
ment of the difference at n = 4 to the semi-reducible and
linked-disconnected diagrams.

On the algorithmic aspect, we have implemented six
pieces of computer code (many sharing the same subrou-
tines) that can evaluate the perturbation corrections to the
one-particle Green’s function and self-energy up to an arbitrary
high order. They implement the three recursions, automatic
generation and interpretation of diagrams, λ-variation, and
∆MPn, all but the last yielding the identical, nondivergent
perturbation series, mutually verifying the formulations and
implementations. In fact, the λ-variation method not only fur-
nishes numerical benchmark data of virtually any perturbation
series with a minimal risk of formulation or programming
errors but also suggests a universal strategy of deriving an
algebraic recursive definition of a given perturbation theory,
which has been adopted in this work.

Numerical results of these general-order MBGF calcula-
tions for the tiniest systems affordable have led to the following
conclusions: MBGF(2) can be rather poor; MBGF(n) at n ≥ 3
shows monotonic and uniform (as opposed to staircase-like)
convergence; MBGF(3) is relatively more important for elec-
tron binding energies than MBPT(3) for total energies; the
effects of the diagonal and frequency-independent approxi-
mations are roughly additive for Koopmans states and they do
not manifest fully until high orders (such as at the tenth order);
∆MPn can sometimes converge more rapidly than full MBGF
towards the FCI limit for either a Koopmans or non-Koopmans
state owing to error cancellation in the former; MBGF(n)
may lack solutions for non-Koopmans states at certain values
of n.
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APPENDIX A: DERIVATION OF Σ(1) AND Σ(2)

1. Algebraic derivation

Here, we present a purely algebraic derivation of the
first- and second-order self-energy expressions in the canon-
ical HF reference, which is distinct from the usual diagram-
matic derivation or the one based on the superoperator alge-
bra. It instead relies on recursion II given in Sec. II F and
is carried out with a straightforward, albeit tedious, applica-
tion of simple arithmetics and an equivalent of the Slater–
Condon rules (i.e., the normal-ordered second quantization
and Wick’s theorem34 facilitated by a symbolic computing
program126).

Let us first consider the expressions of z̃’s defined by
Eqs. (66) and (67). According to Eq. (31), the first-order pertur-
bation correction to the ground-state N-electron wave function
is given by

|Ψ
(1)
N ,0

〉
= R̂V̂ (1) |Φ

(0)
N ,0

〉
− R̂E(1)

N ,0 |Φ
(0)
N ,0

〉
(A1)

=
1

2!2!
(T (1)

2 )ab
ij |Φ

ab
ij

〉
, (A2)

where

R̂ = (E(0)
N ,0 − Ĥ (0))−1, (A3)

E(1)
N ,0 = 〈Φ

(0)
N ,0 |V̂

(1) |Φ
(0)
N ,0〉, (A4)

and

(T (1)
2 )

ab

ij
=
〈ab| |ij〉

∆ab
ij

, (A5)

where Φab
ij denotes a doubly excited N-electron determinant.

Einstein’s convention of implied summations over repeated
indices (that do not appear in the left-hand sides) is used
when summation ranges are obvious and unimportant for the
discussion. At the second order, we have
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where
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and
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(T (2)
4 )abcd

ijkl = P(ab|cd)P(ij |kl)
〈cd | |ij〉(T (1)

2 )ab
kl

∆abcd
ijkl

, (A12)

where P(ab|cd), etc., are index-permutation operators, whose
precise definition can be found in pp. 284 and 285 of Shavitt
and Bartlett.34

We can then find the formulas of z̃’s contracted with
appropriate determinants as follows:

|Φ
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N−1,ν
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N−1,νp = δip |Φi
〉
, (A13)

|Φ
(0)
N+1,ν
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z̃(0)

N+1,νp = δap |Φ
a〉, (A14)

at the zeroth order, where Φi and Φa are, respectively, the 1h
and 1p Koopmans single determinants. At the first order, we
have
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Here, for instance, Φa
ij is a 2h1p non-Koopmans single deter-

minant. At the second order, we obtain
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and
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Next, we construct the order-by-order algebraic formula
of G̃ (the many-particle Green’s function) using Eq. (61).
We then form G (the one-particle Green’s function) with
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Eq. (68) followed by the evaluation of Σ (the self-energy) via
Eq. (23).

The zeroth-order many-particle Green’s functions,

G̃
(0)
N±1,µν , are already given by Eq. (65) and are diagonal. This

immediately leads to

G(0)
pq =

δpq

∆
p
ω

. (A19)

According to Eq. (61), the first-order many-particle
Green’s functions are defined by
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which are further expanded into an operator form as
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and
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These sums do not terminate until all terms involving up to
the nh(n � 1)p and nh(n + 1)p sectors are reached, where n is
the number of electrons. Note that the E(1)

N ,0 factor is absent in
the above expressions owing to mutual cancellation of terms
containing it.

From Eq. (68), we then find
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In the last equality, we have used D(1) = 0,
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and the corresponding identities in the (N + 1)-electron sec-
tor. These can be understood by noting that z̃(0)

N−1 spans only

1h determinants [Eq. (A13)], whereas z̃(1)
N−1 spans the disjoint

space of 2h1p determinants [Eq. (A15)]. The use is also made
of the identities,
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which can be verified using similar logic applied to the

structure of G̃
(1)

in Eqs. (A21) and (A22). We then
deduce

Σ
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pq = {(G

(0))−1G(1)(G(0))−1}pq = 0. (A28)

Moving on to the second order, according to recur-
sion II [Eq. (61)], the many-particle Green’s functions are
given by
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The second-order one-particle Green’s function is then defined
by its elements as
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pq . (A30)

Using Eqs. (A21) and (A22) for G̃
(1)

and Eqs. (A13)–
(A18) for z̃’s, we can evaluate each term of G(2) in the (N �

1)-electron sector as follows:
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The last expression does not contain E(1)
N ,0 for the same reason

why Ĝ
(1)
N±1 [Eqs. (A21) and (A22)] do not, either, after mutual

cancellation. Likewise,
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and
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The terms in the (N + 1)-electron sector are expanded as
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and
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(A38)

Of the last three renormalization terms in Eq. (A30), only
the following is nonzero (since D(1) = 0):
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−D(2)G(0)
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Let us first show that unlinked terms mutually cancel with
one another, leaving only linked and thus size-consistent con-
tributions. The reader is reminded that an unlinked term is
diagrammatically defined in Table I; algebraically, it is a sim-
ple product of two or more factors (ignoring the denominator),
at least one of which is an extensive quantity (i.e., energy in
this case).

For instance, the second and fourth terms in Eq. (A31)
are unlinked because their numerators are a simple product of〈
ij | |ab

〉〈
ab| |ij

〉
and δkpδkq with no common summation index,

with the former factor being a part of an extensive quantity.
Note that the fourth term is a renormalization term containing
E(2)

N ,0. Similarly, the last term of Eq. (A32) is unlinked (and so is
its complex conjugate), whereas Eq. (A33) is linked. The last
term of Eq. (A34) and the renormalization term [Eq. (A39)]
are also unlinked. We can then isolate these unlinked contri-
butions in the (N � 1)-electron sector and show, using some
trivial identity involving the denominators, that they sum to
zero,
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(A40)

= 0, (A41)

where “UL” means unlinked contributions only. In the left-
hand side of Eq. (A41), the second and last terms (with
the opposite sign from the rest if the denominator factors
are all brought to the ∆ab...

ij... form) are the renormalization
terms.

We can also show, after some algebra, the unlinked terms
in the (N + 1)-electron sector to also sum to zero,
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= 0. (A43)

Equation (A41) leaves only linked terms for the occupied-
occupied block of the second-order one-particle Green’s
function,
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The linkedness of each term can be algebraically verified by
noting that there is at least one common summation index
shared by every pair of numerator factors.

Likewise, the virtual-virtual block consists of linked terms
only thanks to Eq. (A43),
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Lastly, the occupied-virtual block, which does not contain
unlinked contributions to begin with, is given by
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Together, we find
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the substitution of which into Eq. (23) yields
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where Σ(1)
pq = 0 [Eq. (A28)] is used. The final result agrees with

Eq. (24).

2. Diagrammatic commentary

Here, we consider the diagrammatic representations of
some of the foregoing algebraic derivation steps to illustrate the
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FIG. 15. The diagrammatic representation of Eq. (A41).
The terms and diagrams are ordered in the same way.

algebraic machinery ensuring the linkedness and irreducible-
ness of the self-energy diagrams, as a subtext for the linked-
and irreducible-diagram theorems discussed in Appendixes B
and C.

Let us first consider Eq. (A41), which gives us a glimpse
of the operation of the factorization theorem of Frantz and
Mills,92 which consolidates unlinked contributions differing
only in denominators into the ones with factored denominators
that cancel exactly with the renormalization terms. Its diagram-
matic expression is depicted in Fig. 15. The diagrams in this
figure are ordered identically as the terms in this equation, and
the one-to-one correspondence can be verified by translating
each diagram into the corresponding algebraic expression by
using the interpretation rules in Table II amended with two
additional rules in Table VII.

We can recognize that the diagrammatic equation in
Fig. 15 is a concatenation of two applications of the fac-
torization theorem with insertion,31,34,91,92 as depicted in
Figs. 16 and 17. The reader is referred to the work of Manne,91

Harris et al.,31 or Shavitt and Bartlett34 for an overview of the
factorization theorem and its utility in the time-independent
proof of the linked-diagram theorem of MBPT.

Specifically, diagrams A1 and A3 encompass all time
orderings (vertical positions) of the bottom V vertex of the
closed part relative to the p and q vertexes (the dangling-line
termini) of the open part, while maintaining the position of
the top V vertex of the closed part immediately below the top
(p) vertex (the higher terminus) of the open part. As per the
factorization theorem,31,34,91,92 the sum of these two diagrams
is equal to the insertion of the closed part into the open part
immediately below the top (p) vertex of the latter (diagram
A2′). The open part has two resolvent lines in between adja-
cent vertexes, one above and one below the insertion point. The
value of insertion diagram A2′ is, in turn, the simple product
of the values of its open subdiagram (with two resolvent lines
in this case) and closed subdiagram (A2). The validity of this
assertion can be easily verified algebraically by noting that the
terms differ only in denominators and they satisfy

TABLE VII. Amendments to Table II for the algebraic interpretation of one-
particle Green’s-function diagrams in the Hugenholtz style. The rules do not
apply to insertion diagrams, which are, however, simply the product of the
algebraic interpretations of constituent subdiagrams with specified resolvent
lines.

(1′) Label each dangling line with a hole or particle index
Consider all possible time orderings of their termini

(3′) A terminus of each of the dangling lines
is viewed as a vertex in this context

1

∆ωk ∆
ωab
ijk ∆

ω
k

+
1

∆ωk ∆
ωab
ijk ∆

ab
ij

=
1

∆ωk ∆
ab
ij ∆

ω
k

, (A49)

which is, however, unnecessary as it is guaranteed by the
factorization theorem.

Likewise, diagrams A4 and A5 cover all time orderings
of the bottom (q) vertex (the lower terminus) of the open part,
while keeping its top (p) vertex immediately below the top V
vertex of the closed part. Their sum is, therefore, the insertion
of the open part into the closed part (A6′) with two resol-
vent lines above and below the insertion point. The result
of this insertion is equal to the product of two disconnected
subdiagrams (A6).

Next, we consider Eqs. (A44), (A45), and (A46). The dia-
grammatic versions of Eqs. (A44) and (A46) are shown in
Figs. 18 and 19, respectively.

The six linked terms in the left-hand side of Eq. (A44),
differing only in the denominators, are consolidated into two
terms with simpler denominators (the right-hand side). The
same is true with Eqs. (A45) and (A46). This simplifica-
tion, or the denominator factorization, can be easily verified
algebraically and is essential during the subsequent step of
extracting the self-energy from the one-particle Green’s func-
tion [Eq. (A48)], where the reciprocals of the zeroth-order
Green’s function (∆p

ω) cancel with the identical factors in the
denominator of the second-order Green’s function. It justifies
part of diagrammatic rule 1 of “trimming” of dangling lines
in Fig. 1. Note that the said cancellation does not occur for

FIG. 16. An application of the factorization theorem with insertion to dia-
grams A1 and A3 dictates that their sum is equal to a diagram with insertion
(A2′), whose value is the product of the values of its disconnected parts (A2).

FIG. 17. Another application of the factorization theorem with insertion to
diagrams A4 and A5.
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FIG. 18. The diagrammatic represen-
tation of Eq. (A44). The terms and
diagrams are ordered in the same way.

FIG. 19. The diagrammatic representation of Eq. (A46). The terms and diagrams are ordered in the same way. That diagrams A15, A16, and A17 sum to A21
can be shown by an application of the original factorization theorem for diagrams with two open parts by first deleting the areas enclosed by dashed boxes and
then later restoring them.

individual terms in the left-hand side of Eq. (A44), (A45),
or (A46); only their sums, after the factorization, have the
appropriate forms of the denominators that are canceled by
the zeroth-order Green’s functions.

Diagrammatically, the left-hand side of each of these
equations (before the denominator factorization) consists of
the Green’s-function diagrams whose resolvent lines cut across
many lines including dangling lines. Their sum, however, is
two diagrams in which the resolvent lines are split and each
dangling line has its own resolvent line intersecting only it but
no other line. Again, this occurs systematically owing to the
factorization theorem.

In Fig. 19, corresponding to Eq. (A46), the first three dia-
grams (A15, A16, and A17) in the left-hand side sum up to
diagram A21 in the right-hand side, while the sum of dia-
grams A18, A19, and A20 is equal to diagram A22. That
diagrams A15, A16, and A17 sum to A21 is a straightforward
application of the original (i.e., without insertion) factoriza-
tion theorem31,34,91,92 for diagrams with two open parts. First,
the areas enclosed by dashed boxes are deleted temporar-
ily so that each diagram becomes unlinked with two open
parts (which does not alter the resolvent lines or denomina-
tors). The three diagrams cover all time orderings of vertexes
(including the dangling-line termini) while maintaining the
open parts aligned at the bottom. They, therefore, add up
to become a product of two separate open parts with each

FIG. 20. An application of the factorization theorem to diagrams A7, A9, and
A11 with the areas enclosed by dashed boxes temporarily deleted proves that
their sum is equal to diagram A13′.

resolvent line spanning only the part it belongs to, as per the
original factorization theorem. At this point, the deleted areas
(which are algebraically a common multiplicative factor) can
be restored, forming diagram A21. The same logic proves that
diagrams A18, A19, and A20 sum to A22.

In Fig. 18, the first five diagrams (A7–A11) sum to
diagram A13, whereas diagram A12 already has a conve-
nient form for trimming of dangling lines and is, therefore,
unchanged (A14). That the sum of A7 through A11 is equal to
A13 can be shown in three steps, as depicted in Figs. 20–22.
First (Fig. 20), applying the factorization theorem to diagrams
A7, A9, and A11 with the areas in the dashed boxes deleted
and later restored, their sum is shown to be equal to diagram
A13′. Second (Fig. 21), doing the same to diagrams A8 and
A10, we obtain diagram A13′′ as their sum. Third (Fig. 22),
the sum of diagrams A13′ and A13′′ is shown to be equal to
diagram A13 by again applying the factorization theorem.

FIG. 21. Same as Fig. 20 but to diagrams A8 and A10.

FIG. 22. Same as Fig. 20 but to diagrams A13′ and A13′′.
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In summary, the exact cancellation of the unlinked terms
such as occurring in Eq. (A41) and the factorization of
zeroth-order Green’s function for dangling lines in Eq. (A44),
facilitating the trimming of the latter, are not coincidence
but an inevitable, systematic consequence of the factoriza-
tion theorem, which underlies the linked- and irreducible-
diagram theorems of the one-particle Green’s functions and
self-energies.

APPENDIX B: LINKED-DIAGRAM THEOREM

A perturbation correction to the one-particle Green’s func-
tion is linked at any order. This is considered well known and
certainly widely accepted with a proof in a time-dependent
picture provided by Gell-Mann and Low.90 Here, we show the
same using only time-independent (frequency-domain) argu-
ments, which may be easier to follow by quantum chemists
concerned with solving time-independent Schrödinger equa-
tions. It is not a rigorous mathematical proof, however, but
an outline of one with concrete examples. We heavily borrow
notations, concepts, and proofs from the closely related linked-
diagram theorem of MBPT in a time-independent picture as
described by Frantz and Mills,92 by Manne,91 by Harris et al.,31

and by Shavitt and Bartlett.34 The original proof of the theorem
for MBPT is due to Goldstone,94 on the basis of the work by
Brueckner.93 The first time-independent version of the proof is
due to Hugenholtz.95 The reader is also referred to Kutzelnigg
and Mukherjee,25 who discussed time-independent Rayleigh–
Schrödinger and Brillouin–Wigner perturbation expansions of
one- and two-particle Green’s functions.

It is sufficient to show the linkedness of either the (N
+ 1)- or (N � 1)-electron sector of the nth-order correction to
the one-particle Green’s function. Therefore, by dividing the
latter as

G(n) = G(n)
N+1 + G(n)

N−1, (B1)

we will focus only on the (N + 1)-electron sector. Also, by
introducing a shifted perturbation operator,

Ŵ (1) = V̂ (1) − E(1)
N ,0, (B2)

we can rewrite recursion II for the many-particle Green’s
function [Eq. (61)] as

G̃
(n)
N+1,µν = G̃

(n−1)
N+1,µκW̃

(1)
N+1,κνG̃

(0)
N+1,νν

−

n∑
i=2

G̃
(n−i)
N+1,µνE(i)

N ,0G̃
(0)
N+1,νν (B3)

with
W̃

(1)
N+1,µν = Ṽ

(1)
N+1,µν − δµνE(1)

N ,0. (B4)

This trick merely decreases the number of mutually canceling
unlinked terms involving E(1)

N ,0 and reduces the nonessential

clutter in formalisms; see p. 42 of Shavitt and Bartlett.34

Einstein’s convention is used.
Whereas this is not absolutely necessary, we can also

exploit the proven fact that the MBPT(n) wave function is
linked at any n and is written as

|n
〉
≡ |Ψ

(n)
N ,0

〉
= {(R̂V̂ (1))n |Φ

(0)
N ,0

〉
} = |{Vn}

〉
, (B5)

where R̂ is the resolvent operator already defined by Eq. (A3)
and a pair of braces “{. . .}” indicates the linkedness. Then,

the MBPT energies, whose linkedness is also completely
established, are written in Brueckner’s bracket notation34,91,93

as

E(1)
N ,0 =

〈
0|V̂ (1) |0

〉
=

〈
V
〉
, (B6)

E(2)
N ,0 =

〈
0|V̂ (1)R̂V̂ (1) |0

〉
=

〈
VV

〉
, (B7)

E(3)
N ,0 =

〈
0|V̂ (1)R̂Ŵ (1)R̂V̂ (1) |0

〉
=

〈
VVV

〉
, (B8)

E(4)
N ,0 =

〈
0|V̂ (1)R̂Ŵ (1)R̂Ŵ (1)R̂V̂ (1) |0

〉
−

〈
0|V̂ (1)R̂V̂ (1) |0

〉〈
0|V̂ (1)R̂R̂V̂ (1) |0

〉
=

〈
VVVV

〉
−

〈
V
〈
VV

〉
V
〉
=

〈
{VVVV }

〉
, (B9)

etc., where braces again mean that vertexes enclosed by them
are linked; they are analogous to (but not the same as) “super-
brackets” of Paldus and Čı́žek.11 In the most simplified nota-
tion (the rightmost term in each equation), the resolvent opera-
tors and the distinction between Ŵ (1) and V̂ (1) are suppressed.
Using this simplified notation of MBPT wave functions, we
can rewrite recursion II [Eq. (68)] for the one-particle Green’s
function as

{G(n)
N+1}pq =

i+j+k=n∑
i, j, k≥0

〈
i |q̂ Ĝ

( j)
N+1p̂† |k

〉
−

i+j+k=n∑
i, k≥1, j≥0

〈
i |k

〉
{G(j)

N+1}pq,

(B10)

where Ĝ
(n)
N+1 is the operator form of G̃

(n)
N+1,µν , an example of

which is given in Eq. (A22) for n = 1, and the summation
range in the second term is narrower with the aid of

〈
n|0

〉
= δn0.

As in MBPT, the objective here is to show that every
unlinked contribution in MBGF is exactly canceled by the
renormalization terms, which in turn correspond to Brueck-
ner bracket insertions. Unlike in MBPT, unlinked diagrams
in MBGF are of one of the following two types: (i) a closed
disconnected part is an energy diagram or (ii) it is an overlap
diagram [a term in D(n) of Eq. (68) or

〈
i|k

〉
in Eq. (B10)]. Ulti-

mately, we want to show that every unlinked diagram with a
disconnected energy part [type (i)] is canceled by the renor-
malization terms containing an MBPT energy factor, i.e., the
second term of Eq. (B3). We also want to show that an unlinked
diagram with a disconnected overlap part [type (ii)] is canceled
by the renormalization terms containing a one-particle Green’s
function, i.e., the second term of Eq. (B10).

The zeroth-order one-particle Green’s function is written
as

{G(0)
N+1}pq =

〈
0| q̂ Ĝ

(0)
N+1p̂† |0

〉
=

〈
qp

〉
, (B11)

which is trivially linked. The rightmost is the compressed
expression in which the Green’s function in between the
adjacent operators is suppressed to avoid clutter.

The first-order one-particle Green’s function which is
written as

{G(1)
N+1}pq =

〈
0| q̂ Ĝ

(0)
N+1Ŵ (1)Ĝ

(0)
N+1p̂† |0

〉
=

〈
qVp

〉
(B12)

is also linked by virtue of the fact that Ŵ (1) has been defined
as V̂ (1) minus its internal contraction and is by itself a linked
operator (notwithstanding the simplified bracket notation in
the rightmost that suppresses the distinction between the
two).
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In Appendix A, we have painstakingly derived the second-
order Green’s function expression and explicitly showed its
linkedness. Here, we illustrate the systematic nature of the
cancellation of unlinked terms. In the bracket notation, we
have

{G(2)
N+1}pq =

〈
0| q̂ Ĝ

(2)
N+1p̂† |0

〉
+

〈
0| q̂ Ĝ

(1)
N+1p̂† |1

〉
+
〈
1| q̂ Ĝ

(1)
N+1p̂† |0

〉
+

〈
0| q̂ Ĝ

(0)
N+1p̂† |2

〉
+
〈
2| q̂ Ĝ

(0)
N+1p̂† |0

〉
+

〈
1| q̂ Ĝ

(0)
N+1p̂† |1

〉
−

〈
1|1

〉
{G(0)

N+1}pq (B13)

=
〈
qVVp

〉
−

〈
q
〈
VV

〉
p
〉

+
〈
qVpV

〉
+

〈
VqVp

〉
+
〈
qp{VV }

〉
+

〈
{VV }qp

〉
+

〈
VqpV

〉
−

〈
V
〈
qp

〉
V
〉

(B14)

= all linked. (B15)

In the last equality, we have used〈
qp{VV }

〉
UL =

〈
{VV }qp

〉
UL = 0, (B16)〈

qVVp
〉

UL +
〈
qVpV

〉
UL =

〈
q
〈
VV

〉
p
〉
, (B17)

〈
VqVp

〉
UL +

〈
VqpV

〉
UL =

〈
V
〈
qp

〉
V
〉
, (B18)

where the “UL” subscript extracts unlinked contributions.
Equations (B17) and (B18) correspond exactly to the diagram-
matic equations in Figs. 16 and 17, respectively. The left-hand
side of Eq. (B17) covers all possible time orderings of the lower
(i.e., right) V vertex (relative to the p vertex or the lower ter-
minus of the dangling line), which is to be contracted with the
upper (i.e., left) V vertex with its position kept immediately
below the q vertex (the upper terminus). As per the factor-
ization theorem, their sum is then equal to the insertion of
an MBPT(2) energy subdiagram,

〈
VV

〉
, at the upper V posi-

tion (the right-hand side). This corresponds to the deletion of
the energy-unlinked diagram by the renormalization term in
Eq. (B3). Equation (B18) in turn shows that the sum of the
overlap-unlinked terms with all possible time orderings of the
p vertex while keeping the position of the q vertex immedi-
ately below the upper V vertex is equal to the insertion of a
zeroth-order Green’s function subdiagram,

〈
qp

〉
, at the same

position. It corresponds to the deletion of the overlap-unlinked
diagram by the renormalization term.

Moving on to the third order, we have

{G(3)
N+1}pq =

〈
0| q̂ Ĝ

(3)
N+1p̂† |0

〉
+

〈
0| q̂ Ĝ

(2)
N+1p̂† |1

〉
+

〈
1| q̂ Ĝ

(2)
N+1p̂† |0

〉
+

〈
0| q̂ Ĝ

(1)
N+1p̂† |2

〉
+

〈
2| q̂ Ĝ

(1)
N+1p̂† |0

〉
+

〈
1| q̂ Ĝ

(1)
N+1p̂† |1

〉
+
〈
0| q̂ Ĝ

(0)
N+1p̂† |3

〉
+

〈
3| q̂ Ĝ

(0)
N+1p̂† |0

〉
+

〈
1| q̂ Ĝ

(0)
N+1p̂† |2

〉
+

〈
2| q̂ Ĝ

(0)
N+1p̂† |1

〉
−

〈
1|1

〉
{G(1)

N+1}pq

−
〈
1|2

〉
{G(0)

N+1}pq −
〈
2|1

〉
{G(0)

N+1}pq (B19)

=
〈
qVVVp

〉
−

〈
q
〈
VV

〉
Vp

〉
−

〈
qV

〈
VV

〉
p
〉
−

〈
q
〈
VVV

〉
p
〉

+
〈
qVVpV

〉
−

〈
q
〈
VV

〉
pV

〉
+

〈
VqVVp

〉
−

〈
Vq

〈
VV

〉
p
〉

+
〈
qVp{VV }

〉
+

〈
{VV }qVp

〉
+

〈
VqVpV

〉
+

〈
qp{VVV }

〉
+

〈
{VVV }qp

〉
+

〈
Vqp{VV }

〉
+

〈
{VV }qpV

〉
−

〈
V
〈
qVp

〉
V
〉

−
〈
V
〈
qp

〉
{VV }

〉
−

〈
{VV }

〈
qp

〉
V
〉

(B20)

=
〈
qVVVp

〉
+

〈
qVVpV

〉
+

〈
qVp{VV }

〉
−

〈
q
〈
VVV

〉
p
〉

+
〈
VqVVp

〉
+

〈
VqVpV

〉
+

〈
Vqp{VV }

〉
−

〈
V
〈
qp

〉
{VV }

〉
+
〈
{VV }qVp

〉
+

〈
{VV }qpV

〉
−

〈
{VV }

〈
qp

〉
V
〉

+
〈
qp{VVV }

〉
L +

〈
{VVV }qp

〉
L (B21)

= all linked, (B22)

where “L” means linked. The penultimate equality is based on
the following identities: Since the first-order Green’s function
is zero, we have 〈

V
〈
qVp

〉
V
〉
= 0. (B23)

For the same reason, we deduce〈
q
〈
VV

〉
Vp

〉
=

〈
qV

〈
VV

〉
p
〉
= 0. (B24)

Furthermore,
〈
n|0

〉
= δn0 implies〈

q
〈
VV

〉
pV

〉
=

〈
Vq

〈
VV

〉
p
〉
= 0, (B25)〈

qp{VVV }
〉

UL =
〈
{VVV }qp

〉
UL = 0. (B26)

The remaining terms are organized into four groups, each
occupying one line in the right-hand side of Eq. (B21). The
terms in a group share several upper vertexes in an identical
order with the rest of the vertexes permuted in all possible time
orders.

The first group has three terms that all start with “
〈
qV ”

with the rest of vertexes scrambled in three distinct orders,
which is subtracted by a matching bracket insertion at the V
position of the “

〈
qV ” motif. The sum of the unlinked con-

tributions of the first three terms is, as per the factorization
theorem, equal to the bracket insertion,〈

qVVVp
〉

UL +
〈
qVVpV

〉
UL +

〈
qVp{VV }

〉
UL =

〈
q
〈
VVV

〉
p
〉
.

(B27)

The equation is diagrammatically depicted in Fig. 23, indi-
cating that the three unlinked contributions (B1, B2, and B3)
consist of two disconnected parts with identical topology, with
the top vertex of the right disconnected part located immedi-
ately below the top vertex of the left disconnected part, while
the rest of the vertexes of the right part are time ordered in all
possible ways. As per the factorization theorem, their sum is
the insertion diagram (B4′), whose value is equal to that of the
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FIG. 23. The diagrammatic representation of Eq. (B27). The first, second, and
third terms in the left-hand side are diagrams B1, B2, and B3, respectively, the
sum of which is insertion diagram B4′, which is equal to the renormalization
term (diagram B4), representing the right-hand side. Hole/particle distinctions
are suppressed.

bracket insertion, which is, in turn, the product of the values
of the disconnected parts with their resolvent lines spanning
only one part (B4). Since the algebraic interpretations of the
unlinked diagrams differ only in the denominators, this identity
can be easily confirmed algebraically also by noting

1

∆ωm∆
ωab
mij ∆

ωab
mkl ∆

ω
m

+
1

∆ωm∆
ωab
mij ∆

ωab
mkl ∆

ab
kl

+
1

∆ωm∆
ωab
mij ∆

ab
ij ∆

ab
kl

=
1

∆ab
ij ∆

ab
kl (∆ωm )2

, (B28)

for one possible pattern of index labeling. This is unnecessary
as it is guaranteed by the factorization theorem.

Likewise, the following three terms [the second line of Eq.
(B21)] share the “

〈
Vq” motif with the rest of vertexes permuted

in all possible time orders and form another group, the unlinked
contributions of which sum up to the bracket insertion in the
same line, again according to the factorization theorem〈
VqVVp

〉
UL +

〈
VqVpV

〉
UL +

〈
Vqp{VV }

〉
UL =

〈
V
〈
qp

〉
{VV }

〉
,

(B29)

which is depicted diagrammatically in Fig. 24. The terms in the
third group in the third line of Eq. (B21) (having the “

〈
{VV }q”

motif) satisfy the relation〈
{VV }qVp

〉
UL +

〈
{VV }qpV

〉
UL =

〈
{VV }

〈
qp

〉
V
〉
, (B30)

whose diagrammatic version is drawn in Fig. 25. The fourth
line of Eq. (B21) is the immediate result of Eq. (B26). There-
fore, each line of Eq. (B21) has linked contributions only,
proving the size-consistency of the third-order one-particle
Green’s function.

It can be seen that both Eqs. (B14) and (B21) enumer-
ate all possible time orderings of the q, p, and V vertexes
that keep q to the left of p (i.e., q above p in a diagram);

FIG. 24. Same as Fig. 23 but for Eq. (B29).

FIG. 25. Same as Fig. 23 but for Eq. (B30).

the opposite order of q and p corresponds to the (N � 1)-
electron sector. Each valid time ordering is associated with
a distinct non-negative integer triplet (i, j, k) that satisfies i
+ j + k = n in the first term of Eq. (B10). That the summa-
tion runs over all such triplets explains why all time orderings
emerge.

Furthermore, Eq. (B14) lists all possible valid bracket
insertions. Here, a valid bracket insertion is the one that
encloses two or more vertexes (q, p, or V ) in such a way that
(i) q and p belong in the same bracket, (ii) two brackets of the
same type are not adjacent to each other (there will be no “

〈〈
”

or “
〉〉

” motifs), (iii) it does not contain any vertex in braces,
and (iv) each insertion accompanies a parity of �1.

The fact that integer triplet (i, j, k) runs over all com-
binations that satisfy i + j + k = n in the second term of
Eq. (B10) explains why all valid Green’s-function-bracket
insertions [rule (i)] are generated. The exclusion of i = 0
or k = 0 means that there is at least one V immedi-
ately inside each bracket, justifying rule (ii). Rule (iii)
merely reflects the fact that cancellation of unlinked contri-
butions by bracket insertions is already effected within the
braces according to the linked-diagram theorem of MBPT.
The parity originates from the negative sign of this term
[rule (iv)].

The same argument holds for Eq. (B3) to justify that all
energy-bracket insertions [rule (i)] occur from this definition.
Furthermore, the recursive structure of the definition gener-
ates all multiple and nested insertions, with every insertion
being responsible for a parity of �1 because of the negative
sign of the second term. Rule (ii) is explained by the fact
that q and p are found to the left and right of the bracket
insertion, preventing it from directly contacting another
bracket.

The foregoing paragraphs explain the mechanism by
which unlinked contributions cancel with one another exactly.
For each bracket insertion, we can find a set of terms with
the bracket removed that share the same vertex structure up
to the upper vertex at the position of insertion with remain-
ing vertexes permuted in all possible time orders. The sum of
the unlinked contributions in this set is canceled by the bracket
insertion with a negative sign, as per the factorization theorem.
In other words, the logic underlying the linked-diagram theo-
rem for MBPT applies to MBGF by one simple extension: q̂
and p̂† are also represented by vertexes, which are to be found
in the same bracket.

Finally, we verify the cancellation of three-part unlinked
diagrams such as in Fig. 26. Nonzero diagrams of this type
appear first at the fourth order. Showing only the relevant terms
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FIG. 26. Some of the three-part unlinked diagrams in the fourth-order Green’s function arising from
〈
qVVVVp

〉
+

〈
qVVVpV

〉
+

〈
qVVp{VV }

〉
[Eq. (B32)].

Hole/particle distinctions are suppressed.

of the fourth-order one-particle Green’s function, we have

{G(4)
N+1}pq =

〈
0| q̂ Ĝ

(4)
N+1p̂† |0

〉
+

〈
0| q̂ Ĝ

(3)
N+1p̂† |1

〉
+
〈
0| q̂ Ĝ

(2)
N+1p̂† |2

〉
+ · · · (B31)

=
〈
qVVVVp

〉
+

〈
qVVVpV

〉
+

〈
qVVp{VV }

〉
(B32)

−
〈
q
〈
VV

〉
VVp

〉
−

〈
q
〈
VV

〉
VpV

〉
(B33)

−
〈
qVV

〈
VV

〉
p
〉
−

〈
qV

〈
VV

〉
Vp

〉
−

〈
qV

〈
VV

〉
pV

〉
(B34)

+
〈
q
〈
VV

〉〈
VV

〉
p
〉

(B35)

+ · · · . (B36)

The three terms in the right-hand side of Eq. (B32) contain
three-part unlinked diagrams listed as B12–B19 of Fig. 26
(there are other such diagrams with different time orderings).
The sum of these eight diagrams is equal to the double insertion
diagram (B20), which is algebraically equal to the last shown
term [Eq. (B35)],

〈
q
〈
VV

〉〈
VV

〉
p
〉
, with the double bracket

insertions. It is well known that the factorization theorem
holds for diagrams with multiple or nested insertions up to
an arbitrary depth.34 In the first glance, however, the posi-
tive sign of the last shown term,

〈
q
〈
VV

〉〈
VV

〉
p
〉
, may appear

undesirable (or incorrect) as it does not cancel (but instead dou-
bles) the unlinked contributions from the first three terms in
Eq. (B32).

This is not the case. The two terms in Eq. (B33) (with neg-
ative signs) contain three-part unlinked contributions whose
sum is the same double insertion diagram (B20), as shown
in Fig. 27. Similarly, three-part unlinked diagrams in the
subsequent three terms (with negative signs) [Eq. (B34)]
also sum to the same double insertion diagram (B20) (see
Fig. 28). Therefore, the sum of the three-part unlinked dia-
grams in the first three terms in Eq. (B32) (which is equal
to the double bracket insertions) is subtracted twice by the

FIG. 27. An application of the factorization theorem to the three-part unlinked
diagrams in

〈
q
〈
VV

〉
VVp

〉
+

〈
q
〈
VV

〉
VpV

〉
[Eq. (B33)].

same [Eqs. (B33) and (B34)]. This overcompensation is cor-
rected by the addition of the last shown term [Eq. (B35)].
Therefore, the positive sign on

〈
q
〈
VV

〉〈
VV

〉
p
〉

is indeed
correct.

One may see that the parity of (�1)n associated with n
bracket insertions is consistent with the parity of (�1)(n�1)

given to the intersection of n sets in the set theoretical principle
of inclusion-exclusion [see, e.g., Eq. (10) of Ref. 127] and is
responsible for the systematic, exact cancellation of unlinked
diagrams with multiple and/or nested insertions.

The foregoing arguments with examples explain (if not
rigorously prove) the linkedness of the one-particle Green’s
function at any perturbation order, which implies the same
for the self-energy. Connecting the two dangling lines to
form a loop (an internal line) will, therefore, transform a
linked Green’s-function diagram into a linked MBPT energy
diagram of the same order, justifying diagrammatic rule 1
(“linked only”). If the two dangling lines are attached to
one and the same vertex, connecting them forms a bubble,
which is then a part of the zeroth-order Hamiltonian of MBPT
with a HF reference. Such a one-particle Green’s-function
diagram is related to a zero-valued MBPT energy diagram
and thus needs to be generated by a vertex insertion to a
nonzero-valued MBPT diagram of a lower order (diagram-
matic rule 3).

Size-consistency of an MBGF approach was proven dif-
ferently by assuming spatially localized orbitals by Schirmer
and Mertins.128 We furthermore speculate that any perturba-
tion theory defined as the λ-derivative of FCI (see Sec. II D)
is size-consistent if the zeroth-order (λ = 0) theory can be
shown to be size-consistent.

FIG. 28. An application of the factorization theorem to the three-part unlinked
diagrams in

〈
qVV

〈
VV

〉
p
〉

+
〈
qV

〈
VV

〉
Vp

〉
+

〈
qV

〈
VV

〉
pV

〉
[Eq. (B34)]. The

original factorization theorem can be applied to diagrams with an inser-
tion occurring below the upper vertex whose position is fixed, by viewing
the insertion as a single vertex (as opposed to two vertexes) representing a
multiplicative factor.
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APPENDIX C: IRREDUCIBLE-DIAGRAM THEOREM

We show that an nth-order diagram of the self-energy
cannot contain a single line connecting two vertexes, i.e., an
articulation line or a dangling line at any n. This is also a widely
accepted criterion used in enumerating self-energy diagrams,
whose time-independent justification does not seem to have
been provided until now. Below, we reproduce the recursive
definition of the self-energy, which serves as the basis of this
assertion,

Σ(n) = (G(0))−1G(n)(G(0))−1 −

n−1∑
i=1

Σ(i)G(0)Σ(n−i)

−

n−2∑
i=1

n−i−1∑
j=1

Σ(i)G(0)Σ(j)G(0)Σ(n−i−j) − · · · . (C1)

First, we aim to show that the first term in the right-hand
side explains the part of diagrammatic rule 1, i.e., the trimming
of two dangling lines (see Fig. 1).

That all possible non-negative integer triplets (i, j, k)
that satisfy i + j + k = n are included in the first term of
Eq. (B10) indicates that all possible diagrams differing only
in the time ordering of the q and p vertexes (relative to the
rest of the diagram) exist. As per the factorization theorem,
the sum of these diagrams is the one in which the spans
of its resolvent lines are broken between the dangling line
and the rest of the diagram. See Fig. 29. Temporarily delet-
ing the areas in the dashed boxes, the original factorization
theorem for unlinked diagrams with two open parts can be
applied to diagrams C1, C2, and C3 to show that their sum
is diagram C4, whose dangling line has its own resolvent
line spanning only itself. As a result, the denominator con-
tains the factor of 1/d = G(0)

pp in diagram C4, which can
then be canceled exactly by one of the (G(0))−1 factors in the
first term of Eq. (C1). Algebraically, since all diagrams (C1–
C4) share the same numerator, the validity of this diagram-
matic equation rests on the algebraic identity involving their
denominators,

1
D1(D2 + d)D2D3

+
1

D1(D2 + d)(D3 + d)D3

+
1

D1(D2 + d)(D3 + d)d
=

1
D1D2D3d

, (C2)

which can be verified easily. Note that the complete removal
of 1/d = G(0)

pp by (G(0))−1 does not occur in diagram C1, C2,
or C3 individually but only to their sum.

Clearly, this logic is extensible to any number of ver-
texes either diagrammatically with the factorization theorem

FIG. 29. The factorization of the resolvent lines of diagrams with a dangling
line. The connectivity of internal lines is left ambiguous and general. D’s and d
are the denominators of the resolvent lines. The original factorization theorem
can be applied to these diagrams with the areas enclosed by the dashed boxes
deleted and then restored.

or algebraically by mathematical induction (not shown), justi-
fying the part of diagrammatic rule 1 concerning the trimming
of dangling lines. Figures 18 and 19 are the examples at the
second order.

The same argument holds for an articulation line. Con-
sider the example in Fig. 30. The sum of fourth-order reducible
self-energy diagrams (C5–C9) with all possible time orderings
of one second-order self-energy part relative to the other is
equal to the reducible diagram C10 with the resolvent lines
being decoupled. Algebraically, this diagrammatic identity
corresponds to

1

∆ωa
ij ∆

ωabc
ijkl ∆

ac
ij

+
1

∆ωa
ij ∆

ωabc
ijkl ∆

ωb
kl

+
1

∆ac
ij ∆

c
ω∆

bc
kl

+
1

∆ac
ij ∆

ωabc
ijkl ∆

bc
kl

+
1

∆bc
kl ∆

ωabc
ijkl ∆

ωb
kl

=
1

∆ωa
ij ∆

c
ω∆

ωb
kl

, (C3)

which can be verified easily. The factor of 1/∆c
ω in the right-

hand side is identified as the zeroth-order Green’s function.
Therefore, only after the factorization of the resolvent lines
can the reducible diagrams be canceled exactly by the sec-
ond term of Eq. (C1) or more specifically, Σ(2)G(0)Σ(2), in
this example. The diagrammatic identity is proven in three
steps of applying the original factorization theorem to the
reducible diagrams differing only in time ordering of ver-
texes with some areas temporarily deleted. These steps are
depicted in Figs. 31–33, with explanations provided in the
captions.

The first term of Eq. (B10) ensures that all possible
time orderings of a self-energy part relative to the other
self-energy part(s) occur in topologically related reducible
diagrams. This together with the fact that the original factor-
ization theorem applies to them guarantees the exact cancel-
lation of all reducible diagrams, justifying diagrammatic rule
2 (“irreducible only”).

FIG. 30. The factorization of the resolvent lines in a
sum of related fourth-order reducible diagrams. The alge-
braic representation (in the same order of terms) of the
denominators of this equation is Eq. (C3).
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FIG. 31. An application of the factorization theorem to diagrams C5 and C6
with the areas in the dashed boxes initially deleted and later restored.

FIG. 32. The same as Fig. 31 but for diagrams C7, C8, and C9.

FIG. 33. The same as Fig. 31 but for diagrams C10′ and C10′′. Figures 31–33
prove the diagrammatic identity in Fig. 30.

APPENDIX D: RELATIONSHIP BETWEEN ∆MPn AND
MBGF(n)

Here, we show algebraically that ∆MPn and MBGF(n)
in the diagonal and frequency-independent approximations
for a Koopmans state are equivalent up to n = 3, and they
start to deviate from each other at n = 4 with the dif-
ferences being the semi-reducible and linked-disconnected
diagrammatic contributions depicted in Fig. 5.

We will, therefore, first show that

Σ
(n)
pp (εp) = Σ̄(n)

γ , (D1)

for 1 ≤ n ≤ 3, where γ denotes the Koopmans-type Slater
determinant in which the pth spinorbital is vacant (for electron
detachment) or filled (for electron attachment), and Σ̄(n)

γ is the
∆MPn correction to the electron binding energy as defined by
Eqs. (27) and (28). Without losing generality, we assume that p
refers to an occupied spinorbital and γ to the corresponding (N
� 1)-electron Koopmans state. Hence, indices “p” and “γ” have
special significance in this Appendix. Einstein’s convention is
used.

We base our proof on recursion III in Sec. II G. The core
of the recursion, Eq. (72), can be rewritten as

V̄
(n)

N−1,µν = −(Ḡ
(0)
N−1,µµ)−1〈

Ψ
(0)
N−1,µ |Ψ

(n)
N−1,ν

〉
+

n∑
i=1

〈
Ψ

(0)
N−1,µ |Ψ

(n−i)
N−1,ν

〉
Σ̄

(i)
ν , (D2)

V̄
(n)

N−1,γγ = Σ̄
(n)
γ . (D3)

The first-order many-particle Green’s function is then defined
by its elements as

Ḡ
(1)
N−1,µν = Ḡ

(0)
N−1,µµV̄

(1)
N−1,µνḠ

(0)
N−1,νν (D4)

= −
〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,ν

〉
Ḡ

(0)
N−1,νν

+ δµνḠ
(0)
N−1,µµΣ̄

(1)
µ Ḡ

(0)
N−1,µµ, (D5)

Ḡ
(1)
N−1,γγ = Ḡ

(0)
N−1,γγΣ̄

(1)
γ Ḡ

(0)
N−1,γγ. (D6)

In the meantime, the recursive definition of the self-energy,
Eq. (23), gives the first-order diagonal element at ω = εp as

Σ
(1)
pp (εp) = (G(0)

pp )−1x(0)
N−1,γpḠ

(1)
N−1,γγy(0)

N−1,γp(G(0)
pp )−1

+ (G(0)
pp )−1x(0)

N−1,γpḠ
(0)
N−1,γγy(1)

N−1,γp(G(0)
pp )−1

+ (G(0)
pp )−1x(1)

N−1,γpḠ
(0)
N−1,γγy(0)

N−1,γp(G(0)
pp )−1

− (G(0)
pp )−1D(1)G(0)

pp (G(0)
pp )−1, (D7)

where the frequency argument (ω = εp) is omitted in the right-
hand side. That the zeroth-order Green’s function matrix is
diagonal has also been used.

We will simplify this equation using the expressions of the
many-particle Green’s function [such as Eq. (D6)] and of the
x and y matrices. To vastly streamline this process, we adopt
the following general strategy. In the frequency-independent
approximation (ω = εp), we notice

Ḡ
(0)
N−1,γγ = G(0)

pp = ±∞, (D8)

(Ḡ
(0)
N−1,γγ)−1 = (G(0)

pp )−1 = 0, (D9)

Ḡ
(0)
N−1,γγ(G(0)

pp )−1 = G(0)
pp (G(0)

pp )−1 = 1. (D10)

Each term in the expression we deal with contains a number
of these divergent zeroth-order Green’s functions or their van-
ishing reciprocals. We count the numbers of these factors to
classify each term in three cases: (1) The number of divergent
Green’s-function factors [Eq. (D8)] is less than the number
of vanishing reciprocal factors [Eq. (D9)], (2) the former is
greater than the latter, and (3) their numbers are equal to each
other. In case (1), the term is zero. In case (2), it is divergent.
In case (3), it has some finite, potentially nonzero value. We
can thus retain terms in cases (2) and (3) only.

The first term in Eq. (D7) has two divergent zeroth-order
Green’s functions and two vanishing reciprocals and belongs
to case (3). It is, therefore, deemed to have a finite, poten-
tially nonzero value. All remaining terms have one divergent
factor and two vanishing reciprocals and are zero [case (1)].
Furthermore, using the identities,

x(0)
N−1,µp = y(0)

N−1,µp = δµγ, (D11)

we find

Σ
(1)
pp (εp) = Σ̄(1)

γ , (D12)

proving Eq. (D1) for n = 1.
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According to recursion III, the second-order many-
particle Green’s function is given by

Ḡ
(2)
N−1,µν = Ḡ

(0)
N−1,µµV̄

(2)
N−1,µνḠ

(0)
N−1,νν + Ḡ

(1)
N−1,µκ V̄

(1)
N−1,κνḠ

(0)
N−1,νν

= −
〈
Ψ

(0)
N−1,µ |Ψ

(2)
N−1,ν

〉
Ḡ

(0)
N−1,νν + δµνḠ

(0)
N−1,µµΣ̄

(2)
µ Ḡ

(0)
N−1,µµ

+ Ḡ
(0)
N−1,µµ

〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,ν

〉
Σ̄

(1)
ν Ḡ

(0)
N−1,νν

+
〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,κ

〉〈
Ψ

(0)
N−1,κ |Ψ

(1)
N−1,ν

〉
Ḡ

(0)
N−1,νν

−
〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,ν

〉
Ḡ

(0)
N−1,νν Σ̄

(1)
ν Ḡ

(0)
N−1,νν

− Ḡ
(0)
N−1,µµΣ̄

(1)
µ

〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,ν

〉
Ḡ

(0)
N−1,νν

+ δµνḠ
(0)
N−1,µµΣ̄

(1)
µ Ḡ

(0)
N−1,µµΣ̄

(1)
µ Ḡ

(0)
N−1,µµ (D13)

and

Ḡ
(2)
N−1,γγ = Ḡ

(0)
N−1,γγΣ̄

(2)
γ Ḡ

(0)
N−1,γγ

+
〈
Ψ

(0)
N−1,γ |Ψ

(1)
N−1,κ

〉〈
Ψ

(0)
N−1,κ |Ψ

(1)
N−1,γ

〉
Ḡ

(0)
N−1,γγ

+ Ḡ
(0)
N−1,γγΣ̄

(1)
γ Ḡ

(0)
N−1,γγΣ̄

(1)
γ Ḡ

(0)
N−1,γγ. (D14)

These have already been simplified using Eq. (36). The second-
order diagonal self-energy at ω = εp then reads as

Σ
(2)
pp (εp) = (G(0)

pp )−1x(0)
N−1,γpḠ

(2)
N−1,γγy(0)

N−1,γp(G(0)
pp )−1

+ (G(0)
pp )−1x(0)

N−1,γpḠ
(1)
N−1,γκy(1)

N−1,κp(G(0)
pp )−1

+ (G(0)
pp )−1x(1)

N−1,κpḠ
(1)
N−1,κγy(0)

N−1,γp(G(0)
pp )−1

+ (G(0)
pp )−1x(0)

N−1,γpḠ
(0)
N−1,γγy(2)

N−1,γp(G(0)
pp )−1

+ (G(0)
pp )−1x(2)

N−1,γpḠ
(0)
N−1,γγy(0)

N−1,γp(G(0)
pp )−1

+ (G(0)
pp )−1x(1)

N−1,κpḠ
(0)
N−1,κκy(1)

N−1,κp(G(0)
pp )−1

− (G(0)
pp )−1D(1)G(1)

pp (G(0)
pp )−1 − (G(0)

pp )−1D(2)

×G(0)
pp (G(0)

pp )−1 −
∑

q

Σ
(1)
pq G(0)

qq Σ
(1)
qp . (D15)

Substituting the first- and second-order many-particle Green’s
functions in the above equation and retaining only terms in

cases (2) and (3), we obtain

Σ
(2)
pp (εp) = Σ̄(2)

γ + Σ̄(1)
γ Ḡ

(0)
N−1,γγΣ̄

(1)
γ

+ x(0)
N−1,γpΣ̄

(1)
γ y(1)

N−1,γp + x(1)
N−1,γpΣ̄

(1)
γ y(0)

N−1,γp

−
∑

q

Σ
(1)
pq G(0)

qq Σ
(1)
qp (D16)

= Σ̄
(2)
γ −

∑
q,p

Σ
(1)
pq G(0)

qq Σ
(1)
qp (D17)

= Σ̄
(2)
γ . (D18)

The second term of Eq. (D16) belongs to case (2) although its
value is indeterminate because Σ̄(1)

γ = 0. The next two terms
of Eq. (D16) are in case (3) and finite, but they vanish because

x(1)
N−1,γp = 0, (D19)

y(n)
N−1,γp = δn0. (D20)

The last term of Eq. (D16) eliminates the reducible diagrams
and contains a divergent summand at q = p. However, this
divergent summand cancels the divergent second term exactly,
regardless of the value of Σ̄(1)

γ ,

Σ̄
(1)
γ Ḡ

(0)
N−1,γγΣ̄

(1)
γ = Σ

(1)
pp G(0)

pp Σ
(1)
pp , (D21)

justifying Eq. (D17). Equation (D18) then follows since

|G(0)
qq | < ∞, (D22)

Σ
(1)
pq = Σ

(1)
qp = 0, (D23)

for q , p. This proves Eq. (D1) for n = 2.
Proceeding in the same fashion, we find

Σ
(3)
pp (εp) = Σ̄(3)

γ + x(0)
N−1,γpΣ̄

(2)
γ y(1)

N−1,γp + x(1)
N−1,γpΣ̄

(2)
γ y(0)

N−1,γp

= Σ̄
(3)
γ , (D24)

where contributions containing at least one factor of Σ(1)
pq or〈

Ψ
(0)
N−1,γ |Ψ

(1)
N−1,γ

〉
are suppressed because they vanish [Eqs.

(A28) and (36)]. In the last equality, we have used Eqs. (D19)
and (D20). This proves Eq. (D1) for n = 3.

A rather different situation develops at n = 4. Using the
same logic and keeping only nonvanishing terms, we obtain

Σ
(4)
pp (εp) = Σ̄(4)

γ + Σ̄(2)
γ Ḡ

(0)
N−1,γγΣ̄

(2)
γ − x(0)

N−1,γp

〈
Ψ

(0)
N−1,γ |Ψ

(1)
N−1,µ

〉〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,γ

〉
Σ̄

(2)
γ y(0)

N−1,γp

+ x(0)
N−1,γp

〈
Ψ

(0)
N−1,γ |Ψ

(1)
N−1,µ

〉〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,γ

〉
Σ̄

(2)
γ y(0)

N−1,γp + x(0)
N−1,γpΣ̄

(2)
γ

〈
Ψ

(0)
N−1,γ |Ψ

(1)
N−1,µ

〉〈
Ψ

(0)
N−1,µ |Ψ

(1)
N−1,γ

〉
y(0)

N−1,γp

− x(0)
N−1,γpΣ̄

(2)
γ

〈
Ψ

(0)
N−1,γ |Ψ

(1)
N−1,µ

〉
y(1)

N−1,µp + x(2)
N−1,γpΣ̄

(2)
γ y(0)

N−1,γp − D(2)
Σ

(2)
pp −

∑
q

Σ
(2)
pq G(0)

qq Σ
(2)
qp (D25)

= Σ̄
(4)
γ −

〈
Ψ

(1)
N−1,γ |Ψ

(1)
N−1,γ

〉
Σ̄

(2)
γ + Σ̄(2)

γ
〈
Ψ

(1)
N−1,γ |p̂ |Ψ

(1)
N ,0

〉
+

〈
Ψ

(1)
N ,0 |p̂

† |Ψ
(1)
N−1,γ

〉
Σ̄

(2)
γ − D(2)

Σ
(2)
pp −

∑
q,p

Σ
(2)
pq G(0)

qq Σ
(2)
qp , (D26)

where we have used〈
Ψ

(0)
N−1,γ |Ψ

(1)
N−1,µ

〉
= −

〈
Ψ

(1)
N−1,γ |Ψ

(0)
N−1,µ

〉
. (D27)

The second term of Eq. (D25) is divergent but exactly cancels
the summand (q = p) in the last term which is also divergent.
Together, we obtain Eq. (D26), which states that the fourth-

order self-energy in the diagonal and frequency-independent
approximations (Σ(4)

pp ) differs from the ∆MP4 correction

(Σ̄(4)
γ ).

The last term of Eq. (D26), which is part of the differ-
ence, corresponds to the semi-reducible diagram (diagram 13
of Fig. 5).
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The remaining terms (the second through fifth terms) of
Eq. (D26) are all unlinked. The factors in these terms are
evaluated as〈
Ψ

(1)
N−1,γ |Ψ

(1)
N−1,γ

〉
=

1
2

〈
ij | |ap

〉〈
ap| |ij

〉
(∆ap

ij )2
−

1
2

〈
ip| |ab

〉〈
ab| |ip

〉
(∆ab

ip )2

+
1
4

〈
ij | |ab

〉〈
ab| |ij

〉
(∆ab

ij )2
, (D28)

〈
Ψ

(1)
N−1,γ |p̂ |Ψ

(1)
N ,0

〉
= −

1
2

〈
ip| |ab

〉〈
ab| |ip

〉
(∆ab

ip )2
+

1
4

〈
ij | |ab

〉〈
ab| |ij

〉
(∆ab

ij )2

=
〈
Ψ

(1)
N ,0 |p̂

† |Ψ
(1)
N−1,γ

〉∗, (D29)

and

D(2) =
1
4

〈
ij | |ab

〉〈
ab| |ij

〉
(∆ab

ij )2
. (D30)

Using these, Eq. (D26) can be rewritten in a fully linked, but
disconnected, form as

Σ
(4)
pp (εp) = Σ̄(4)

γ −
1
2

〈
ij | |ap

〉〈
ap| |ij

〉
(∆ap

ij )2
Σ

(2)
pp

−
1
2

〈
ip| |ab

〉〈
ab| |ip

〉
(∆ab

ip )2
Σ

(2)
pp −

∑
q,p

Σ
(2)
pq G(0)

qq Σ
(2)
qp ,

(D31)

proving the size-consistency of Σ(4)
pp . The second and third

terms in the right-hand side are identified as the linked-
disconnected diagrams (diagram 14 or 15 of Fig. 5). They are
disconnected but consist of only open parts and thus are linked
and thermodynamically intensive.101,102 Size-consistency of
Σ̄

(4)
γ is implied by the linked-diagram theorem of MBPT(4) for

both N- and (N ± 1)-electron systems.
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17Y. Öhrn and G. Born, Adv. Quantum Chem. 13, 1 (1981).
18P. Jørgensen and J. Simons, Second Quantization-Based Methods in

Quantum Chemistry (Academic Press, New York, 1981).
19J. Schirmer, Phys. Rev. A 26, 2395 (1982).
20J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28, 1237 (1983).
21W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comput. Phys. Rep. 1,

57 (1984).
22M. D. Prasad, S. Pal, and D. Mukherjee, Phys. Rev. A 31, 1287 (1985).
23M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).

24J. Oddershede, “Propagator methods,” in Advances in Chemical Physics:
Ab Initio Methods in Quantum Chemistry Part 2, edited by K. P. Lawley
(Wiley, Hoboken, NJ, 1987), Vol. 69.

25W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 90, 5578 (1989).
26F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
27J. V. Ortiz, Adv. Quantum Chem. 35, 33 (1999).
28G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
29J. V. Ortiz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3, 123 (2013).
30A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (MacMillan,

New York, 1982).
31F. E. Harris, H. J. Monkhorst, and D. L. Freeman, Algebraic and Dia-

grammatic Methods in Many-Fermion Theory (Oxford University Press,
Oxford, 1992).

32I. Shavitt, in Methods of Electronic Structure Theory, edited by H. F.
Schaefer (Springer, Boston, 1977), pp. 189–275.

33C. D. Sherrill and H. F. Schaefer, Adv. Quantum Chem. 34, 143 (1999).
34I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics

(Cambridge University Press, Cambridge, 2009).
35R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
36R. J. Bartlett, Annu. Rev. Phys. Chem. 32, 359 (1981).
37R. G. Parr and W. Yang, Density-Functional Theory of Atoms and

Molecules (Oxford University Press, New York, 1989).
38K. Burke, J. Chem. Phys. 136, 150901 (2012).
39R. J. Bartlett, Chem. Phys. Lett. 484, 1 (2009).
40W. Yang, P. Mori-Sánchez, and A. J. Cohen, J. Chem. Phys. 139, 104114

(2013).
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