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We have calculated total energies of atoms and diatomic molecules from the Luttinger-Ward functional,
using self-energy approximations to second order as well as the GW approximation. In order to assess the
variational quality of this functional, we have also solved the Dyson equation self-consistently. The Luttinger-
Ward functional is compared to the variational functional due to Klein, and we demonstrate that the variational
property of the latter functional is inferior to that of the Luttinger-Ward functional. We also show how to obtain
variational density functionals from the functionals of the Green function. These orbital functional schemes are
important for systems where density-functional theory using local functionals of the density necessarily fails.
We derive an optimized effective potential �OEP� scheme that is based on the Luttinger-Ward functional and,
unlike the conventional OEP schemes, produces energies in good agreement with the values obtained from the
self-consistent Green function. Our calculations show that, when applied to molecules, the Luttinger-Ward
functional is more sensitive to the quality of the input Green function than when applied to atoms, but the
energies are remarkably close to the self-consistent values when the Hartree-Fock Green function is used as
input. This Luttinger-Ward functional is therefore a simple and efficient method for studying the merits of
various self-energy approximations while avoiding the computationally demanding task of solving the Dyson
equation self-consistently.
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I. INTRODUCTION

Due to the development in recent years of generalized
gradient approximations �GGA’s� �1–3�, density-functional
theory �DFT� has become a remarkably versatile and reliable
computational method. There are, however, several well-
known cases where density-functional methods based on lo-
cal functionals of the density will necessarily be inadequate.
Examples of this are systematic errors in cohesive energies,
the inability to describe negative ions, and no hint as to how
to calculate band gaps. A scheme based on local functionals
of the density will necessarily also fail at describing van der
Waals forces. Within density-functional theory, these prob-
lems can be overcome by resorting to orbital functionals
�4–7�, where the Kohn-Sham potentials are implicit func-
tionals of the density.

A different approach is the use of many-body perturbation
theory �MBPT� �8�, where the central ingredient is the one-
particle Green function, rather than the one-electron density.
While MBPT prescribes several methods for calculating the
total energy from the Green function, these various expres-
sions are not equivalent unless two conditions are satisfied:
�1� The Green function G must be a self-consistent solution
of the Dyson equation G=G0+G0MG, where the self-energy
M�G� is a functional of the Green function. The Green func-
tion G0 is the solution corresponding to a noninteracting sys-
tem. �2� The self-energy functional M�G� must correspond to
a conserving approximation, as explained by Baym and
Kadanoff �9,10�. For any conserving self-energy approxima-
tion beyond the Hartree-Fock approximation, calculating the
self-consistent Green function is a computationally demand-

ing task even for systems such as the homogenous electron
gas �11�. Calculations on real systems have only recently
appeared �12–14�. The necessity of solving the Dyson equa-
tion self-consistently has been an impediment to total-energy
calculations and has made it difficult to assess which physi-
cal mechanisms must be taken into account when construct-
ing self-energy approximations.

For calculating total energies, the difficult task of solving
the Dyson equation can be avoided by using variational en-
ergy functionals. These can be put in two main categories:
First, there are the functionals of the one-particle Green func-
tion G: e.g., the Luttinger-Ward �LW� functional �15�. The
second kind of functionals, which was introduced by Alm-
bladh, von Barth, and van Leeuwen �16,17�, has two input
arguments: namely, G and the dynamically screened Cou-
lomb interaction W. The variational functionals are such that
if they are evaluated using crude approximations to their
input variables, the result will be very close to the energies
obtained using the self-consistent G, or G and W. This sim-
plification of the computational effort enables us to investi-
gate which diagrammatic approximations in MBPT will give
accurate total energies, and we consequently have a system-
atic route toward improving the results. We have recently
�18� developed a similar method for systematically improved
approximations in density-functional theory.

Because there is a direct connection between DFT and the
diagrammatic techniques of MBPT, the variational function-
als can serve as excellent starting points for deriving orbital
functional schemes in DFT. One example of this is the opti-
mized effective potential �OEP� method �4,5�, which in the
exchange-only approximation is known to produce energies
very close to those of the Hartree-Fock approximation. To
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assess whether there is such a good agreement also for more
advanced self-energy approximations—e.g., the GW ap-
proximation �GWA� �19�—one in principle needs self-
consistent solutions to both the Dyson equation and OEP
equation. Fortunately, the variational property of the func-
tionals of the Green function and of the density allows us to
make this assessment without self-consistent calculations. It
is here important to stress that, while the self-consistent
Green function energies depend only on the chosen diagram-
matic approximation, the DFT energies will depend both on
the diagrammatic approximation and on the form of the func-
tional itself. We will in this paper illustrate this point in de-
tail. The variational functionals can also be generalized to
time-dependent systems, in which case we are dealing with
action functionals rather than energies. These action func-
tionals are suitable for deriving response functions in time-
dependent DFT �18�.

There are, therefore, three main issues that need to be
addressed. First, we need to investigate the quality of the
variational energy functionals of the Green function in order
verify that they actually produce energies in agreement with
the self-consistent values. Since we want to rely on the as-
sumption that the functionals are stable with respect to the
input Green function, it is useful to check how sensitive the
functionals actually are. This has previously been done for
the homogenous electron gas �16,20� and for closed-shell
atoms �21,22�, where the LW functional was shown to give
very similar results when evaluated on different approximate
Green functions. While this stability indicates that the results
are close to the self-consistent result, this can only be veri-
fied by calculating the actual self-consistent energies that the
LW functional is intended to reproduce.

The second topic of this paper is the relation between the
variational functionals of the Green function and the corre-
sponding orbital functionals in DFT. In other words, we want
to know whether an orbital functional based on a certain
diagrammatic self-energy approximation will produce total
energies similar to those obtained from a self-consistent so-
lutions of the Dyson equation. Some of these orbital func-
tional schemes have recently been used successfully for cal-
culating the binding energies of molecules �23–26�. In order
to understand these results better and to be able to improve
upon the DFT methods, it is necessary to compare these
results to the Green-function calculations they correspond to.

Finally, the third topic that should be considered is
whether a method that produces inaccurate total energies can
still produce accurate energy differences and, for this reason,
be suitable for calculating properties like binding energies,
vibrational frequencies, bond distances, removal energies,
etc. We have earlier shown �21� that self-energy approxima-
tions to second order give much better results than the com-
monly used GW approximations when applied to systems of
strongly localized electrons. This is in contrast to the results
obtained for the homogenous electron gas, where the GWA
gives total energies in excellent agreement with results of
Monte Carlo calculations �11�. But despite producing rather
poor total energies, the GWA did indeed give accurate atomic
removal energies. We have, therefore, carried out similar cal-
culations on molecules in order to see whether the GWA
gives the correct shape of the binding energy curve, albeit

with a relatively large offset from the exact curve.
In the following, we will start by giving a brief presenta-

tion of the variational functionals of the Green function,
stressing the difference between the LW functional and a
similar functional defined by Klein �27�. We argue that the
LW functional is less sensitive than the Klein functional to
the quality of the input Green function, a point which we
have demonstrated also in earlier work �21,22�. We also
show how a new OEP scheme can be derived from the LW
functional in the same manner as the conventional OEP
equations can be derived from the Klein functional �28�. In
Sec. III we demonstrate the stability of the LW functional by
calculating total energies of some diatomic molecules, using
both the GWA and the second-order self-energy approxima-
tion. We also present total energies of atoms and molecules
obtained from self-consistent solutions of the Dyson equa-
tion with the second-order self-energy. Finally, we have cal-
culated the binding energies of diatomic molecules using the
LW and Klein functionals, and discussed the dissociation
problem in more detail by calculating the energy curve of the
H2 molecule for a range of interatomic distances.

II. VARIATIONAL ENERGY FUNCTIONALS

A. Conserving approximation

For notational simplicity, we use the finite-temperature
formalism �8� and let T→0 at the end of our calculations.
The Green function G�x1 ,x2 ; i�� is then defined on the
imaginary-time axis for � in the range −1/kBT���1/kBT
��. Due to the antiperiodicity of the Green function over
the interval �, the Fourier-transformed Green function
G�x1 ,x2 ; i�n� is defined for the discrete frequencies �n

= �2n+1�� /� and is the solution to the Dyson equation

�i� − t̂ − w − vH + ��G = 1 + �G , �1�

where we consider G and � to be frequency-dependent ma-
trices, with the combined space and spin variable x= �r ,	� as
indices. Here, t̂=−�2 /2 is the kinetic energy operator, w�x�
is the external potential, vH�x� is the Hartree potential, and �
is the chemical potential. We use atomic units throughout
this paper. The exchange and correlation effects are included
in the self-energy ��G�, which is a functional of the Green
function. The Dyson equation should be solved to self-
consistency, which is a very demanding problem for approxi-
mations beyond the Hartree-Fock �HF� approximation.

It is important that approximate self-energy functionals
lead to results that agree with the conservation laws of the
underlying Hamiltonian. Baym and Kadanoff �9,10� showed
that such conserving approximations are automatically gen-
erated when the self-energy is obtained as the functional de-
rivative of a functional 
�G�,

��G� =
�
�G�

�G
. �2�

One particularly interesting feature of the conserving ap-
proximations is that the total energy calculated from the re-
sulting self-consistent G will be independent of the method

DAHLEN, VAN LEEUWEN, AND VON BARTH PHYSICAL REVIEW A 73, 012511 �2006�

012511-2



that is used for the computation �10�. There are many ways
of obtaining the total energy from a given Green function,
and if the self-energy approximation is not conserving or if
G is not a self-consistent solution, the result will depend on
the chosen method. These points are illustrated in more detail
in Appendix A. There have been several attempts at calcu-
lating the total energies of atoms and molecules from non-
self-consistent Green functions �29,30�, but the energy then
necessarily depends on the method used for calculating it.
Another important point regarding total-energy ground-state
calculations is that the kinetic and potential energies will be
in agreement with the virial theorem when calculated within
a conserving approximation �14�.

We will discuss two different conserving approximations
in this paper, as illustrated in Fig. 1: the GW approximation
and the second-order approximation. The GWA is a natural
choice for calculations on extended systems, since this ap-
proximation accounts for the screening of the long-range
Coulomb potential. The homogenous electron gas is a system
where it is essential to account for this effect, and calcula-
tions show that self-consistent GW calculations actually pro-
duce total energies in excellent agreement with results of
Monte Carlo calculations �11,31�. We can, on the other hand,
assume that physical processes other than screening may be
more important in systems with strongly localized electrons.
The relevance of the different self-energy approximations
can only be assessed by means of self-consistent calcula-
tions, since the results will otherwise depend on a reference
state. We have earlier used the variational functionals to es-
timate the self-consistent energies of closed-shell atoms,
within both the GWA �22� and the second-order approxima-
tion �21�. Our calculations verified that, in general, the GWA
does not give very accurate total energies for systems with
strongly localized electrons. This does not, however, exclude
the possibility that the GWA can produce good energy dif-
ferences, and our calculations of atomic removal energies
indicated that these can be accurately produced by the GWA.

The relation between Green-function methods and
density-functional theory is obvious when noting that the
density is given by the Green function according to n�x�
=lim�→0�nei�n�G�x ,x ; i�n�. Replacing the self-energy ��G�
in the Dyson equation �1� with the exchange-correlation po-
tential vxc�n� results in a noninteracting Kohn-Sham Green
function when solved to self-consistency. The Kohn-Sham
Green function GKS is given in terms of the orbitals and
eigenvalues of the corresponding Kohn-Sham equation, and
the calculation is equivalent to solving the Kohn-Sham equa-
tions self-consistently, since vxc�n�=vxc�GKS�. Given the ex-

act vxc�n�, the resulting GKS will give the exact electron den-
sity, but will otherwise differ from the exact Green function.
We will in this paper address the question of how to approxi-
mate the functional vxc�n� by using diagrammatic self-energy
expressions ��GKS� of the Kohn-Sham Green function rather
than the self-consistent, interacting G.

B. Luttinger-Ward functional

For a given 
�G� and corresponding ��G�, the Luttinger-
Ward functional �15� gives the grand potential  according
to

LW�G� = 
�G� − U0 − Tr��G� − Tr ln�− i� + t̂ + w + vH

+ � − �� . �3�

The Hartree potential vH and the self-energy � are function-
als of G, and U0= 1

2 �nvH is the classical part of the interac-
tion energy. The trace indicates integration over all space
variables as well as summation over all frequencies. The
total energy in the zero-temperature limit is a functional of G
given by E=�T→0�+�N. We will in this paper only be
interested in the T→0 limit and will occasionally refer to 
as the “energy” rather than the grand potential. The
Luttinger-Ward functional is variational in the sense that

�LW�G�
�G

= 0 �4�

when G is a self-consistent solution to the Dyson equation.
This leads to the presumption that, if the functional is evalu-
ated using an approximate G, the result will be close to the
self-consistent energy. If this is true, then the quality of this
result will ultimately depend on the chosen 
 approximation.
Both these points have earlier been studied in calculations on
the homogenous electron gas within the GWA �16,32� and
for atoms within the GWA �22� and the second-order ap-
proximation �21�. In all these cases, the LW functional was
remarkably insensitive to the quality of the input G. Until
now, a comparison between energies obtained from the LW
functional and self-consistent results has only been done for
the electron gas �where the LW results were indeed in very
good agreement with the self-consistent values�. In the
atomic calculations, we did not have self-consistent results to
compare with, but the remarkable stability of the LW func-
tional when evaluated on different noninteracting Green
functions indicated that the results were indeed close to the
self-consistent values.

We have made a point out of testing the functional using
both HF and Kohn-Sham Green functions. This is because,
while the Green functions obtained from, e.g., local density
approximation �LDA� or GGA calculations can differ signifi-
cantly, they both correspond to a system of noninteracting
electrons in a local potential. The HF Green function is ob-
tained from a nonlocal potential and has a spectrum of un-
occupied eigenvalues which differs significantly from that of
a DFT calculation.

The variational property of the LW functional can also be
exploited for creating orbital functionals in DFT. This is
done by restricting the input to only noninteracting Green

FIG. 1. The 
 diagrams and self-energies �=�
 /�G corre-
sponding to the two approximations discussed in this paper.
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functions obtained from a local external potential. Due to the
1-1 correspondence between the external potential of the
noninteracting system and its ground-state density, we can
consider this �arbitrary� local potential to be a functional of
the density. Defining this potential as vKS�r�, the Green func-
tion GKS which solves the Dyson equation �i�− t̂−vKS

+��GKS=1 is also a functional of the density. This means
that when evaluating the LW functional only on Green func-
tions from a local potential, the 1-1 correspondence between
the potential and density means that we have also the energy
as a functional of the density �18�,

ELW
KS �n� � LW�GKS� + �N . �5�

We can now obtain an OEP scheme for the potential vKS�n�
by finding the density for which ELW

KS �n� is stationary.
Whereas the LW functional �3� is stationary at the G that
solves the Dyson equation, LW

KS �n� is stationary at the den-
sity corresponding to the Kohn-Sham potential vKS such that
�ELW

KS /�n=0. Using the 1-1 correspondence between the den-
sity and Kohn-Sham potential, it is straightforward to derive
the equation �18�

0 = Tr��Ḡ − GKS�
�M

�vKS�x1�	 , �6�

where M =vH+� and the Green function

Ḡ = GKS + GKS���GKS� − vxc�GKS��Ḡ �7�

is a non-self-consistent solution to the Dyson equation.
Equation �6�, which we will refer to as the LW-OEP equa-
tion, bears a clear resemblance to the ordinary OEP equation,
but is somewhat more complicated. Not only does it involve

the function Ḡ, but also the three-point vertex function
�M�x1 ,x2 ; i�� /�vKS�x3�. Fortunately, it is not necessary to
solve this equation as long as we are only interested in the
total energy. The variational properties of the energy func-
tional ELW

KS �n� mean that the energy obtained at a non-self-
consistent density �from, e.g., an LDA calculation� will differ
only little from the result obtained using the LW-OEP den-
sity.

It is important to note that the stationary value of the
functional ELW

KS �n� �obtained by varying over a restricted set
of Green functions� is not equal to the stationary value of
ELW�G�. The stability of the LW functional with respect to
the input Green function does, however, indicate that the
Dyson equation and the LW-OEP equation should produce
similar results. This assumption is further backed up by our
earlier calculations �21,22� and the results presented in the
following sections.

C. Klein functional and OEP equation

The Luttinger-Ward functional is only one example of a
variational energy functional of G. Another such functional
encountered in the literature �10,25,33,34� is that used by
Klein �27�,

K�G� = 
�G� + U0 + Tr�1 − G0
−1G� − Tr ln�− G−1� , �8�

where G0
−1= i�− t̂−w+�. This functional is also variational

in the sense that �K�G� /�G=0 when G is the self-
consistent solution of the Dyson equation. The functionals
K and LW have the same value �and the same functional
derivative� at the self-consistent G, but will otherwise give
different results. The distinction between the LW and Klein
functionals is unfortunately not always noticed, but it is easy
to demonstrate that the variational qualities of the Klein
functional are inferior to those of the LW functional �22�.

The functional �8� takes a particularly simple form when
evaluated at a noninteracting Green function Gs, correspond-

ing to some noninteracting Hamiltonian Ĥs with a �possibly
nonlocal� single-particle potential ws. The corresponding
Slater determinant 
�s� and eigenvalues ��i are related

through ��s
Ĥs
�s�=�i=1
N �i. We now use the relation G0

−1

=Gs
−1+ws−w and the fact �15� that −Tr ln�−Gs

−1�=�i=1
N �i

−�N to write the Klein energy functional EK=K+�N in
the form

EK�Gs� = 
�Gs� + U0 + Tr��w − ws�Gs + ��s
Ĥs
�s�

= ��s
Ĥ
�s� + 
c�Gs� . �9�

The first term in the last line is the HF energy functional,
while the correlation energy is given by the correlation part
of 
, defined as 
c=
−
x. The GW approximation to 

means that 
c�Gs� is the ordinary random phase approxima-
tion �RPA� correlation energy,


c
GW =

1

2
Tr�vP0 + ln�1 − vP0�� , �10�

where P0=GG. The second-order 
 is given by


c
�2� =

1

4
Tr�G�c

�2�� , �11�

where �c
�2� refers to the correlation part of the self-energy,

�=�x+�c. The term 
c
�2� equals the correlation energy ob-

tained from perturbation theory to second order in V̂= Ĥ

− Ĥs �35,36�. When the zeroth-order Hamiltonian Ĥs is taken
to be the HF Hamiltonian, this is referred to as Møller-
Plesset �MP� perturbation theory and the second-order ap-
proximation is denoted MP2.

In the same way we constructed a density functional from
ELW�G�, we can define a density functional from the Klein
functional by restricting the input to be only Kohn-Sham
�KS� Green functions—i.e., Green functions that result from
a local potential vKS. Equation �9� then becomes

EK
KS�n� � T0�n� +� nw + U0 + 
�GKS� . �12�

Here, T0�n� is the noninteracting kinetic energy and the ex-
change and correlation energy is given by 
�GKS�. As shown
by Casida �28�, this density functional is stationary,
�EK

KS�n� /�vKS�x1�=0, at the vxc=vKS−w−vH which solves
the OEP equation
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� d�

2�
� dx1dx2GKS�x,x1;i����x1,x2;i��GKS�x2,x;i��

=� d�

2�
� dx1GKS�x,x1;i��GKS�x1,x;i��vxc�x1� . �13�

This equation has been solved for the second-order approxi-
mation 
�2� by Facco Bonetti et al. �37� and by by
Grabowski et al. �38�. The calculations in Refs. �23–25�
amount to evaluating the functional EK

KS�n� for 
GW. We will
in the following refer to these calculations as DFT-RPA cal-
culations. While the OEP equation gives the density for
which the energy is stationary, it is not obvious that the en-
ergy is also a minimum at this solution. We show in Appen-
dix C that, under certain conditions, the solution to the OEP
equation does indeed correspond to a minimum. It has been
demonstrated that the functional EK

KS�n� is not very sensitive
to the input density, but this does not mean that the Klein
functional EK�G� is insensitive to the quality of the input G.
There is, in fact, no reason to believe that the energy at the
stationary point of EK

KS�n� should be close to the energy of
EK�G� at the self-consistent G. While the stationary values of
ELW�G� and EK�G� are the same, the stationary values of the
two density functionals EK

KS�n� and ELW
KS �n� will differ con-

siderably �22�, but the results of the latter functional will in
general be closer to the self-consistent energies.

III. CALCULATIONS

We have performed a number of calculations in order to
test the different energy functionals mentioned in the previ-
ous section. We have addressed four main questions: �1�
How reliable is the variational property of the LW func-
tional? In other words, are the energies obtained from this
functional when evaluated at a noninteracting Green function
really close to the self-consistent energies and is the LW
functional stable with respect to the quality of the input
Green function? �2� Are the energies obtained from the two
density functionals mentioned in the previous section in
agreement with the self-consistent energies? �3� For which
approximations to 
 does the self-consistent G give accurate
total energies. And �4� Can a method which produces rather
poor total energies give accurate energy differences?

All the calculations were carried out using Slater basis
functions �39�. The evaluation of the Klein functional is rela-
tively straightforward, using Eqs. �10� and �11�, but the fre-
quency integral in the logarithmic term of the LW functional
requires some extra manipulation since the integrand goes to
a constant value as �→�. There are several possible ways
of calculating this term. Details of the evaluation are given in
Appendix B.

A. Self-consistent solutions

In our earlier calculations on atoms �21,22�, we showed
that the LW functional is highly insensitive to the input
Green function when applied to atoms. While this indicates
that the results are close to the self-consistent results, this
could not be proved since no such energies were available.

To verify this claim, we have solved the Dyson equation
self-consistently for some atoms and diatomic molecules.
Our earlier work has indicated that the second-order approxi-
mation to �, as illustrated in Fig. 1�b�, is more relevant than
the GW approximation when considering systems of local-
ized electrons, and hence we have chosen to solve the Dyson
equation within this approximation. In these calculations, we
have used the imaginary-time Green function G�x ,x� ; i�� to
avoid the slowly converging frequency summations that ap-
pear when using the Fourier-transformed quantities. A further
advantage is that the imaginary-time calculations can easily
be extended to calculations on nonequilibrium systems,
where the Green function is calculated on a time contour
�40�. The Green function is represented in basis sets of Slater
functions and hence becomes a time-dependent matrix
Gij�i��. Since the Green function is quite sharply peaked
around �=0 and �= ±�, it is inconvenient to use an even-
spaced time grid. Instead, the time coordinates are located on
a power mesh, as described by Ku and Eguiluz in Ref. �12�.
More details of the computation can be found in Ref. �14�.

From the self-consistent Green function, it is straightfor-
ward to obtain the total energy, as explained in Appendix A.
The second-order self-energy approximation has been used
in earlier Green-function calculations on atoms and mol-
ecules, although the Dyson equation has never been solved
self-consistently. In Refs. �29,30�, the Green function was
calculated from the first iteration of the Dyson equation,

G�2� = GHF + GHF�c
�2��GHF�G�2�. �14�

In this case, the value of the total energy depends on the
method used for calculating it. This is well illustrated by the
calculations in Ref. �30�, where it was shown that when cal-
culating the total energy from G�2�, using the Galitskii-
Migdal formula, the total energy of an H2 molecule does not
diverge when the interatomic separation increases. This is in
contrast to the MP2 result and also to higher-order levels of
MP perturbation theory which diverge even more strongly.
But it is important to point out that since the Green function
in Eq. �14� is not self-consistent, calculating the energy from
any of the variational functionals discussed in this paper,
Eqs. �3� and �8�, would give results very different from the
Galitskii-Migdal formula. The larger the interatomic separa-
tion R, the bigger the deviations would be. A related problem
is that, for R→�, one obtains a significant error in the par-
ticle number calculated from G�2� due to the lack of self-
consistency �30�.

In the present work, we have solved the Dyson equation
self-consistently; i.e., the self-energy is evaluated using the
self-consistent G rather than GHF, such that

G = GHF + GHF�M�G� − vH�GHF� − �x�GHF��G , �15�

where M =vH+�x+�c. The Green function is in this way
calculated to infinite order for a given second-order self-
energy functional, in the same way that the Hartree-Fock
approximation is the self-consistent solution corresponding
to the first-order self-energy. We stress that while the HF
Green function appears in Eq. �15�, the self-consistent Green
function is independent of this. We could equally well use a
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KS system as a starting point, as long as the resulting G
satisfies the Dyson equation

�− �� − t̂ − w − vH + ��G = 1 + �G . �16�

In Table I, we have listed the self-consistent energies of a
number of atoms and diatomic molecules. We have also in-
cluded LW results obtained from the second-order 
, using
the same basis sets as the self-consistent calculations. The
self-consistent energies agree remarkably well with the ener-
gies obtained from the LW functional, in particular those
obtained when HF Green functions are used as input. The
LW values for the atoms differ slightly from those published
in Ref. �21� due to the use of smaller basis sets in the present
work. The spectacular agreement between ELW

�2� �GHF� and the
self-consistent results is, however, independent of the size of
the basis sets. An important feature of these results is that the
MP2 energies of the systems included in Table I differ very
little from the ELW

�2� �GHF� results, as discussed also in Ref.
�21�. This is highly interesting as it explains why second-
order perturbation theory gives such accurate results to low
order, in spite of the fact that the perturbation series is diver-
gent �41�. In Appendix A, we indicated why the values of
EK�GHF� and ELW�GHF� are usually very similar, also for the
GW approximation. This agreement turns out to be true not
only for atoms and diatomic molecules, but also for the ho-
mogenous electron gas �42�.

B. Variational functionals applied to diatomic molecules

We have calculated the total energies of several diatomic
molecules in order to check the stability of the LW functional
and the adequacy of the GWA and second-order approxima-

tion for calculations on atoms and small molecules. All cal-
culations were carried out at the experimentally determined
bond lengths. Total energies of H2, Li2, LiH, and N2 are
shown in Table II. In addition to the results of the LW func-
tional using 
GW and 
�2�, we have also included the ener-
gies obtained from the Klein functional within the same two
approximations. Since the latter functional gives results al-
most identical to the LW functional when evaluated on the
HF Green function, we have only included the results of the
Klein functional with GLDA as input. The results with GGGA
as input are practically the same. For the LW functional, we
used DFT Green functions from the LDA and GGA �1�, as
well as the HF Green function.

The LW functional is seen to be more sensitive to the
input than when applied to closed-shell atoms, a fact which
could cast some doubt on the claim that the LW energies are
similar to the self-consistent values. The reduced stability of
the functional may partly be caused by using smaller basis
sets, as discussed in Appendix B. We have, however, verified
that the LW functional when evaluated on the HF Green
function does indeed give an excellent estimate for the self-
consistent energies, as shown in Table I. When the input is
restricted to DFT Green functions, the energy is somewhat
farther away from the self-consistent values. The functional
is much less sensitive to the choice of Kohn-Sham potential.
This reflects the stability of the density functional ELW

KS �n�,
defined by restricting the variational freedom of the input G
in the LW functional. The results in Table II then indicate
that for these diatomic molecules, the stationary point of
ELW

KS �n� is somewhat above the stationary point of ELW�G�
�i.e., the self-consistent energy�.

Nevertheless, the LW functional is seen to be much less
sensitive than the Klein functional to the quality of the input
Green function. While the Klein functional yields results in
good agreement with the self-consistent values when a HF
Green function is used as input, inserting a DFT Green func-
tion results in much too low energies. This reflects the fact
that the stationary point of the density functional EK

KS�n� is
significantly below the stationary point of EK�G�, as a con-
sequence of the poorer variational quality of the Klein func-
tional. It should be pointed out that it depends on the choice
of self-energy approximation whether the Klein functional
overestimates or underestimates the self-consistent energy.
For 
GW and 
�2�, the functional EK

KS�n� produces results
much lower than the self-consistent values, as shown in
Table II, while the functional necessarily overestimates the

TABLE I. Total energies calculated from the self-consistent
Green function and from the Luttinger-Ward functional evaluated at
the HF and LDA Green functions. All energies are in hartrees.

ELW
�2� �GLDA� ELW

�2� �GHF� SC

He −2.8937 −2.8969 −2.8969

Be −14.5953 −14.6405 −14.6409

Ne −128.8068 −128.8332 −128.8339

Mg −199.8933 −199.9093 −199.9097

Mg2+ −199.0918 −199.1025 −199.1027

H2 −1.1595 −1.1658 −1.1659

LiH −8.0394 −8.0526 −8.0528

TABLE II. Total energies �in Hartrees� of some diatomic molecules, calculated from the LW functional using the GW and the second-
order approximations �denoted by ELW

GW and ELW
�2� , respectively� with the LDA, GGA, and HF Green functions as input. The total energies

obtained from the Klein functional within the same two approximations, with GLDA as input, are included in the columns labelled
EK

GW�GLDA� and EK
�2��GLDA�.

Molecule EK
GW�GLDA� ELW

GW�GLDA� ELW
GW�GGGA� ELW

GW�GHF� EK
�2��GLDA� ELW

�2� �GLDA� ELW
�2� �GGGA� ELW

�2� �GHF�

H2 −1.2095 −1.1755 −1.1777 −1.1887 −1.1815 −1.1594 −1.1593 −1.1658

LiH −8.1338 −8.0750 −8.0835 −8.1015 −8.0772 −8.0386 −8.0396 −8.0526

Li2 −15.084 −14.995 −15.002 −15.035 −15.008 −14.925 −14.927 −14.964

N2
a −109.720 −109.514 −109.526 −109.575 −109.734 −109.320 −109.317 −109.472

aUsing the basis set CVB2 from Ref. �43�.
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Hartree-Fock energy �corresponding to 
c=0.�
While these calculations have been carried out on small

systems, several features of these results seem to be quite
general. The remarkable similarity between the ELW�GHF�,
EK�GHF� and the self-consistent results is highly interesting,
as we have found these results to agree for all systems we
have studied so far and for both the second-order approxi-
mation �shown in Table I� and the GWA �44�. The only other
system where the variational functionals have been tested is
the homogenous electron gas, where the LW functional has
been shown to produce results in excellent agreement with
self-consistent GW calculations �11,16,20�. The energy given
by EK

GW�GHF�, equal to the HF-RPA energy, is also close to
the self-consistent GW values �42�. This implies that the re-
lation EK�GHF��ELW�GHF��E�GSC� is true also for the ho-
mogenous electron gas. This should be put in contrast to the
functional EK

KS�n� which gives the well-known RPA energies,
also here significantly lower than the self-consistent values.

C. Binding energies

The total-energy calculations suggest that the second-
order approximation is more relevant than the GWA approxi-
mation for calculations on small systems, but we are prima-
rily interested in an accurate description of total-energy
differences, such as molecular binding energies. We have
calculated binding energies from both 
�2� and 
GW, as
shown in Table III. What is particularly noticeable in these
results is the high quality of the DFT-RPA binding energies,
denoted by EK

GW�GLDA� �almost identical results are obtained
using GGGA�. The agreement with the experimental numbers,
which has earlier been demonstrated by Furche �23� and
Fuchs and Gonze �24�, is spectacular since DFT-RPA is the
method that gives the worst total energies of all the methods
considered here. While these energies correspond to the EK

GW

functional, this does not mean that we can attribute the high
quality of the binding energies to the GWA in itself, since the
stationary point of the density functional EK

KS�n� is not close
to the self-consistent energy.

For an accurate estimate of the self-consistent GW energy,
we should rather look to the ELW

GW�GHF� results, which are
much better estimates for these. The LW results indicate that
while self-consistent GW will produce better total energies

than DFT-RPA, the binding energies will be slightly worse.
The second-order approximation, on the other hand, seems to
give binding energies of the same quality as DFT-RPA, al-
though the DFT-RPA result for the H2 molecule is consider-
ably better. As can be seen from Table III, the binding ener-
gies obtained from the LW functional are unfortunately
rather sensitive to the input Green function. This reflects the
fact that we have a variational expression for total energies
but not for total-energy differences. For the second-order ap-
proximation the results calculated from the DFT Green func-
tions are much closer to each other than to the ELW�GHF�
results, but this pattern is not seen for the GW approxima-
tion. The situation is not too bad, however, since the
ELW

�2� �GHF� total energies, and consequently also the binding
energies, are almost identical to the self-consistent values in
all cases we have considered so far.

The binding energies in Table III were calculated by sub-
tracting the total eneries of the isolated fragments from the
total energy of the molecule. The result does not necessarily
say how well the bonding curves of the molecules are de-
scribed, and it has indeed been shown that while DFT-RPA
can give highly accurate binding energies, the shape of the
binding curve is, however, not accurately given by DFT-RPA
�46,47�. The main problem associated with calculating bind-
ing energies from DFT-RPA is that the method is not size
consistent. In other words, when pulling the molecular frag-
ments apart, the total energy will not equal the total energies
calculated from the separate fragments. Furthermore,
DFT-RPA produces highly accurate binding energies only
when the energy of the molecular fragments is calculated
separately, but not when it is obtained from the R→� limit
of the binding curve.

This point is illustrated in Fig. 2, where we have plotted
the RPA total energy for the H2 molecule at a range of inter-
nuclear separations R. We have used DFT orbitals from both
LDA and exchange-only OEP �which for two-electron sys-
tems amounts to vKS=w+ 1

2vH� calculations, in order to illus-
trate the stability of the DFT-RPA functional, Eq. �12�. For
comparison, we have also included RPA calculations using
HF orbitals and from spin-unrestricted LSDA calculations.
The numerical values are given in Table II. Our results agree
with those of Fuchs et al. �46�, except at large separations
where the DFT-RPA energies are more sensitive to the input
DFT orbitals. The calculations in Ref. �46� used densities

TABLE III. Binding energies �in Hartrees� of some diatomic molecules, calculated from the LW and Klein functionals and using the HF,
LDA, and GGA Green functions as input.

Molecule EK
GW�GLDA� ELW

GW�GLDA� ELW
GW�GGGA� ELW

GW�GHF� EK
�2��GLDA� ELW

�2� �GLDA� ELW
�2� �GGGA� ELW

�2� �GHF� Expt.a

H2 0.173b 0.158 0.165 0.162 0.184c 0.160 0.160 0.166 0.175

Li2 0.027 0.029 0.029 0.020 0.061c −0.009 −0.007 0.026 0.039

LiH 0.087 0.083 0.091 0.081 0.105c 0.072 0.073 0.084 0.092

N2
d 0.350e 0.313 0.386 0.311 0.542c 0.253 0.248 0.369 0.364

aFrom Ref. �45�.
bTo be compared with the value 0.174 from Refs. �46,23�.
cTo be compared with the values 0.182, 0.062, 0.11 and 0.545 from Ref. �26�, obtained from GGA orbitals.
dUsing the basis set CVB2 from Ref. �43�.
eTo be compared with the value 0.355 calculated from the RPA valence electron correlation energy in Ref. �23�.
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from spin-unrestricted exact exchange calculations �which
are exact in the R→� limit�, while we have used densities
from the spin-restricted LDA. Using the exact density does
not, however, mean that the dissociation is correctly de-
scribed by DFT-RPA. While it has been shown �48� that the
RPA total energy of two electrically neutral subsystems,
separated by a distance R, goes as �E=−C /R6, this assumes
that the noninteracting response function can be written as
�0=�A

0 +�B
0 for large R. Here, A and B label the two frag-

ments with densities that do not overlap in the R→� limit.
The noninteracting response function takes this form if the
fragments are closed-shell systems. For the H2 molecule, the
noninteracting response function corresponding to spin-
restricted HF or DFT calculations cannot be divided, since
this would require breaking the spin symmetry. The RPA
total energy will therefore approach a constant value slower
than −C /R6. We have discussed this point in Appendix D by
calculating the RPA energy of a H2 molecule in a minimum
basis.

It has recently been claimed �49� that the DFT-RPA
method is size consistent when the input orbitals correspond
to the density of spin-unrestricted exact exchange �note that
the input orbitals still correspond to a spin-restricted calcu-
lation�, which is exact when R→�. In Ref. �46�, this method
has been used to calculate the RPA energy for R as large as
7 a.u., but the energy curve is yet to converge at this point.
We have calculated the RPA energy using orbitals corre-
sponding to the bare H nuclei—i.e.,
vKS�r�=−1/r−1/ 
r−R
—for internuclear distances up to R
=25 where this should be a very reasonable approximation to
the exact vKS. But even at these large separations, the RPA
energy is still above the atomic values and has not con-
verged. If the RPA reaches the atomic values from below as
−C /R6, as claimed in Ref. �49�, then this could only happen
for extremely large separations. Since the exact energy curve
converges long before R=10, as seen from Fig. 2, the DFT-
RPA energy can therefore hardly be said to converge cor-
rectly.

Figure 2 shows quite clearly how the RPA energy con-
verges slowly from above, although the asymptotic values
are difficult to estimate since the energies have not con-
verged even at R=20 a.u. The situation is quite different if
we break the spin symmetry and use orbitals from spin-
unrestricted HF and LSDA calculations. As R→�, the two
occupied orbitals will then be localized on separate sites,
with opposite spins. In this case, the noninteracting response
function can be written as a sum of two atomic response
functions and the energy converges correctly as �−C /R6. In
Fig. 2, we have plotted the DFT-RPA energies obtained from
LSDA orbitals �50�. We are now faced with a rather awkward
situation if we want to calculate binding energies from the
RPA. To be consistent, the H2 molecule should always be
described as a 1�g state, and one should consequently calcu-
late the binding energy from the asymptotic value of the
spin-restricted RPA energy. This is, however, rather difficult
since we would have to go to very large separations before
the energy converges. Calculating the binding energy as the
difference between the RPA energy at equilibrium separation
and the energy of the fragments amounts to a spin-
unrestricted calculation and can therefore be considered un-
physical. The latter approach does nevertheless give binding
energies in very good agreement with experiment. Also the
shape of the total energy curve, shown in Fig. 5, below,
agrees well with that of CI calculations, except around
R�4.

As is evident from Fig. 2, the RPA energy calculated from
HF orbitals differs considerably from the DFT-RPA results.
This reflects the fact that the RPA energy is equivalent to the
Klein functional EK�G� with 
=
GW and that this functional
is rather sensitive to the input Green function. The DFT-RPA
energy �equivalent to the density functional EK

KS�n�� is stable
with respect to the input density, and the energy is therefore
relatively independent of the chosen Kohn-Sham potential,
as demonstrated in Fig. 2. Due to the large difference be-
tween the HF-RPA and DFT-RPA results, the DFT energy
can, however, not be expected to be close to the self-
consistent Green function value.

The LW functional, on the other hand, is much more
stable with respect to the input Green function, and the DFT
energy should in this case be closer to the self-consistent
result. The LW-GW energy of an H2 molecule is shown in
Fig. 3. Similar to the RPA calculations in Fig. 2, we have
used both DFT and HF Green functions as input. The LW
functional is clearly much less sensitive to the input G than
the Klein functional �as plotted in Fig. 2�, though not as
stable as when applied to closed shell atoms �21,22�. The LW
functional becomes considerably less stable for large values
of R, which indicates that the HF Green function and, in
particular, the KS Green functions then become too crude
approximations. There is still only a very small difference
between the ELW�GLDA� and ELW�GOEP� results �except for at
large R�, which reflects the fact that the density functional
ELW

KS �n� is not sensitive to the input density. Increasing the
variational freedom by allowing the input Green functions to
correspond also to nonlocal potentials �i.e., GHF� lowers the
total energy to a value which is closer to the self-consistent
result. While the HF-RPA curve is not included in Fig. 3, the

FIG. 2. The total energy of H2 as a function of the internuclear
separation. The figure shows that the RPA energy EK

GW�n� does not
converge to the atomic value when the input orbitals come from
spin-restricted calculations. The local spin density approximation
�LSDA� RPA curve is the RPA energy obtained from spin-
unrestricted LSDA calculations, which quickly converge to the
atomic value.
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difference between this energy and the ELW
GW�GHF� result is

minimal ��0.1–0.2 mhartree� except for at large values of
R. The difference between ELW

GW�GLDA� and the LDA-RPA
results is much bigger, being �5 mhartree.

In Fig. 4, we have plotted the LW energies for the second-
order approximation to 
, using GHF and GLDA as input.
Using a different KS Green function would produce a curve
similar to that of ELW

�2� �GLDA�. In the figure, we have also
included the energies obtained from the self-consistent Green
function and conventional MP2 energies �equivalent to
EK

�2��GHF��. The two latter curves differ very little from the
ELW�GHF� results for interatomic separations up to R�6.0.
The three curves will, however, differ considerably at larger
separations when the narrowing of the HF highest occupied
and lowest unoccupied molecular orbital �HOMO-LUMO�
gap causes terms like 
c

�2� to diverge. The terms in the LW
functional that should compensate for the divergence in 
c

�2�

will necessarily also diverge, but since this cancellation is
only approximate. As a consequence, both the ELW�GHF� and
EK�GHF� will diverge. The divergence of the LW functional
is even more severe when GLDA is given as input, which is
obvious from Fig. 4. While we have not been able to carry

out self-consistent calculations for large values of R, it has
been shown in Ref. �30� that the Green function �14� calcu-
lated from the first iteration of the Dyson equation gives a
total energy that converges to a constant value for R→�,
and we expect this to be the case also for the fully self-
consistent energies. The failure of the LW and Klein func-
tionals for large separations then shows that the GHF is a
much too crude approximation for large values of R.

In conclusion, since both GHF and GLDA are too far from
the self-consistent Green function as R→�, it is better to use
Green functions from spin-unrestricted calculations as input
in order to produce meaningful binding energy curves. In
Fig. 5, we have plotted the binding energy curves of
ELW

�2� �GUHF�, where GUHF is the spin-unrestricted HF Green
function, and LSDA-RPA together with results of CI calcu-
lations. To compare the shape of the curves, we have sub-
tracted the energies at equilibrium separation. Both curves
deviate somewhat from the CI results at intermediate values
of R, but the shape of the LSDA-RPA curve shows a striking
agreement with the CI results around the equilibrium sepa-
ration.

IV. CONCLUSIONS

We have in this paper been able to verify that the LW
functional evaluated at a noninteracting Green function can
produce total energies close to the self-consistent Green-
function values. The LW functional is more sensitive to the
input Green function when applied to molecules than when
applied to atoms, but the functional is still much more stable
than the Klein functional. Despite this increased sensitivity,
we have been able to show that with a HF Green function the
LW functional gives results in excellent agreement with the
self-consistent results. The larger deviation between the LW
energies and the self-consistent results appears when we re-
strict the input to DFT Green functions, which apparently are
too crude approximations to the self-consistent molecular
Green functions. While we have only compared to self-
consistent solutions within the second-order self-energy ap-
proximation, preliminary results indicate that the excellent
agreement between the self-consistent energies and
ELW�GHF� is true also for the GWA and other conserving

FIG. 3. The figure shows the LW-GW energy of the H2 molecule
as a function of interatomic separation R, using LDA, exchange-
only OEP, and HF Green functions as input.

FIG. 4. The LW energy of the H2 molecule as a function of
interatomic separation R, using the second-order approximation

�2� and LDA and HF Green functions as input. We have also
included the self-consistent Green function energies and the MP2
energies, equivalent to EK

�2��GHF�.

FIG. 5. The energy difference �E�R�=E�R�−E�R0� of the H2

molecule, calculated using LSDA-RPA and ELW
�2� �GUHF� and com-

pared to CI results.
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approximation as well �44�. This means that the LW func-
tional allows us to study the merits of various self-energy
approximations without having to solve the Dyson equation.

The larger deviations from the self-consistent values when
DFT Green functions are given as input reflects the fact that
the restriction in the variational freedom results in an energy
functional of the density, ELW�n�. This functional has a sta-
tionary point different from the self-consistent result. For
atoms, this deviation is rather small, but for molecules the
error is more significant. As a consequence, the binding en-
ergies calculated from the variational functionals with DFT
Green functions as input are not necessarily good approxi-
mations to the self-consistent binding energies.

From our calculations, we have seen that the second-order
approximation produces better total energies than the GWA
for atoms and small molecules. This could be expected since
the most important feature of the GWA is the screening of
the long-range potential of the Coulomb interaction. In a
system with strongly localized electrons, it is not surprising
that other physical processes are equally important. For ex-
tended systems, the situation is different since screening the
electron interaction is essential. The natural formalism for
calculations on such systems is then the � formalism, as
developed in Refs. �16,17�. This formalism has not yet been
applied to molecules, but works very well for atoms �22� and
the homogenous electron gas �16,20�.

We have also been able to demonstrate that the LW func-
tional is useful also for constructing orbital functionals in
DFT. By restricting the input to the variational functionals to
be noninteracting Green functions from a local potential, we
obtain an energy functional which is stationary at the poten-
tial referred to as the OEP potential. It is obviously rather
difficult to find vxc from the LW-OEP equation �6�, but this is
in practice not necessary if we only want to calculate the
energy. As we have shown, the energy functional ELW

KS �n� is
insensitive to which DFT orbitals are used as input. The LW
functional has the further advantage over the conventional
OEP schemes in that the energies are much closer to the
self-consistent values. This means that we understand what
physical mechanisms are taken into account in our DFT
scheme and puts us in a position to systematically improve
upon our approximations. Given the importance of orbital
functionals for systems where local functionals of the density
fail, it will be essential to explore these topics further. This
work will not only lead to improved methods for total-energy
calculations, but also to improved DFT response functions
�18�.
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APPENDIX A: OBTAINING THE TOTAL ENERGY FROM
THE GREEN FUNCTION

For a given G�x ,x� ; i�� there are many ways to obtain the
total energy. The most straightforward method would be to
use the very definition of the Green function and the property

that, in the limit �→0−, the Green function equals the one-
particle density matrix. This means that

�T̂ + Ŵ� =� dx lim
x�→x

��−
�2

2
+ w�x�	G�x,x�;0−�� .

�A1�

The electron interaction energy is similarly obtained from

�V̂� =
1

2
�

0

�

d�� � dxdx�M�x,x�;− i��G�x�,x;i��

=
1

2
Tr�MG� . �A2�

Note that this definition of the trace is slightly different from
the one used elsewhere in this paper, since we here consider
the �-dependent functions rather than the Fourier-
transformed quantities. When G is a solution to the Dyson
equation �but not necessarily a self-consistent one�, the sum

E = �T̂ + Ŵ� + �V̂� �A3�

is equivalent to the Galitskii-Migdal formula �51�

E =
1

2
� dx lim

x�→x

�→0−

�− �� +
�2

2
− w�x�	G�x,x�;i�� . �A4�

If the Green function is also a self-consistent solution of the
Dyson equation corresponding to a conserving �, the energy
is equal to that obtained from the variational functionals dis-
cussed in this paper. An example of this is the case of 

=
x, in which GHF is the self-consistent solution to the
Dyson equation and all expressions give the HF energy.

That these three methods can give different results is eas-
ily seen by considering the second-order approximation of
Fig. 1. If we calculate the total energy from the HF Green
function, then the Klein functional �9� will give the MP2
energy

EK�GHF� = �
i=1

N

�i
HF − U0 − 
x +

1

4
Tr���2��GHF�GHF

= EHF + Ec
MP2. �A5�

If we evaluate Eq. �A3�, we instead obtain

E = EHF + 2Ec
MP2, �A6�

while the Galitskii-Migdal formula �A4� will just give the
HF energy EHF.

APPENDIX B: EVALUATING THE LOGARITHMIC TERM
IN THE LW FUNCTIONAL

The logarithmic term in the LW functional �3� cannot be
evaluated without some further manipulation, since the inte-
grand goes to a constant value for large frequencies. There
are several ways of doing this, but we have in these calcula-
tions �and in Refs. �21,22,47�� chosen to use an auxiliary

Green function G̃, defined according to
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G̃−1 = G−1 − �x + �0. �B1�

The Green function G is here the Green function that is given
as input to the LW functional. In our calculations G is a
noninteracting Green function corresponding to a Dyson
equation

�i� − t̂ − w − vH − �0 + ��G = 1. �B2�

The self-energy �0 is vxc or �x, and the corresponding Green
function is either a KS or a HF Green function. The auxiliary

noninteracting Green function G̃ corresponds to the first it-

eration towards HF, which means that if G=GHF, then G̃
=G=GHF. We can now write the logarithmic term in the LW
functional as

− Tr ln�− G−1 + � − �0� = − Tr ln�− G̃−1 + �c�

= − Tr ln�− G̃−1�

− Tr ln�1 − G̃�c�

= �
i=1

N

�̃i − �N − Tr ln�1 − G̃�c� . �B3�

The eigenvalues �̃i correspond to G̃. It is important to note
that when we represent the Green functions in terms of one-
particle basis functions, the manipulations in this equation
assume that we have a complete basis. While the procedure
described here is only one of several possible methods for
evaluating the logarithmic term, the use of an inadequate
basis set could cause the results to depend on the chosen
method.

The frequency integral in the last term can now be per-
formed, as it goes as 1/�2 for large frequencies. It is advan-
tageous to extract the linear term of the logarithm, such that

− Tr ln�1 − G̃�c� = Tr�G̃�c − Tr�G̃�c + ln�1 − G̃�c� .

�B4�

The frequency integral in the last term now converges as
1/�4. Inserted in the LW functional, we now have to calcu-
late

ELW�G� = �
i=1

N

�̃i − U0 − Tr��xG + 
 + Tr��G̃ − G��c

− Tr�G̃�c + ln�1 − G̃�c� . �B5�

From this expression it is clearly seen that if we evaluate the
LW functional on G=GHF, the energy becomes

ELW�GHF� = EHF + 
c − Tr�G�c + ln�1 − G�c� . �B6�

The last term provides a correction to the correlation energy

c and is quadratic in �c. We found this correction to be
almost negligible for most atoms and molecules. The term
appears, perhaps surprisingly, to be small also for the ho-
mogenous electron gas �42�.

When evaluating the logarithm, further manipulation is

necessary since the frequency dependent matrix �̃c is not
Hermitian. The frequency integral is

Tr In�1 − G̃�c� = Tr�
−�

� d�

2�
ln�1 − G̃����c����

= Tr�
0

� d�

2�
�ln�1 − G̃����c����

+ ln�1 − G̃�− ���c�− ���

= Tr�
0

� d�

2�
�ln�1 − G̃����c����

+ ln�1 − „�c���G̃���…†�

= Tr�
0

� d�

2�
ln
1 − G̃����c���
2. �B7�

The last step is valid because we take the trace over the
matrices. In order to calculate the logarithm we now need to

diagonalize the Hermitian matrix G̃�c+ �G̃�c�†− G̃�c�G̃�c�†

for each frequency. From the eigenvalues of this matrix, the
trace is then readily obtained.

APPENDIX C: MINIMUM OF THE OEP ENERGY

The OEP equation follows from finding the density for
which the energy functional �12� is stationary,

�E

�n�r�
=

T0

�n�r�
+ w�r� + vH�r� +

�


�n�r�
= 0. �C1�

At the OEP density, we have

�T0

�n�r�
= − vs�r� . �C2�

The local potential vs�r� is a functional of the density and
can be written in the form vs�r�=w�r�+vH�r�+vxc�r�, where
vxc is the solution to the OEP equation �13�. The obvious
question is now whether this stationary point of the energy
functional is also a minimum, and to answer this we have to
calculate the second derivative of the energy functional. Us-
ing the fact that vxc�r�=�
 /�n�r� and defining the static
exchange-correlation response kernel Kxc=�vxc�r� /�n�r��
the second derivative can be written

�2E

�n�r��n�r��
=

�2T0

�n�r��n�r��
+ v�r − r�� +

�vxc�r�
�n�r��

= −
�vs�r�
�n�r��

+ v�r − r�� + Kxc�r,r�� = − �−1�r,r�� , �C3�

where we have used the property �2T0 /�n�r��n�r��
=−�0

−1�r ,r�� and the fact that �0
−1=�−1+v+Kxc. As a conse-

quence, the second derivative of the energy functional is
positive, meaning that the OEP energy corresponds to a
minimum, as long as the response function � has negative
eigenvalues. We know this to be true for the noninteracting
response function �0 as well as for the exact response func-
tion obtained from the exact Kxc. It is also true for the re-
sponse functions obtained from the approximation K=0 and
from the exchange kernel K=Kx. To strictly prove that the
OEP energy is a minimum also for other approximations to
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, one should calculate the response function � from
K�r ,r��=�2
 /�n�r��n�r��. In the case of the RPA energy,
there is no indication of singularities that could overshadow
the strong Coulomb interaction. In fact, this response func-
tion has been used by Langreth and Perdew �52� to obtain
gradient corrections and also by Richardson and Ashcroft
�53� at finite frequencies, without any sign of such singulari-
ties. It is important to keep in mind that if � should happen to
have positive eigenvalues, this would imply an instability in
the OEP ground state �54�. In conclusion, the OEP energy is
a minimum under the assumption that the static response
function �=�0+�0�v+Kxc�� does not have unphysical posi-
tive eigenvalues.

APPENDIX D: DISSOCIATION OF H2 IN A MINIMUM
BASIS

We use a minimum basis consisting of the gerade and
ungerade orbitals

�g/u�r� =
1

�2�1 ± S�
�A�r� ± B�r�� , �D1�

molecular orbitals, where A�r� and B�r� are the 1s hydrogen
orbital located on atoms A and B, respectively, and S is their
overlap. The noninteracting response function is then given
by

�0�r,r�;i�� = − a�i��f�r�f�r�� , �D2�

where a�i��=4� / ��2+�2�, f�r�=�g�r��u�r�, and �=�u−�g is
the HOMO-LUMO gap. The RPA response function is

��r,r�;i�� = −
a�i��

1 + a�i��K
f�r�f�r�� , �D3�

where K=��d3rd3r�f�r�v�r−r��f�r��. To obtain the interac-
tion energy for the electron interaction �v�r−r��, we calcu-
late

−
1

2
Tr����v� =

1

2
�

−�

� d�

2�

�Ka�i��
1 + �Ka�i��

=
1

2
�

−�

� d�

2�

4�K�

�2 + �2 + 4�K�
= �K� �

� + 4�K
.

�D4�

Integrating over the interaction strength gives

�
0

1 d�

�
��V�� = �

0

1 d�

�
Tr����v� = K�

0

1

d�� �

� + 4�K

=
�

2
��1 +

4K

�
− 1	 . �D5�

From this it follows that the RPA correlation energy �8� is

ERPA
c =

�

2
��1 +

4K

�
− 1	 − K . �D6�

The RPA total energy, defined according to Eq. �9�, is ERPA
=EHF+ERPA

c . Assuming that the molecular orbitals are
obtained from HF calculations, then in the limit R→�,
EHF=−1+J /2−1/ �2R�+O�1/R2�, where

J =� � d3rd3r�
A�r�
2v�r − r��
A�r��
2. �D7�

Since the RPA correlation energy goes to ERPA
c →��K−K,

then limR→��=1/R+O�1/R2� and

ERPA = − 1 +� J

2R
+ O�1/R� . �D8�

From this expression, we see that the HF-RPA energy ap-
proaches a constant value from above, in agreement with our
calculations using larger basis sets.
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