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The popularity of the GW approximation to the self-energy to access the quasiparticle energies
of molecules is constantly increasing. As the other methods addressing the electronic correla-
tion, the GW self-energy unfortunately shows a very slow convergence with respect to the basis
complexity, which precludes the calculation of accurate quasiparticle energies for large molecules.
Here we propose a method to mitigate this issue that relies on two steps: (i) the definition of a
reduced virtual orbital subspace, thanks to a much smaller basis set; (ii) the account of the remain-
der through the simpler one-ring approximation to the self-energy. We assess the quality of the
corrected quasiparticle energies for simple molecules, and finally we show an application to large
graphene chunks to demonstrate the numerical efficiency of the scheme. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4972003]

I. INTRODUCTION

Many-body perturbation theory1,2 allows one to calcu-
late the electronic quasiparticle energies, which are physi-
cal observables and thus can be compared to photoemission
and inverse photoemission experiments. This approach is the
method of choice to obtain the electronic states that cannot
be obtained through a difference of total energies. Indeed, the
so-called ∆SCF procedure only grants access to the highest-
occupied molecular orbital (HOMO) and lowest-unoccupied
molecular orbital (LUMO) energies.

Within many-body perturbation theory, the famous GW
approximation to the self-energy has proven very accurate
to predict the band structures of extended systems.3–6 Today,
the application of the GW approximation to finite systems is
becoming more and more frequent and attractive.7–22

However, the first systematic convergence study using
localized orbitals12,14 showed the difficulty to obtain abso-
lutely converged GW quasiparticle energies. Such a slow con-
vergence rate is not unusual among the correlated methods
of quantum chemistry. It has been well-known for years that
the Møller-Plesset perturbation theory23 or coupled-cluster24

approaches, for instance, experience a slow convergence rate.
Several strategies have been used in the past to obtain

converged results within the GW approximation or within the
correlated methods of quantum chemistry. These approaches
comprise the brute force convergence with increasingly large
basis sets,25,26 the fitting of an extrapolation formula,27–30 an
approximation of the remainder when truncating virtual orbital
subspace,31–35 or the creation of an optimized virtual orbital
subspace.36–41 In the context of localized orbitals, specific
correlation-capturing basis can be devised in order to limit
the number of basis functions to some extent.42

In the present article, we show how two of these tech-
niques, namely, approximating the remainder and optimizing
the virtual orbitals, can be combined in order to obtain con-
verged GW quasiparticle energies at a moderate computational

cost for localized basis. We propose a definition of the reduced
virtual orbital subspace that departs from the more conven-
tional frozen natural orbital (FNO) technique,36–39 because
the FNO generation would quickly become computationally
prohibitive for the largest systems. We would rather define
the optimized virtual orbital subspace as the one spanned
by a smaller localized basis. The remainder is then approx-
imated by the one-ring self-energy (a simpler second order
perturbation contribution to the self-energy), following the
philosophy of the focal point analysis (FPA).31,32 We demon-
strate that the combination of both techniques is sufficient to
obtain an estimate within 0.1 eV of the quasiparticle energies
of molecules, even when calculating the GW self-energy in a
simple double-ζ-polarized basis.

The article is organized as follows. We first quickly recap
in Sec. II the key equations for the GW self-energy that will be
necessary for the subsequent discussion. In Sec. III, we ana-
lyze the convergence rate of the different contributions to the
GW self-energy and show how the one-ring self-energy can
approximate the basis set dependence of the GW self-energy.
In Sec. IV, we show how to build an optimized subspace from
a single self-consistent field (SCF) calculation. The global per-
formance of our approach is demonstrated in Sec. V, with an
application to large graphene chunks.

II. GW SELF-ENERGY IN LOCALIZED BASIS

The GW approximation to the self-energy arises as the
first order perturbation term, when the dynamically screened
Coulomb interaction W (ω) is used as the perturbation param-
eter.3,43 The dynamically screened Coulomb interaction is
obtained within the so-called Random-Phase Approximation
(RPA), which is synonym to the rings-only approximation to
the screening. The Feynman representation of the GW self-
energy is given in Fig. 1. As inferred from the diagrams,
the GW self-energy is indeed an infinite summation over
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FIG. 1. Feynman diagrams for the correlation part of the GW self-energy
ΣGW

c . The arrows denote the Green’s function G. The dashed line denotes the
Coulomb interaction 3. The GW self-energy is an infinite summation over the
rings diagrams. It can be split into a sum of two terms: the one-ring self-energy

Σ
1ring
c and the several rings self-energy Σrings

c . The one-ring term is also named
the direct term in the context of second-order perturbation theory.

the rings formed by two Green’s functions in opposite direc-
tions. These rings account for the formation of electron-hole
pairs.

The presentation of the GW self-energy is limited here
to the crucial equations for conciseness. Many more details
can be found, for instance, in Refs. 11, 12, 16, and 30. For
simplicity, we limit our presentation here to spin-restricted
calculations and to perturbative GW, where the self-energy is
evaluated only once with self-consistent field (SCF) inputs.

Let us then specify directly the expectation value of the
correlation part of the GW self-energy on the SCF eigenstate
|ϕp〉,

Σ
GW
c pp(ω) = 2

∑
bs

(ws
pb)2

ω − εb −Ωs + iη

+ 2
∑

js

(ws
pj)

2

ω − ε j +Ωs − iη
, (1)

where i, j run over occupied orbitals, a, b over virtual orbitals,
and s over the neutral excitations. The small positive real
number η ensures the correct positioning of the poles.

The coefficients ws
pi and the energies Ωs come from the

spectral representation of W (ω) − v ,

(mn|W (ω) − v |op) =
∑

s

ws
mnw

s
op

×

(
1

ω −Ωs + iη
−

1
ω +Ωs − iη

)
, (2)

where m, n, o, and p are indexes running over the eigenstates
of the SCF Hamiltonian. We have introduced the difference
W � 3 in order to discard the exchange self-energy that poses
no problem. We have chosen to present the GW formalism
following the spectral function approach30 for easiness. Of
course, the conclusions drawn here are valid irrespective of
the technical approach.

As shown in Fig. 1, the correlation part of the GW
self-energy can naturally be decomposed into the one-ring
contribution Σ

1ring
c (termed the direct term in second-order

perturbation theory) and the several-rings remainder Σrings
c ,

Σ
GW
c = Σ

1ring
c + Σ

rings
c . (3)

Employing the Mulliken notation for the Coulomb integrals,

( pq|rs) =
∫ ∫

drdr′ϕp(r)ϕq(r)
1

|r − r′ |
ϕr(r′)ϕs(r′), (4)

the expression for Σ1ring
c can be obtained straightforwardly by

considering that each neutral excitation s comes from a single
transition from state i to state a. This approximation amounts
to setting

Ωs = εa − ε i (5a)

ws
mn = (mn|ia) (5b)

in Eq. (2), which finally yields

Σ
1ring
c pp (ω) = 2

∑
bia

(pb|ia)2

ω − εb − εa + ε i + iη

+ 2
∑
jia

(pj |ia)2

ω − ε j + εa − ε i − iη
. (6)

At this stage, we have introduced the expressions for the
GW self-energy and for the one-ring self-energy. In practice,
the bottleneck in a GW calculation is most often the eval-
uation of W (ω). For instance, in the spectral decomposition
approach,14,16,33 this requires the diagonalization of the RPA
matrix. This operation scales as N6 since the RPA matrix has
the dimension of the number of virtual orbitals times the num-
ber of occupied orbitals. Obviously, the calculation of Σ1ring

c

skips this cumbersome step and is rather limited by the evalua-
tion of the molecular orbital integrals in Eq. (4). This operation
scales as N5 in general or as N4 if the Resolution-of-Identity
approximation is used.44 In Sec. III, we will evaluate how the
information obtained for the simpler self-energy Σ1ring

c can be
used to speed up the calculation of ΣGW

c .

III. EXTRAPOLATION USING THE ONE-RING
DIAGRAM

We propose to analyze in details how the different parts of
the GW self-energy converge with respect to the calculation
complexity. We exemplify here with the self-energy expec-
tation value for the HOMO of benzene C6H6. The reference
value is obtained with a very large Dunning-type basis,45 the
cc-pV6Z, that comprises 140 basis functions per carbon atom
and 91 basis functions per hydrogen atom.

Two different strategies can be adopted to reduce the
computational burden, as compared to the complete cc-pV6Z
calculation: either one truncates the number of virtual orbitals
used in the summations in Eqs. (1) and (2) or one employs
a smaller basis. These two approaches are tested in Fig. 2,
where the solid lines show the performance of the truncation
of virtual orbitals in the cc-pV6Z basis, whereas the dashed
lines illustrate the basis set convergence (cc-pVnZ). As the
computational load is a function of the number of basis func-
tions, it makes sense to compare the two strategies in terms of
the accuracy reached for a given number of basis functions.
With this criterium at hand, we conclude that the truncation
strategy is far less efficient than the use of a smaller basis to
minimize the error. In other words, though less flexible and
then less accurate, the smaller basis set somehow better repre-
sents the virtual orbital subspace for a given number of basis
functions.

The smaller basis induces a faster convergence for all the
various parts of the self-energies we plotted in Fig. 2. From this



234110-3 Fabien Bruneval J. Chem. Phys. 145, 234110 (2016)

FIG. 2. Convergence of the self-energy contributions as a function of the
number of states included in the self-energy for the HOMO of benzene. Two
different convergence curves are shown: Solid lines are obtained from the most
complete basis set (cc-pV6Z), however limiting the number of states included
in the self-energy calculations; dashed lines are obtained by a standard basis
set convergence study increasing the complexity n of the basis set (cc-pVnZ).
The Dunning basis is labeled with a short-hand notation: DZ, TZ, etc.

observation, we conclude that it is a more sensible strategy to
span the virtual orbital subspace with a small basis set, rather
than with a large basis set however truncated at a given state
index.

In Fig. 2, we decompose the GW self-energy following
Eq. (3). It is clear that the slow convergence of the full GW
self-energy ΣGW

c mostly arises from the slow convergence of
the one-ring term Σ

1ring
c . Indeed the difference between the

latter two, Σrings
c , is already converged within 20 meV with the

simplest basis cc-pVDZ.
The faster convergence of the higher-order terms was

already observed in the context of coupled-cluster calcula-
tions.31,32 The FPA strategy uses this property to perform
accurate extrapolation to the complete basis set limit. It is used
to extrapolate to the complete-basis set limit for high-level
quantum chemistry methods,21,46 assuming that the difference
between higher-level methods (for instance, coupled-cluster)
and lower-level methods (for instance, Møller-Plesset pertur-
bation theory) converges quickly with the basis set complexity.
Here we propose to adapt this strategy to the GW self-energy.
Based on the observation of Fig. 2, we propose the following
extrapolation formula:

Σ
GW large
pp (ω) ≈ ΣGW small

pp (ω)

+ Σ
1ring large
pp (εp) − Σ1ring small

pp (εp), (7)

where the basis set complexity (large or small) is specified in
the superscript. Note that the GW self-energy is only evaluated
within the small basis set. For numerical efficiency and also for
accuracy, we have found advantageous to evaluate the one-ring
contribution only at the SCF eigenvalue εp. The extrapolated
self-energy curve is thus simply shifted as compared to the
original loosely converged one.

In Sec. IV, we devise a practical scheme to evaluate the
different terms of Eq. (7) with a single SCF calculation in the
large basis. Though not absolutely necessary, this further step
eases the application of the extrapolation formula for the user.
Furthermore, this would circumvent issues that could arise if

the state p used to bracket the self-energy changes too much
from the small to the large basis sets.

IV. EVALUATION IN A SINGLE SCF CALCULATION

Our purpose here is to construct an optimized virtual
orbital subspace based on a smaller basis out of an existing
converged SCF calculation in a large basis. The development
here is general to any basis set combination: The small basis
does not need to be a subset of the larger one.

Let us label the basis functions of the large basis set |φA〉

with a capitalized index A and the basis functions of the small
basis set |φα〉 with a small greek letter α. The number of basis
functions in the small basis is denoted by N small, whereas the
number of basis functions in the large basis is named N large. At
this stage, the converged SCF calculation provides us with the
Hamiltonian matrix HAB, its eigenvalues εp, and its eigenstate
coefficents CAp, such that

|ϕp〉 =
∑
Ap

|φA〉CAp. (8)

Let us introduce the overlap matrix S,

SAB = 〈φA |φB〉, (9)

and the projection matrix Scross,

Scross
Aα = 〈φA |φα〉, (10)

which connects the large basis to the small basis.
We define the effective basis functions |φ̃α〉 that mimic the

small basis functions however represented in the large basis as

|φ̃α〉 =
∑
AB

|φA〉S
−1
ABScross

Bα . (11)

Now, one can work in the subspace spanned by the
N small basis functions defined in Eq. (11). The corresponding
Hamiltonian H̃ and overlap matrix S̃ read

H̃αβ =
∑

ABCD

Scross
Aα S−1

ABHBCS−1
CDScross

Dβ , (12a)

S̃αβ =
∑
AB

Scross
Aα S−1

ABScross
Bβ , (12b)

where the symmetry of the S�1 matrix was used to simplify
the expression.

Hence, the Roothaan-Hall equation can be solved in the
small subspace,

H̃C̃ = S̃C̃Ẽ, (13)

to obtain the eigenvalues Ẽ and eigenvectors C̃. The eigenvec-
tors coefficients can be then brought back to the original large
basis (capitalized indexes), with the transform

C̃ ′Ap =
∑
Bα

S−1
ABScross

Bα C̃αp. (14)

Instead of using directly the new coefficients C̃ ′Ap for all
states p, one would like to circumvent a potential issue. Since
the smaller basis may not contain the same basis functions as
the larger one, the bracketing state p used to obtain the expec-
tation value of the self-energy may change when shifting from
the large basis to the small effective basis. To prevent this, we
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choose to freeze the occupied states together with the brack-
eting states into their original expression. This procedure is
completely analogous to the one used in frozen natural orbital
technique, except that here the frozen orbitals may comprise
the few first virtual orbitals used to evaluate the self-energy
expectation value.

The different subspaces we defined are depicted in Fig. 3
in the prototypical case where the self-energy is evaluated for
the HOMO and LUMO. The N f orbitals up to the LUMO
will be kept frozen to their expression in the large basis set.
The virtual orbitals indexed from N f + 1 to the size of the
small basis N small will be optimized and finally, the virtual
orbitals above N small will be simply discarded from the GW
calculation. The precise index N f can be slightly increased
in order to avoid splitting degenerate orbitals into different
subspaces.

The described scheme can be written down as an update
of the C̃ ′ coefficients,

C̃ ′Ap ←




CAp for p ≤ Nf

C̃ ′Ap for Nf < p ≤ Nsmall

0 for Nsmall < p ≤ Nlarge.
(15)

Then the Roothaan-Hall equations are solved once again
in the new subspace spanned by the N small orbitals, whose
coefficients are the new C̃ ′Ap,

H̄ = C̃ ′T HC̃ ′, (16a)

S̄ = C̃ ′T SC̃ ′, (16b)

H̄C̄ = S̄C̄Ē. (16c)

FIG. 3. Diagrammatic representation of the various orbital subspaces. Elec-
tronic states are the horizontal lines. As a typical example, we choose to
evaluate the GW self-energy for the HOMO and the LUMO, shown with
dashed red lines. The blue area designates the frozen subspace, which encom-
passes the occupied states and the ones used to bracket the self-energy. The
green area shows the optimized subspace identified through a smaller basis
set. The gray area identifies the electronic states that will be discarded from
the GW self-energy calculation.

and the final coefficients read

CAp ←

{∑
q C̃ ′AqC̄qp for p ≤ Nsmall

0 for Nsmall < p ≤ Nlarge,
(17)

and the final energies are

εp ←

{
ε̄p for p ≤ Nsmall

0 for Nsmall < p ≤ Nlarge.
(18)

By construction of the C̃ ′ basis, the N f first eigenvectors and
eigenvalues obtained in Eqs. (17) and (18) remain identical to
the original ones.

With this construction of the reduced virtual subspace, we
can proceed with the practical evaluation of the performance
of the scheme.

V. A FEW APPLICATIONS

The calculations presented here are standard one-shot
GW calculations based on hybrid functional SCF inputs,
obtained from PBE047 (GW@PBE0) or from BHLYP48

(GW@BHLYP). We use the Resolution-of-Identity approx-
imation to avoid the 4-center Coulomb integrals. We con-
centrate on Dunning-type basis sets,45 since they offer the
possibility of systematic improvement. Note that this basis set
family is not nested, meaning that the triple-ζ basis does not
necessarily contain the basis functions of the double-ζ basis.

We have implemented the optimization of the virtual sub-
space described in Eqs. (17) and (18) in the GW code named
molgw.30,49 The spectral method implemented in molgw
requires the diagonalization of the RPA matrix in the prod-
uct basis. As the product basis grows as N2 for N atoms,
this operation scales as N6 and is the actual bottleneck of the
method. In this context, it is crucial to keep the dimension of
the product basis as small as possible. This subspace defini-
tion is used to evaluate the extrapolation formula of Eq. (7) in
a single run. molgw first performs the SCF calculations, fol-
lowed by the GW and the one-ring calculations in the reduced
subspace, and finally the one-ring evaluation in the complete
basis set.

Let us first come back to the benzene example we already
used in Sec. III. Figure 4 shows the convergence of the
GW@PBE0 HOMO quasiparticle energy as a function of the
basis set used in the GW calculation. The standard approach in
which the basis set is kept the same in the prior SCF step and
in the GW post-processing (green dashed line) experiences the
usual dramatically slow convergence.

Then, we trigger the optimized subspace generation and
the extrapolation formula. Following the results obtained with
the largest basis set for the SCF step (cc-pV6Z, red line with
down triangles), we can appreciate how fast the convergence
with respect to the basis set in the GW part becomes. The error
with the simplest basis (cc-pVDZ) is only 20 meV and goes
down to less than 10 meV for the next rung (cc-pVTZ).

Following a vertical black line in Fig. 4, one can appreciate
how the convergence behavior is captured by simple calcula-
tions in which the basis set in the GW part is kept fixed and
only the SCF basis is increased.

The same type of convergence plot is provided in the
more complex case of a noble metal cluster in Fig. 5. There, we
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FIG. 4. Convergence plot of the HOMO of benzene within GW@PBE0 as a
function of the basis set used in the GW self-energy. The green dashed line
shows a regular convergence plot when the basis set for SCF and GW is the
same. The horizontal black line is the extrapolated HOMO in the complete
basis set limit. The violet, blue, orange, and red symbols encode the SCF
basis set.

consider an 8-atom silver cluster, whose atomic coordinates
were obtained from Ref. 50. This system is very different
from the previous case of benzene: it has a relatively small
HOMO-LUMO gap and it contains highly localized 4d elec-
trons. First of all, the convergence of the 4d states by brute
force increase of the basis set complexity (green dashed line) is
much slower than the 5s HOMO state. The optimized subspace
plus extrapolation technique we propose works extremely well
for the 4d state. The correction for the 5s state has a tendency

FIG. 5. Convergence plot of the HOMO (with s character, upper panel) and
the HOMO-3 (with d character, lower panel) of a silver cluster Ag8 within
GW@PBE0 as a function of the basis set used in the GW self-energy. The
green dashed line shows a regular convergence plot when the basis set for SCF
and GW is the same. The violet and blue symbols encode the SCF basis set.

to overshoot; however, using the cc-pVTZ basis to span the
virtual subspace of the GW is already enough to reduce it.

Beyond the case of benzene and of the Ag8 cluster,
we applied the same procedure to the HOMO quasiparticle
energy of the 34-small-molecule set introduced in Ref. 10.
Figure 6 shows the mean signed error of the HOMO energy
within GW@PBE0, with respect to the reference taken as
the cc-pV5Z results. This benchmark is more stringent for
the extrapolation scheme, as we observe that the proposed
approach generally performs better for larger molecules. Eval-
uating the self-energy within the cc-pVDZ basis set yields
an average error of about 0.1 eV that might be considered
as slightly too large for the typical requested accuracy. How-
ever, using the subsequent basis set, cc-pVTZ, cuts the average
error down to 0.06 eV. The convergence rate is anyway much
faster than the standard procedure shown with the dashed green
line.

We now demonstrate the potentiality of the proposed
technique with the calculation the HOMO and LUMO quasi-
particle energies of very large graphene chunks51 within
GW@BHLYP. Here we selected the BHLYP SCF starting
point, since it usually induces a nice agreement with respect
to experiment.17,52 The carbon-carbon bond length is set to
1.42 Å and the hydrogen-carbon one to 1.09 Å.

The results reported in Fig. 7 have been obtained with the
cc-pVQZ quality, by using the cc-pVQZ for the SCF step and
the extrapolation formula with a cc-VDZ optimized virtual
orbital subspace. With the largest system, C150H30, contain-
ing as many as 180 atoms and comprising as many as 9150
basis functions, the SCF calculation can already be consid-
ered as challenging. The GW calculation is then performed
using the optimized basis set with 2250 basis functions instead.

FIG. 6. Mean signed error of the GW@PBE0 HOMO energies of a 34
molecule set as a function of the basis set used in the GW self-energy. The
green dashed line shows a regular convergence plot when the basis set for
SCF and GW is the same. The horizontal black line is the reference set for
the cc-pV5Z basis. The orange triangle symbols show the convergence with
a fixed SCF basis set, namely, cc-pV5Z.
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FIG. 7. Evolution of HOMO and LUMO quasiparticle energies within
GW@BHLYP as a function of the number of carbon atoms in graphene
chunks, C6H6, C24H12, C54H18, C96H24, and C150H30. The SCF basis set
is cc-pVQZ, whereas the GW self-energy was evaluated for a cc-pVDZ-based
virtual subspace.

As shown in Fig. 7, the HOMO and LUMO quasiparticle
energies can be nicely fit with a linear function on n�1/2, where
n is the number of carbon atoms in the system. From these fits,
the work function of an infinite graphene sheet work function
is extrapolated to 4.35 eV. Note that the BHLYP extrapolated
value is noticeably lower, 3.95 eV.

VI. CONCLUSION

In this article, we have demonstrated the possibility to
accelerate the slow convergence of the GW self-energy through
the combination of two techniques: first, we create an reduced
virtual orbital subspace as spanned by a smaller basis set; sec-
ond, we evaluate the error between the complete subspace and
the reduced one, thanks to the simpler one-ring self-energy
Σ

1ring
c . These two steps do not affect the overall comptuta-

tional scaling of a GW calculation; however, the prefactor is
drastically reduced.

The accuracy of this method has been assessed on small
molecules, for which large basis reference calculations were
achievable. We have further shown the possibility to calculate
very large molecules using what is generally considered as
a very good basis set (cc-pVQZ). To the best of our knowl-
edge, our GW calculation of the HOMO/LUMO quasiparticle
energy of C150H30 is one of the most massive GW calculations
published in the literature to date.

We emphasize that the proposed scheme is extremely sim-
ple for the end user. The computer code is run only once and
the only input requested from the user is the choice of the
smaller basis employed to span the reduced virtual subspace.

The present developments will certainly broaden the range
of applications for the GW self-energy for molecular systems
and clusters. These advances are available in the development
version of molgw.49
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