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The ground-state correlation energy calculated in the random-phase approximation (RPA) is known
to be identical to that calculated using a subset of terms appearing in coupled-cluster theory with
double excitations (CCD). In particular, for particle-hole (ph) RPA this equivalence requires keeping
only those terms that generate time-independent ring diagrams, and for particle-particle (pp) RPA it
requires keeping only those terms that generate ladder diagrams. Here I show that these identities
extend to excitation energies, for which those calculated in each RPA are identical to those calculated
using approximations to equation-of-motion coupled-cluster theory with double excitations (EOM-
CCD). The equivalence requires three approximations to EOM-CCD: first, the ground-state CCD
amplitudes are obtained from the ring-CCD or ladder-CCD equations (the same as for the correlation
energy); second, the EOM eigenvalue problem is truncated to the minimal subspace, which is one
particle + one hole for ph-RPA and two particles or two holes for pp-RPA; third, the similarity
transformation of the Fock operator must be neglected, as it corresponds to a Brueckner-like dressing
of the single-particle propagator, which is not present in the conventional RPA. Published by AIP
Publishing. https://doi.org/10.1063/1.5032314

I. INTRODUCTION

The random-phase approximation (RPA) plays a founda-
tional role in quantum chemistry, condensed-matter physics,
materials science, and nuclear physics.1–3 As a theory of the
ground-state correlation energy, the particle-hole RPA (ph-
RPA) is an infinite-order resummation of all time-independent
ring diagrams, which critically controls the leading-order
divergence in the energy of metals at high density.2,4,5 Espe-
cially when combined with density functional theory via the
adiabatic connection fluctuation-dissipation theorem,6,7 the
ph-RPA also provides a good description of long-range dis-
persion interactions.3,8–11 Similarly, the particle-particle RPA
(pp-RPA) is an infinite resummation of particle-particle and
hole-hole ladder diagrams, which are important at low den-
sity,12,13 and provides a promising treatment of the exchange-
correlation energy in density functional theory.14 Both flavors
of the RPA correspond to approximate bosonic treatments of
harmonic electronic fluctuations.1,15

The terms appearing in the ph-RPA and pp-RPA correla-
tion energy are a subset of those included in coupled-cluster
theory with double excitations (CCD). Therefore, approxi-
mate solutions of the CCD equations, known as ring-CCD
and ladder-CCD, can be used to calculate the ph-RPA and
pp-RPA correlation energy, respectively. For the ph-RPA,
this was shown numerically by Freeman for the electron
gas16 and proven analytically by Scuseria, Henderson, and
Sorensen;17 see also Ref. 18. The equivalence between pp-
RPA and ladder-CCD was proven simultaneously in Refs. 15
and 19.

a)Electronic mail: berkelbach@uchicago.edu

Alternatively, the RPA may be viewed as a theory of
dynamical response functions. The ph-RPA approximates the
dynamical polarizability, a context in which it is known to
be identical to time-dependent Hartree or Hartree-Fock.20

For finite systems, such as molecules, the ph-RPA leads
to reasonably accurate electronic excitations21 and under-
lies the successful time-dependent density functional the-
ory.22–26 For solids, the ph-RPA polarizability correctly pre-
dicts the properties of the collective plasmon excitation2 and
forms the basis for screening in the popular GW approxi-
mation.27 Analogous to the correlation energy, the ph-RPA
polarizability is a resummation of all time-dependent ring
diagrams. Less studied, the pp-RPA approximates the dynam-
ical response function associated with a pairing field, which
does not conserve particle number and probes excitation ener-
gies associated with a system of N ± 2 electrons. Excita-
tion energies calculated with pp-RPA have been investigated
in recent years by Yang and co-workers28,29 and shown to
provide promising accuracy for states with double-excitation
character.

These observations suggest a relation between excitation
energies calculated with the RPA and those calculated with
approximate versions of excited-state coupled-cluster theory.
In this manuscript, I provide the precise recipe for this anal-
ogy, showing that the ph-RPA excitation energies (with or
without exchange) can be obtained from an approximation
to electronic-excitation equation-of-motion CCD (EE-EOM-
CCD), and the pp-RPA excitation energies can be obtained
from an approximation to double-electron-affinity (DEA-) or
double-ionization-potential (DIP-) EOM-CCD. The former
relation was partially addressed in early work by Emrich,30

and the latter one is completely unexplored to the best of my
knowledge.
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II. THEORY
A. Response functions

Both the ph-RPA and pp-RPA can be used to approximate
the two-particle Green’s function, for different choices of the
time ordering. The two-particle Green’s function is defined
by13

i2G2(1, 2; 1′, 2′) = 〈Ψ0 |T
[
ψ(1)ψ(2)ψ†(2′)ψ†(1′)

]
|Ψ0〉, (1)

where ψ† and ψ are creation and annihilation field operators,
respectively; Ψ0 is the N-electron ground state, T is the time-
ordering operator, and (1) = (r1, t1) is a combined space and
time variable; throughout, I only consider fixed particle num-
ber and zero temperature. The two-particle Green’s function
describes a number of physical processes associated with addi-
tion or removal of two particles, the specific details of which
depend on the choice of relative time ordering. The dynamical
polarizability is one particular time ordering corresponding to
the density-density response function,2,13

iΠ(1, 2) = i2G2(1, 2; 1+, 2+) − iG(1, 1+)iG(2, 2+)

= 〈Ψ0 |T [δn(1)δn(2)]|Ψ0〉, (2)

where δn(1) = ψ†(1)ψ(1) − 〈ψ†(1)ψ(1)〉 is the density fluc-
tuation away from the ground-state density and G is the one-
particle Green’s function. In the frequency domain, the poles
of the polarizability occur at all N-electron excitation energies
Ων , with residues given by the square of the transition densities
|〈Ψ0|n(r)|Ψν〉|.2

In the usual diagrammatic route,12,13 the RPA polariz-
ability is expressed as Π = Π0 + Π0v̄Π, where v̄ is the
antisymmetrized Coulomb kernel and Π0 is the irreducible
polarizability of a noninteracting particle-hole pair Π0(1, 2)
= −iG0(1, 2)G0(2, 1). This generates the conventional form
of the RPA polarizability as a sum of all time-dependent
ring diagrams and particle-hole ladder diagrams (the exchange
interaction leading to particle-hole ladder diagrams can also
be considered a simple vertex correction in Π). The noninter-
acting one-particle Green’s function is defined in terms of the
solution of some mean-field problem,

iG0(1, 2) = θ(t1 − t2)
∑

a

φa(r1)φ∗a(r2) exp[−iεa(t1 − t2)]

− θ(t2 − t1)
∑

i

φi(r1)φ∗i (r2) exp[−iεi(t1 − t2)], (3)

where here and throughout the indices, i, j, k, l are used to
denote occupied orbitals and a, b, c, d are used to denote
unoccupied orbitals. The locations of the poles of the RPA
polarizability, i.e., the excitation energies, are the eigenvalues
of the well-known ph-RPA matrix, given in Subsection II B.

An alternative time ordering of G2 describes the simulta-
neous addition or removal of two electrons,

iK(r1, r2, r′1, r′2; t, t ′)

= 〈Ψ0 |T
[
ψ(r1, t)ψ(r2, t)ψ†(r′1, t ′)ψ†(r′2, t ′)

]
|Ψ0〉, (4)

which is clearly related to the system’s response to a non-
number-conserving pairing field, V =ψψ +ψ†ψ†. The poles of
K occur at (N ± 2)-electron excited-state energies with respect
to the N-electron ground-state energy, EN±2

n −EN
0 , with residues

given by |〈Ψ0 |ψ
†ψ† |ΨN−2

n 〉|2 or |〈Ψ0 |ψψ |Ψ
N+2
n 〉|2. Analogous

to the above, approximating K0 as an independent particle
(or hole) pair, K0(1, 2) = −iG0(1, 2)G0(1, 2) and using the
RPA form K = K0 + K0 v̄K leads to the RPA pairing response
function as a sum of all ladder diagrams.

In order to precisely relate the RPA excitation energies to
those of an approximate EOM-CCD calculation, in Sec. II B
I perform a downfolding of the ph-RPA matrix into the single
particle-hole excitation subspace; in Sec. II C I show that this
matrix is identical to the one obtained from EE-EOM-CCD in
the single particle-hole excitation subspace when the ground-
state double excitation amplitudes satisfy the ring-CCD equa-
tions and the similarity transformation of the Fock operator
is neglected. Using the same approach, I show that an anal-
ogous result relates the pp-RPA excitation energies to those
of an approximate DEA/DIP-EOM-CCD. Having established
the algebraic equivalence of the RPA excitation energies and
those from approximate EOM-CCD, in Sec. II D I analyze the
time-dependent Goldstone diagrams in the RPA polarizability
and pairing response function, comparing to their construction
in the coupled-cluster framework, with special attention paid
to the non-Tamm-Dancoff diagrams. In Sec. II E, I discuss the
effect of similarity-transforming the Fock operator and relate it
to a self-consistent dressing of the single-particle propagator.

B. RPA excitation energies

The ph-RPA eigenvalue problem is given by the system
of equations1,17

*
,

A B

−B∗ −A∗
+
-
*
,

X

Y
+
-
= *
,

X

Y
+
-
Ω, (5)

where

Aia,jb = (εa − εi)δabδij + 〈ib| |aj〉, (6a)

Bia,jb = 〈ij | |ab〉, (6b)

andΩ is a diagonal matrix of positive ph-RPA excitation ener-
gies; here and throughout, I assume the typical case where the
RPA stability matrix is positive definite but see Ref. 15 for
a more general discussion. The antisymmetrized two-electron
integrals are defined by 〈pq||rs〉 = 〈pq|rs〉−〈pq|sr〉, with

〈pq|rs〉 =
∫

dr1

∫
dr2φ

∗
p(r1)φ∗q(r2)r−1

12 φr(r1)φs(r2). (7)

Formally solving the second equation, −B∗X −A∗Y = YΩ,
gives

Y = −(A∗ + YΩY−1)−1B∗X. (8)

Using this expression to replace Y in the first of the ph-RPA
equations leads to two equivalent forms that are eigenvalue
problems for X only,

[
A − B(A∗ + YΩY−1)−1B∗

]
X = XΩ, (9a)

[
A + BYX−1

]
X = XΩ. (9b)

Therefore, the matrix on the left-hand side, which only has sup-
port in a single particle-hole excitation subspace (and not the
subspace twice as large), has all of the positive ph-RPA exci-
tation energies as its eigenvalues. As written, Eqs. (9) are not
practical because the construction of the downfolded matrix
requires knowledge of the Y component of all eigenvectors and
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either all eigenvaluesΩor the X component of all eigenvectors;
however, the matrix in Eqs. (9) will be shown to be identical
to an approximate matrix derived from EE-EOM-CCD.

Similar to the above, the pp-RPA eigenvalue problem is
given by the system of equations1,15,19 (cf. Ref. 5)

*
,

C −B̄

B̄† −D∗
+
-
*
,

X+ Y−

Y+ X−
+
-
= *
,

X+ Y−

Y+ X−
+
-
*
,

Ω+ 0

0 −Ω−
+
-
, (10)

where

Cab,cd = (εa + εb)δacδbd + 〈ab| |cd〉, (11a)

D∗ij,kl = −(εi + εj)δikδjl + 〈ij | |kl〉, (11b)

B̄ab,ij = 〈ab| |ij〉, (11c)

Ω+ is a diagonal matrix of pp excitation energies, and Ω− is a
diagonal matrix of hh excitation energies. Following identical
algebra as above leads to the two eigenvalue equations,

(C − B̄Y+X−1
+ )X+ = X+Ω+, (12)

(D∗ − B̄†Y−X−1
− )X− = X−Ω−. (13)

These two eigenvalue problems separately give the excitation
energies associated with (N ± 2)-electron systems and will be
shown to be identical to an approximate solution of the DEA-
and DIP-EOM-CCD equations, respectively.

C. Approximate EOM-CCD

In typical equation-of-motion coupled-cluster theory
with single and double excitations (EOM-CCSD),30–32 the
T1 and T2 amplitudes are obtained from the ground-
state CCSD equations and the EOM eigenvalue problem is
obtained by projecting the similarity-transformed normal-
ordered Hamiltonian, H̄N ≡ e−T HeT −ECC, into a basis of
singly and doubly excited determinants. By contrast, to con-
struct the relation with the ph- or pp-RPA requires only the
similarity transformation due to an approximate T2 projected
only in the minimal space of singly excited determinants,
corresponding to neutral ph excitations (for ph-RPA) or dou-
bly charged pp/hh excitations (for pp-RPA). Carrying out this
procedure for the case of neutral excitations leads to

〈Φa
i |H̄N |Φ

b
j 〉 = Fabδij − Fijδab + Wjabi, (14)

where33

Fab = εaδab −
1
2

∑
klc

〈kl | |bc〉tac
kl , (15a)

Fij = εiδij +
1
2

∑
kcd

〈ik | |cd〉tcd
jk , (15b)

Wibaj = 〈ib| |aj〉 +
∑
kc

〈ik | |ac〉tcb
kj . (15c)

However, the similarity-transformed Fock operators lead to a
shift of the single-particle energies in a manner which is absent
in the RPA (see Sec. II E); neglecting this effect of T2 gives

〈Φa
i |H̃N |Φ

b
j 〉 ≡ 〈Φ

a
i |[fN + e−T2 VNeT2 ]|Φb

j 〉

= (εa − εi)δabδij + Wibaj. (16)

Using the definitions of CC intermediate W ibaj and the A and
B matrices leads to

〈Φa
i |H̃N |Φ

b
j 〉 = Aia,jb +

∑
kc

Bia,kctcb
kj = [A + BT]ia,jb, (17)

where [T]ia,jb = tab
ij . As shown in Refs. 1 and 17, the

approximate ring-CCD equations

tab
ij (εi + εj − εa − εb) = 〈ab| |ij〉 +

∑
ck

tac
ik 〈kb| |cj〉

+
∑
ck

〈ak | |ic〉tcb
kj +
∑
cdkl

tac
ik 〈kl | |cd〉tdb

lj

(18)

can be solved in closed form in terms of the eigenvectors of
the ph-RPA equation (5), T = YX−1. Therefore the similarity-
transformed Hamiltonian, using T2 amplitudes that satisfy the
ring-CCD equations, has exactly the ph-RPA eigenvalues when
truncated to the single-excitation subspace and transformation
of the Fock operator is neglected. Likewise, the EOM single-
excitation operator R1(ν) =

∑
ai ra

i (ν)a†aai, which gives the
EOM-CC eigenstate, has amplitudes that are exactly equal to
the columns of X, i.e., ra

i (ν) = Xia,ν .
Although the poles of the ph-RPA polarizability are iden-

tical in the RPA and approximate EOM-CCD, the same is not
true for the residues, i.e., the transition amplitudes; they are in
agreement with the lowest order in the Coulomb interaction.30

The RPA X and Y matrices are defined as transition density
matrices,

Xia,ν = 〈Ψ0 |a
†

i aa |Ψν〉, (19a)

Yia,ν = 〈Ψ0 |a
†
aai |Ψν〉. (19b)

In biorthogonal CC theory,31 these transition density matrices
can be evaluated using theΛ-equations, and to the lowest order,
the de-excitation operator amplitudes are the same as those of
the T2 amplitudes, Λij

ab ≈ tab
ij . Using this approximation, it is

simple to show

〈Ψ̃0 |a
†

i aa |Ψν〉 = ra
i (ν) + O(T2

2 ), (20a)

〈Ψ̃0 |a
†

i aa |Ψν〉 =
∑

jb

tab
ij rb

j (ν) + O(T2
2 ), (20b)

which agrees with the RPA interpretation after recalling the
identities R = X and TX = Y.

In the same spirit, the DEA- and DIP-EOM-CCSD for-
malisms can be analyzed with an approximate solution of the
ground-state CCSD equations and a minimal subspace for the
EOM eigenvalue problem. Neglecting again the transforma-
tion of the Fock operator leads to the matrices in the 2p or 2h
spaces

〈Φab |H̃N |Φ
cd〉 = (εa + εb)δabδcd + Wabcd , (21)

〈Φij |H̃N |Φkl〉 = −(εi + εj)δijδkl + Wijkl. (22)

The CC intermediates can be straightforwardly shown to be

Wabcd = 〈ab| |cd〉 +
∑
i<j

〈ab| |ij〉tab
ij , (23)

Wijkl = 〈ij | |kl〉 +
∑
a<b

〈ij | |ab〉tab
ij , (24)

leading to the approximate EOM matrices

〈Φab |H̃N |Φ
cd〉 =

[
C + B̄T+

]
ab,cd

, (25)

〈Φij |H̃N |Φkl〉 =
[
D∗ + B̄†T†+

]
ij,kl

, (26)
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where [T+]ij,ab = tab
ij . As shown in Refs. 15 and 19, the solution

of the ladder-CCD equations,

tab
ij (εi + εj − εa − εb) = 〈ab| |ij〉 +

∑
k<l

tab
kl 〈kl | |ij〉

+
∑
c<d

〈ab| |cd〉tcd
ij +
∑
c<d
k<l

tcd
ij 〈kl | |cd〉tab

kl ,

(27)

can be given in terms of the solutions of the pp-RPA prob-
lem, Eq. (10), tab

ij = −[Y+X−1
+ ]ij,ab = [Y−X−1

− ]∗ab,ij. Therefore
the similarity-transformed Hamiltonian, using T2 amplitudes
that satisfy the ladder-CCD equations, has exactly the pp-RPA
eigenvalues when the DEA- or DIP-EOM problems are trun-
cated to the 2p or 2h subspaces and transformation of the
Fock operator is neglected. The eigenvectors are analogously
related, rij = [X−]ij, rab = [X+]ab.

In the language presented, the realization of the excited-
state RPA problem follows from two distinct approxima-
tions (temporarily ignoring the transformation of the Fock
operator): (1) an approximate solution of the ground-state
CCD equations and (2) an approximate solution of the EOM
eigenvalue problem. Making only one approximation, but not
the other, generates two intermediate post-RPA theories for
excitation energies with desirable formal features, as shown
schematically in Fig. 1 for the case of EE-EOM-CCD lead-
ing to the ph-RPA. Using the exact solution of the CCD (or
CCSD) amplitude equations and an approximate EOM treat-
ment in the single excitation subspace produces the minimal
fermionic theory containing RPA physics; I call this approach
EOM(S)-CCD. Alternatively, using the approximate ring- or
ladder-CCD ground-state solution combined with an EOM
eigenvalue problem that includes doubly excited determinants
(2p2h for EE-EOM or 3p1h/3h1p for DEA-/DIP-EOM) pro-
duces a flavor of “second-RPA” (or extended-RPA) theories,
which include energy shifts and lifetimes due to the interaction
with doubly excited configurations; I call this approach EOM-
rCCD or EOM-lCCD. Making both approximations leads to
an approach I call EOM(S)-rCCD or EOM(S)-lCCD, which
is identical to the usual ph- or pp-RPA, as shown above
(when the similarity transformation of the Fock operator is
neglected). Viewed in this language, EOM-CCD is a prop-
erly fermionic theory containing both RPA and second-RPA
physics.

FIG. 1. Flow chart showing two distinct approximations to EOM-CCD
needed to obtain the RPA, and the intermediate theories generated by each
individually. The case shown here uses ring-CCD in combination with the
EE-EOM formalism in order to obtain ph-RPA excitation energies.

Preliminary numerical results (not shown) indicate that
the two intermediate theories (EOM(S)-CCD and EOM-
rCCD/EOM-lCCD), despite their desirable formal features,
do not produce quantitatively accurate excitation energies due
to an unbalanced treatment of the ground state and the excited
state. For example, even though EOM(S)-CCD is a properly
fermionic theory that includes more diagrams, it can be viewed
as a more accurate treatment of the ground state than the
excited state, leading to an overestimation of the excitation
energy—which is indeed observed numerically. In this sense,
the RPA benefits from a favorable cancellation of errors in the
ground and excited states, which is most clear in the language
of approximate EOM-CCSD but relatively opaque in the tra-
ditional diagrammatic picture. Further work is needed in these
directions.

D. Diagrammatic analysis and exchange

The time-dependent Goldstone diagrams of the RPA
polarizability are straightforward to enumerate as all ring dia-
grams with all possible time-orderings. In order to compare
with coupled-cluster theory, a diagrammatic analysis of the
coupled-cluster polarization propagator is required,34 along
the lines of Refs. 35 and 36 for the one-particle Green’s
function. While future work will present a more detailed
analysis and numerical results, the diagrams of the coupled-
cluster polarization propagator can be analyzed by cutting the
diagram after each vertex; each connected diagram at previ-
ous time can be classified as generated by the ground-state
cluster operators, the Λ operators, or the EOM excitation
operators.

Figure 2 presents some example RPA ring and ladder
diagrams included through third order in perturbation the-
ory. Vertical cuts, indicated by dashed lines, indicate that
the three diagrams in Fig. 2(a) are described solely by the
single-excitation EOM operator R1. These are all examples
of forward-time-ordered ring diagrams, i.e., those resulting
from the Tamm-Dancoff approximation (TDA). When anti-
symmetrized vertices are assumed (exchange is included), then

FIG. 2. Time-dependent Goldstone diagrams included in the RPA response
functions, deconstructed in terms of coupled-cluster operators R1 and T2.
Shown are (a) the first three forward-time-ordered (Tamm-Dancoff) ph-RPA
polarizability diagrams, (b) a non-Tamm-Dancoff ph-RPA diagram, and (c)
a non-Tamm-Dancoff pp-RPA ladder diagram. Time increases from left to
right.



041103-5 Timothy C. Berkelbach J. Chem. Phys. 149, 041103 (2018)

particle-hole ladder diagrams are included and the poles of
the polarizability are at the excitation energies produced by
configuration interaction with single excitations.

The diagrams shown in Figs. 2(b) and 2(c) are examples
of non-TDA ring and ladder diagrams, due to the permuted
time ordering. Graphical analysis shows that this diagram
is generated through a combination of the T2 and R1 oper-
ators. It is straightforward to show that all non-TDA dia-
grams included in the RPA response functions can be decon-
structed in the same manner, using disconnected products of
T2 and R1, but never the EOM R2 double excitation oper-
ator; this is why it was sufficient in Sec. II C to analyze
the EOM eigenvalue equation in the single-excitation sub-
space only. Therefore, the RPA polarizability diagrams are
exactly those produced by the EOM(S)-rCCD approach and
the RPA ladder diagrams are those produced by the EOM(S)-
lCCD approach. Incidentally, retaining the R2 double excita-
tion operator leads to (among many other effects) dressing
of the single-particle propagator via forward time-ordered
ring diagrams and ring-diagram screening of the particle-hole
interaction.

All equations, as presented above, include exchange.
Exchange can be trivially removed by neglecting the antisym-
metrization of the two-electron integrals in the ring-CCD equa-
tions (leading to “direct” ring-CCD) and in the EOM eigen-
value problem (with a factor of 2 arising from the product of
two antisymmetrized objects). This leads to a time-dependent
Hartree theory of excitation energies, which is the more com-
mon variant of the RPA polarizability in the condensed-matter
physics literature. Retaining exchange leads to particle-hole
ladder diagrams in addition to the ring diagrams shown in
Fig. 2. The particle-hole ladder diagrams are required for a
description of excitonic effects in molecules or solids and are
responsible for a reduction in the excitation energies compared
to the time-dependent Hartree theory that only includes direct
ring diagrams.

E. Self-consistent renormalization of G

As discussed above, the similarity transformation of the
Fock operator due to T2 has been neglected, i.e., in Eqs. (14),
(21), and (22). Retaining the effects of this transformation
in the ground-state and excited-state calculations amounts to
the use of Brueckner orbitals and orbital energies.37,38 In dia-
grammatic language, the similarity transformation of the Fock
operator is responsible for a dressing of the single-particle
propagator G used to construct the irreducible propagator,
which is still of the RPA form Π? = −iGG. In particular,
the resulting G in the ph-RPA theory is very similar to that
obtained from a self-energy calculated via the self-consistent
GW approximation.39,40 However, there are two major dif-
ferences with respect to the GW approximation: first, only
one of the two time-orderings is accounted for in the self-
energy (as discussed above, the other time-ordering is non-self-
consistently captured by R2) and second, only an asymmetric
subset of non-TDA ring diagrams are included in the screened
Coulomb interaction. This asymmetry is identical to the behav-
ior our group has recently described41 arising in the CCSD
Green’s function approach based on ionization potential and

FIG. 3. An example EOM(S)-rCCD polarizability diagram that is not
included in the usual RPA polarizability. The similarity transformation of
the Fock operator leads to a dressing of the single-particle propagator, in a
manner similar to the self-consistent GW approximation. Time increases from
left to right.

electron affinity EOM-CCSD.35,36 Figure 3 shows an example
diagram generated by retaining this transformation.

III. CONCLUSIONS AND OUTLOOK

To summarize, I have shown that the relation between
the RPA and CCSD ground states can be extended to all
excited states, with a particular set of additional approxima-
tions in the EOM-CCSD equations; specifically, the ph-RPA
excitation energies are obtained from an approximate EE-
EOM-CCSD calculation and the pp-RPA excitation energies
are obtained from an approximate DEA/DIP-EOM-CCSD cal-
culation. The exact equivalences presented here have been
verified numerically, using modified implementations of the
RPA and EOM-CCSD methodologies in the PySCF software
package.42

In the same way that previous work17 established ground-
state CCD as the natural generalization of the RPA with correct
fermionic behavior, the present work proposes EOM(S)-CCD
as the simplest fermionic theory of excited states that contains
RPA physics. This generalization comes with a cost: for a sin-
gle low-lying excited state, an RPA calculation scales as N4,
whereas an EOM(S)-CCD calculation (as well as an EOM(S)-
rCCD or EOM(S)-lCCD calculation) scales as N6 due to the
ground-state CCD step; the ensuing EOM(S) step only has
N4 scaling. This overall N6 scaling is no worse than that of
EOM-CCSD, which is clearly preferred for a few low-lying
excited states. However, the cost to obtain all excited states
is N6 for both RPA and EOM(S)-CCD, to be compared to N8

for EOM-CCSD (for all excited states with dominant single-
excitation character), which may be important for certain
spectral quantities.

In addition to providing a properly fermionic theory, the
present manuscript establishes the RPA polarizability dia-
grams as a strict subset of those from EOM-CCSD. In this
sense, the CC hierarchy is a natural post-RPA route, distinct
from time-dependent density functional theory and, impor-
tantly, systematically improvable. It is hoped that this con-
nection will lead to fruitful developments in the simulation
of excited states, especially in the condensed phase where
RPA physics is essential. For example, various CC-derived
polarizabilities can be used for a more accurate treatment of
screening in the GW approximation, leading to a well-defined
class of vertex corrections. Similarly, a comparison of EOM-
CCSD excited states to those predicted by the GW + Bethe-
Salpeter equation approach will provide further insight and
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sow deeper connections between the condensed-matter and
quantum chemistry communities. Work along both of these
lines is currently in progress.
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