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Figure 4. The real part of the screened interaction in one point u v as a function of the
interaction y v[ ]0

0 2 (λ = 1

2
). Continuous line (black): u ylin

0
0
0; dashed line (red): u vRPA ;

double-dot-dashed line (orange): u vGW ; dot-double-dashed line (violet): Γu vGW ; dotted
line (green): exact solution. Inset (top-left corner): zoom for small y v[ ]0

0 2 . Inset (bottom-
left corner): the imaginary part of u v.

Figure 3. The real part of the screened interaction in one point u v as a function of the
interaction y v[ ]0

0 2 (λ = 1). Continuous line (black): u vlin
0 ; dashed line (red): u vRPA ;

double-dot-dashed line (orange): u vGW ; dot-double-dashed line (violet): Γu vGW ; dotted
line (green): exact solution. Inset (bottom-left corner): zoom for small y v[ ]0

0 2 . Inset
(bottom-right corner): the imaginary part of u v.
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Figure 5. The real part of the GW Greenʼs function in one point as a function of the
interaction y v[ ]0

0 2 (λ = 1). Continuous line (black): the physical solution y yGW 0
0;

dashed line (red): the non-physical GW solution y y2 0
0; dot-dashed line (blue): the non-

physical GW solution y y3 0
0; double-dot-dashed line (orange): the non-physical GW

solution y y4 0
0. Inset: the imaginary part of the GW Greenʼs function.

Figure 6. The GW Greenʼs function in one point as a function of the interaction y v[ ]0
0 2

(λ = 1). Continuous line (black): the physical solution y yGW 0
0; dashed line (red): the

iterative GW result (see main text for details); dotted line (blue): y yG W 0
0

0 0 ; dot-dashed
line (green): y yG W 0

0
1 1 . Inset: the screened interaction u vGW as a function of the

interaction y v[ ]0
0 2 .
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Figure 7. The GW Greenʼs function in one point as a function of the interaction y v[ ]0
0 2

(λ = 1

2
). Continuous line (black): the physical solution y yGW 0

0; dashed line (red): the

iterative GW result (see main text for details); dotted line (blue): y yG W 0
0

0 0 ; dot-dashed
line (green): y yG W 0

0
1 1 . Inset: the screened interaction u vGW as a function of the

interaction y v[ ]0
0 2 .

Figure 8. The ΓGW Greenʼs function in one point as a function of the interaction y v[ ]0
0 2

(λ = 1). Continuous line (black): the physical solution Γy yGW 0
0; dashed line (red): the

iterative ΓGW result (see main text for details); dotted line (blue): Γy yG W 0
0

0 0 0 ; dot-
dashed line (green): Γy yG W 0

0
1 1 1 . Inset: the screened interaction Γu vGW as a function of

the interaction y v[ ]0
0 2 .
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Abstract
In this work we determine the one-body Greenʼs function as solution of a set of
functional integro-differential equations, which relate the one-particle Greenʼs
function to its functional derivative with respect to an external potential. In the
same spirit as Lani et al (2012 New J. Phys. 14 013056), we do this in a one-
point model, where the equations become ordinary differential equations (DEs)
and, hence, solvable with standard techniques. This allows us to analyze several
aspects of these DEs as well as of standard methods for determining the one-
body Greenʼs function that are important for real systems. In particular: (i) we
present a strategy to determine the physical solution among the many mathe-
matical solutions; (ii) we assess the accuracy of an approximate DE related to the
GW+cumulant method by comparing it to the exact physical solution and to
standard approximations such as GW ; (iii) we show that the solution of the
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approximate DE can be improved by combining it with a screened interaction in
the random-phase approximation. (iv) We demonstrate that by iterating the GW
Dyson equation one does not always converge to a GW solution and we discuss
which iterative scheme is the most suitable to avoid such errors.

Keywords: many-body Greenʼs function, Kadanoff–Baym equation, GW, GW
+cumulant, one-point model

1. Introduction

The one-body Greenʼs function σ σ′ ′ ′G t tr r( , ) contains a wealth of information. Important
quantities such as the density, the current density and, in particular, excitation energies such as
electron removal and addition energies can be deduced from the one-body Greenʼs function.
However, to solve the equation of motion (EOM) of the one-body Greenʼs function one requires
knowledge of the two-body Greenʼs function, the EOM of which requires knowledge of the three-
body Greenʼs function, etc. The standard procedure to cut short this chain of equations of increasing
complexity is to introduce an effective potential, the self-energy, which takes into account all the
many-body effects. The goal then becomes to find accurate approximations to the self-energy.
Hedin proposed an iterative procedure which systematically improves the self-energy [1]. For
example, one iteration of this procedure leads to the GW approximation. However, a second
iteration already leads to a self-energy that is too complicated to be calculated for real materials.

This was one of the main motivations of Lani et al [2] to investigate the possibility to
calculate the Greenʼs function directly without resorting to the self-energy. The starting point
for their work is the Kadanoff–Baym equation (KBE). It is a functional differential equation
(DE) for the generalized one-body Greenʼs function φG (1, 2; [ ]) which is a functional of an
external potential φ (1). Here we used σ= tr(1) ( , , )1 1 1 as a short-hand notation to combine the
space, spin, and time variables. The equilibrium one-body Greenʼs function is retrieved in the
limit of vanishing φ (1). The KBE is given by

∫
∫
∫

φ φ φ

φ φ

δ φ
δφ

= +

+

+ +( )

G G G v G

G G

G v
G

(1, 2; [ ]) (1, 2) d3 (1, 3) (3; [ ]) (3, 2; [ ])

d3 (1, 3) (3) (3, 2; [ ])

i d34 (1, 3) 3 , 4
(3, 2; [ ])

(4)
, (1)

H0 0

0

0 c

where vc is the Coulomb potential, G0 is the Greenʼs function of the noninteracting system, and

∫φ φ= − +( )v v G(1; [ ]) i d2 (1, 2) 2, 2 ; [ ] (2)H c

is the Hartree potential. Furthermore, we used the notation σ=+ +tr(1 ) ( , , )1 1 1 , where η= ++t t1 1

with η → +0 . All the many-body effects (exchange and correlation (xc)) beyond the Hartree
potential are contained in the last term on the right-hand side of equation (1).

Solving the above functional DE for φG (1, 2; [ ]) is complicated because it is a nonlinear
equation in the Greenʼs function due to the second term on the right-hand side that contains the
Hartree potential which itself depends on φG [ ]. Therefore, Lani et al approximated the KBE by
linearizing this term through the replacement of the Greenʼs function in the Hartree potential by
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its first-order Taylor expansion around φ = 0 [2]. The result is a linear functional DE for φG [ ]
that can be rewritten in terms of the screened Coulomb interaction ϵ= −W v1

c, where ϵ is the
dielectric function. In order to get insights into how to solve this linearized KBE they first
studied it for the one-point model. In this model there is one point in space, spin and time. Thus
the functional DE becomes an ordinary DE and is easily solvable.

Below we summarize the main questions that we will answer in this work.

• What are the solutions of the full KBE in one point?

• How can we determine the physical solution and is it unique? Solving the KBE leads to a
huge number of mathematical solutions. It is therefore crucial that we have a general
strategy to determine the physical solution among them.

• How does the result obtained from the linearized KBE compare to the exact solution and to
well-established approximations such as GW? The linearized KBE stands at the basis of
the GW+cumulant approach which has become increasingly important for the calculation
of photoemission spectra [3–7]. It is therefore important to assess its accuracy.

• What is the best screened Coulomb interaction to include in the linearized KBE? The
linearized KBE can be combined with several approximate screened Coulomb interactions.
It is important to verify how the results depend on this choice.

• What is the best way to iterate the GW Dyson equation? The GW Dyson equation can be
iterated in more than one way and it is not guaranteed that an iteration scheme will
converge to the physical solution. Therefore, we will investigate which iteration schemes
converge to the physical solution and which do not.

The paper is organized as follows. In section 2 we obtain the general solution of the KBE
in one point and determine its physical solution. In section 3 we compare it to the solution of the
linearized KBE. We compare the physical solution of the full and linearized KBE to standard
approximations such as GW in section 4. In the same section we also investigate several
schemes to iterate the GW equations. Finally, we summarize our conclusions in section 5.

2. KBE in the one-point model

In this section we solve the KBE and demonstrate how to find its physical solution. To
transform the KBE in equation (1) to an equivalent and pertinent expression for the one-point
model we use the following substitutions: φ →G y z(1, 2; [ ]) i ( ), →G y(1, 2) i0 0

0,
→v v(1, 2) ic , and φ → − z(1) i . As pointed out in [2] the change of prefactors compensates

for the time integrals that are dropped in the one-point model. Moreover, this choice guarantees
that the following constraints are satisfied when passing from the full functional problem to the
one-point model: (i) since the diagonal of G is the density, i.e., ρ− =+Gi (1, 1 ) (1), the physical
solution of the KBE in one point at vanishing potential is real and nonnegative; (ii) for real,
nonnegative values of v the inverse dielectric constant in the random-phase approximation
(RPA) is real and has values between 0 and 1.

The KBE in one point thus becomes

= − + + ′y z y vy y z y zy z vy y z( ) ( ) ( ) ( ). (3)0
0

0
0 2

0
0

0
0
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Before we discuss the general solution of equation (3) let us first determine the solution of the
KBE in one point for a noninteracting system under the influence of an external potential z. The
solution to this problem can be obtained by setting v = 0 in equation (3). We obtain

=
−

y z
y

y z
( )

1
. (4)0

0
0

0
0

In the limit of vanishing potential z this result reduces to y0
0 as it should. It turns out that the

noninteracting solution y z( )0 is also a solution of equation (3) for any finite v as can be verified
by substitution. This is due to the cancelation of the two terms in equation (3) that contain v
which represent Hartree and xc contributions in one point. This cancelation is similar to what
occurs for the hole part of the KBE of a one-electron system. However, we are interested in
describing using a simple model some aspects of a many-electron system, for which Hartree and
xc terms in equation (1) will only partially cancel. To achieve this one could, for example, study
a two-point model. In this case, however, the analytical solution of the KBE is, to the best of our
knowledge, out of reach. Therefore, here we propose to generalize equation (3) by introducing a
parameter λ according to

λ= − + + ′y z y vy y z y zy z vy y z( ) ( ) ( ) ( ). (5)0
0

0
0 2

0
0

0
0

For λ = 1we retrieve equation (3), whereas for λ ≠ 1we have partial cancelation of Hartree and
xc terms. Inspired by the Hartree–Fock approximation where only like spins are affected by the
exchange, we choose λ = 1 2.

We will now solve equation (5) for two values of λ (λ = 1 and λ = 1

2
) and find for each its

physical solution. We will show that for λ = 1 the physical solution is indeed equal to y z( )0 .

2.1. Solution of the KBE in one point for λ ¼ 1

We start by studying the case λ = 1 as it represents the KBE of equation (1) in one point. The
corresponding DE is given by equation (3).

2.1.1. General solution. The general solution of equation (3) is given by

⎡

⎣
⎢
⎢⎢

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎤

⎦
⎥
⎥⎥

π

= −

× + −

−

−

−

( )

y z y z y z

y z
v vy z C v y

( ) ( ) ( )e

( )e
2

erf
1

2 ( )

1

,
, (6)

v 0 0
2

0

0
2

0
0

1

vy z

vy z

1

2 0
2 ( )

1

2 0
2 ( )

whereC v y( , )0
0 is function that could depend on both v and y0

0. The derivation of this result can
be found in appendix A.1. To emphasize that the solution depends parametrically on the
interaction v we added it as an index of y. The above result gives the complete family of exact
mathematical solutions of the KBE for any external potential z.

However, obtaining the mathematical solutions of the KBE is meaningless if we would not
be able to determine the function C v y( , )0

0 that corresponds to the physical solution. It is

therefore important to be able to find a strategy to obtainC v y( , )0
0 corresponding to the physical

solution that will also be applicable to the general KBE in equation (1). In the next subsection

4
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we will present such a strategy and demonstrate that it is essential that C v y( , )0
0 is independent

of v.

2.1.2. Physical solution. It is a major challenge to find constraints that a physical solution
should satisfy. We follow the approach of [2] and study the behavior of equation (6) in the limit
of vanishing interaction, i.e., →v 0. In this limit a physical solution should reduce to y z( )0 , the
solution of the KBE for noninteracting systems, for any z. We will, as a first step, determine

=C v y( 0, )0
0 . From equation (6) we learn that for positive v and >y z( ) 00

2 almost all

=C v y( 0, )0
0 fulfill this constraint. Therefore, we will now study potentials z for which

<y z( ) 00
2 . This can be achieved by choosing, for example, = +z i y(1 ) 0

0. In order to study

the limit → +v 0 for <y z( ) 00
2 we make use of the asymptotic expansion of the error function,

∑
π

= − − −−

=

∞

( )
n

erf (z) 1
e
z

( 1)
(2 1) !!

2z
, (7)

n

n
n

z

0
2

2

which is valid when → ∞z and < π|arg z| 3

4
, to rewrite equation (6) as

⎡

⎣
⎢
⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤
⎦
⎥⎥∑

π= + −

+ −

−

=

∞ −

( )

( )

y z y z
y z v C v y

y z
n v y z

( ) ( )
1

( )
e

2
1

,

1
( )

(2 1) !! ( ) . (8)

v

n

n

0

0
2

0
0

0 1
0
2

1

v y z

1

2 0
2 ( )

In the limit → +v 0 the second term on the right-hand side of equation (8) tends to ∞
unless = =C v y( 0, ) 00

0 in which case it vanishes. We conclude that = =C v y( 0, ) 00
0

corresponds to the physical solution.
In order to uniquely determine C v y( , )0

0 for finite v we assume that C v y( , )0
0 has a Taylor

expansion around v = 0. Otherwise there would be many C v y( , )0
0 that fulfill the constraint that

for vanishing interaction the physical solution should reduce to the noninteracting solution.
Then, for <y z( ) 00

2 , in the limit → +v 0 the second term on the right-hand side of equation (8)
tends to infinity due to the exponential function unless all the coefficients of the Taylor
expansion of C v y( , )0

0 vanish. In that case we obtain =y z y z( ) ( )0 as we should. We conclude

that =C v y( , ) 00
0 for all v. Therefore, the physical solution is given by

= =
−

y z y z
y

y z
( ) ( )

1
. (9)0

0
0

0
0

The assumption that C v y( , )0
0 has a Taylor expansion around v = 0 is motivated by the fact that

the physical result thus obtained reproduces the perturbative result, i.e, substitution of the
perturbative series ∑ =

∞ a z v( )n n
n

0 into equation (3) and solving for the coefficients an(z) gives

back equation (9). The advantage of directly determining C v y( , )0
0 corresponding to the

physical solution, is that we immediately obtain the resummed result. This point will become
clearer when we will discuss the case λ = 1

2
in the next subsection.

We conclude that in the one-point model the Greenʼs function is independent of the
interaction (for λ = 1). As mentioned before, we know that in the full functional problem given

5
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by equation (1) there is partial cancelation between Hartree and xc terms. For this reason we will
now study a case for which λ ≠ 1 to mimic this partial cancelation in one point.

2.2. Solution of the KBE in one point for λ ¼ 1
2

2.2.1. General solution. In order to have partial cancelation we now study the case λ = 1

2
. The

rationale behind this choice is related to the fact that in the full functional problem given by
equation (1) an important contribution to the last term is the Fock exchange. Since the prefactor
of the exchange term in the Fock operator of Hartree–Fock theory is half the prefactor of the
term involving the Hartree potential we chose λ = 1

2
. The resulting KBE in one point becomes

= − + + ′y z y vy y z y zy z vy y z( ) ( ) ( )
1
2

( ). (10)0
0

0
0 2

0
0

0
0

The solution of this DE is

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

π
= + +

−

−

− −

( )

y z
y z

vy z
y z

v

vy z

vy z C v y

( )
1
( )

( )

2
1

( ) exp
1

( )

erf
1

( )

1

,

. (11)
0

0
0

0
2

0
2

0
0

1 1

The derivation of this result can be found in appendix A.2.

2.2.2. Physical solution. To obtain the physical solution we once again investigate y(z) in the
limit →v 0. In this limit a physical solution should reduce to y z( )0 for any z. We will first

determine =C v y( 0, )0
0 by studying the limit → +v 0 for potentials z such that <y z( ) 00

2 .
Using the asymptotic expansion of the error function (7) we can rewrite the general solution for
this case as

⎜ ⎟

⎡
⎣
⎢
⎢

⎡
⎣
⎢
⎢

⎡
⎣
⎢⎢

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝

⎞
⎠

⎤

⎦
⎥
⎥

⎤

⎦

⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥
⎥

∑

π= + +

× − − − ∣ ∣

−

=

∞
− − −

( )

y z
y z

vy z

v y z

C v y
n v y z

( )
1
( )

( )

2
1

1
( )

e

1
1

,
(2 1) !!

1
2

( ) . (12)
n

n

0

0

0

0
0

0
0
2

1 1 1

v y z

1

0
2 ( )

The right-hand side of equation (12) tends to 0 in the limit → +v 0 unless
= =C v y( 0, ) 00

0 in which case it tends to y z( )0 as it should. We conclude that

= =C v y( 0, ) 00
0 corresponds to the physical solution.

In order to uniquely determine C v y( , )0
0 for finite v we again assume that C v y( , )0

0 has a

Taylor expansion around v = 0. Then, for <y z( ) 00
2 , in the limit → +v 0 the right-hand side of

equation (12) tends to 0 unless all the coefficients of the Taylor expansion of C v y( , )0
0 vanish.
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In that case we obtain =y z y z( ) ( )0 as we should. We conclude that =C v y( , ) 00
0 for all v. The

physical solution is therefore

=
+

y z
y z

vy z
( )

2 ( )

2 ( )
. (13)v

0

0
2

It can be verified that the Taylor series of the right-hand side of equation (13) around v = 0
coincides with the perturbative solution of equation (10):

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑= −

=

∞

y z y z
y z

v( ) ( )
( )

2
. (14)v

n

n

0
0

0
2

As mentioned in the previous subsection the advantage of directly determiningC v y( , )0
0 of

the physical solution, is that we immediately obtain the resummed result (13).
We see that the physical solution (13) of the KBE in equation (10) depends on the

interaction v since there is only partial cancelation between the terms involving v.
In conclusion, we have solved the KBE in one point for λ = 1 and λ = 1

2
and we have

determined the physical solution among the many mathematical solutions by demanding that it
reduces to the noninteracting solution at vanishing interaction and that it does not contain
nonanalytic contributions. This strategy can also be applied to the solution of the full functional
problem in equation (1).

3. Quality of the linear approximation

The GW method is the state-of-the-art approach for calculations of quasiparticle energies and
photoemission spectra [8, 9]. Recently, the GW+cumulant approach [3–7] has received much
attention, since the photoemission spectra obtained with this method give a much better
description, both qualitatively and quantitavely, of satellite peaks with respect to those obtained
within the GW approach [4]. The GW+cumulant approach is based on the KBE of equation (1)
in which the Hartree potential is linearized, i.e., the Hartree potential is replaced by its first-
order Taylor expansion around φ = 0 [4]. It is therefore important to assess how accurate this
linearized KBE is with respect to the full KBE of equation (1). Having obtained the exact
physical solutions of the KBE in the one-point model we can now compare with the
approximate physical solutions of the linearized KBE in one point which have been obtained
in [2].

In order to keep this article self-contained as well as to introduce some quantities that will
prove useful in the next section we will briefly demonstrate how one obtains the linearized KBE
for the one-point model. Let us first rewrite equation (5) as

λ= + + ′y z y z y z zy z vy z y z( ) ( ) ( ) ( ) ( ) ( ) (15)H H H

in which

= − =
+

y z y y vy z y z
y

y vy z
( ) ( ) ( )

1 ( )
(16)H 0

0
0
0

H
0
0

0
0

represents the Hartree Greenʼs function in one point. The linearization proposed in [2] amounts
to the substitution of y(z) in the above expression by its first-order Taylor expansion around

7
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z = 0. This leads to

≈
+ = + ′ =

y z
y

y v y z zy z
( )

1 [ ( 0) ( 0)]
. (17)H

0
0

0
0

Substitution of this approximation into equation (15) results in the following linear DE for y(z),

λ= +
=

+ ′y z y y
z

e z
y z vy y z( )

( 0)
( ) ( ) (18)H

0
H
0

H
0

in which

= = =
+ =

y y z
y

y vy z
( 0)

1 ( 0)
, (19)H

0
H

0
0

0
0

= −
e z

vp z
1
( )

1 ( ), (20)

=p z
y z

z
( )

d ( )

d
. (21)

The latter two expressions represent the inverse dielectric function, and the (reducible)
polarizability in one point, respectively. Introducing the change of variable,

=
=

= − ′ =z
z

e z
z vy z˜

( 0)
(1 ( 0)), (22)

leads to the following linear DE,

λ= + + = ′( )y z y y zy z u z y y z(˜) ˜ (˜) ˜ 0 (˜), (23)H
0

H
0

H
0

where the prime in ′y z( ˜) now refers to a derivative with respect to z̃ and u(z) represents the
screened interaction in one point. It is defined by

= = −u z
v

e z
v vp z( )

( )
(1 ( )). (24)

We note that equation (23) is not the same as the DE used in [2]. There, yH
0 and =u z( 0) were

assumed to be given, and independent of the interaction, whereas here we calculate them self-
consistently. This also explains the different choice for the sign of the last term in our
Equation (5) with respect to the corresponding equation in [2].

Using a similar strategy as before we obtain the physical solution of equation (23). It is
given by

⎛

⎝
⎜⎜

⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥
⎥

⎞

⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟π

λ λ
=

− −
− +− −λy z

u u
z

y
(˜)

2
e erf

1

2
˜

1
1 , (25)

z
lin

˜

H
0

u y

1
2

1
2

H
0

where ≡ =u u z( ˜ 0). Here we are mainly interested in the equilibrium solution
= =y y z( ˜ 0)lin

0
lin . For the details on how to solve equation (23) and how to find its physical

solution given in equation (25) we refer the reader to [2] in which an equivalent equation to
equation (23) is discussed in detail.

To compare y0lin to the exact solutions given in equations (9) and (13) we have to express it
in terms of v and y0

0 instead of u and y0H. There are two ways to achieve this. First, one can

8
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obtain expressions for y0H and u that are consistent with the solution given in equation (25) by
replacing =y z( 0) and ′ =y z( 0) in equations (19) and (24) by y0lin and ′ =y z( ˜ 0)lin , respectively.
The resulting expressions for y0H and u can then be inserted into equation (25). This gives an
implicit solution for y0lin from which an explicit solution can be obtained numerically. Second,
one can iterate equation (25) at =z̃ 0 together with equations (19) and (24). This leads to an
explicit expression for y0lin in terms of v and y0

0, provided that the iterations lead to a converged
result. Both approaches lead to the same result. For the calculation of =u z( ˜ 0) we need
′ =y z( 0). We obtain this quantity from equation (15).

In order to numerically compare Greenʼs functions obtained within different approxima-
tions it is convenient to plot the scaled Greenʼs function =y z y( 0) 0

0 as a function of the scaled

interaction y v[ ]0
0 2 . The former is without units and for the latter we can estimate a range of

values that is physically motivated; the RPA dielectric constant has typical values between 1
and ∼10 (nonmetallic systems). Since in one point ϵ = + y v1 [ ]RPA 0

0 2 , these values correspond

to ⩽ ⩽ ∼y v0 [ ] 100
0 2 . Also, we note that y v[ ]0

0 2 corresponds to U t of the Hubbard model in

which U is the onsite interaction and t the hopping parameter, since both y[ ]0
0 2 and t1 represent

a polarizability.
In figures 1 and 2 we compare y ylin

0
0
0 to the exact solution y yv 0

0 as a function of y v[ ]0
0 2 for

λ = 1 and λ = 1

2
, respectively. For small values of y v[ ]0

0 2 the solution of the linearized KBE is
nearly exact. However, the difference between y0lin and the exact solution quickly increases with
increasing v. We note that y0lin also acquires a small imaginary part. For λ = 1

2
the approximate

Figure 1. The real part of the Greenʼs function in one point y yv 0
0 as a function of the

interaction y v[ ]0
0 2 (λ = 1). Continuous line (black): y ylin

0
0
0; dashed line (red): y ylin

0
0
0

using uRPA; dot-dashed line (blue): y ylin
0

0
0 using the exact u; double-dot-dashed line

(orange): y yGW 0
0; dot-double-dashed line (violet): Γy yGW 0

0; dotted line (green): exact
solution. Inset (bottom-left corner): zoom for small y v[ ]0

0 2 . Inset (bottom-right corner):
the imaginary part of y yv 0

0.
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solution remains much closer to the exact solution than for λ = 1. This is due to the fact that an
approximation based on a screened interaction is more suitable to describe an interacting system
than a noninteracting system.

In figures 1 and 2 we also report y0lin obtained using the exact u and ϵ= −u vRPA RPA
1 . We

see that improving the description of the screening does not necessarily improve the solutions
since using the exact screening worsens the results. While for λ = 1 the results obtained with
an RPA screening deteriorate with respect to y0lin, those for λ = 1

2
show an overall

improvement when uRPA is employed. We note that tendencies obtained for λ = 1

2
should be

given more weight than those obtained for λ = 1 since the former corresponds to a model of
an interacting system.

In figures 3 and 4 we compare u0lin, i.e., the screened interaction u that corresponds to y0lin
given by

= −
=

u v v
y z

z

d ( )

d
, (26)

z
lin
0 2 lin

0

to the exact u for λ = 1 and λ = 1

2
, respectively. For both cases u0lin is nearly exact for small

interaction while for larger interaction it is either much too big (λ = 1) or much too small
(λ = 1

2
). Also, for λ = 1

2
the screening is qualitatively different; while the exact u v has a

minimum, u vlin
0 is monotonically decreasing. We also report uRPA in figures 3 and 4. While for

Figure 2. The real part of the Greenʼs function in one point y yv 0
0 as a function of the

interaction y v[ ]0
0 2 (λ = 1

2
). Continuous line (black): y ylin

0
0
0; dashed line (red): y ylin

0
0
0

using uRPA; dot-dashed line (blue): y ylin
0

0
0 using the exact u; double-dot-dashed line

(orange): y yGW 0
0; dot-double-dashed line (violet): Γy yGW 0

0; dotted line (green): exact
solution. Inset (bottom-left corner): zoom for small y v[ ]0

0 2 . Inset (top-right corner): the
imaginary part of y yv 0

0.
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λ = 1 the RPA slightly improves the screening, it deteriorates the screening for λ = 1

2
. This

shows that there is a considerable cancelation of error when calculating y0lin using uRPA.
In conclusion, to obtain the best results for interacting systems the linearized KBE

should be combined with an RPA screened interaction. We note that an RPA screened
interaction is often used in practical calculations. For example, an RPA-type screened
interaction was employed when the GW+cumulant method was applied to the description of
the photo-emission spectrum of silicon leading to excellent results [4]. Also, the linearization
of the KBE could be regarded as an approximation to the vertex in the self-energy expression
of Hedinʼs equations. It is known that errors thus introduced in, for example, total energies
can be partially canceled by doing a similar approximation of the vertex that appears in the
expression for W [10, 11].

In order to have a better idea of the relative accuracy of y0lin we will now compare it to
some approximations obtained from Hedinʼs equations such as the GW approximation.

4. Solutions of Hedinʼs equations: GW and beyond

As mentioned in the introduction, solving the full functional problem of the KBE in equation (1)
is generally considered to be a too complicated task. Therefore, a perturbative approach to
obtain the one-body Greenʼs function is usually adopted. In such an approach one defines a self-
energy which contains all the many-body effects of the system, i.e., all the terms involving the

Figure 3. The real part of the screened interaction in one point u v as a function of the
interaction y v[ ]0

0 2 (λ = 1). Continuous line (black): u Vlin
0 ; dashed line (red): u vRPA ;

double-dot-dashed line (orange): u v/GW ; dot-double-dashed line (violet): Γu v/GW ; dotted
line (green): exact solution. Inset (bottom-left corner): zoom for small y v[ ]0

0 2 . Inset
(bottom-right corner): the imaginary part of u v.
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interaction. Here we will compare to a perturbative approach due to Hedin [1] in which the
perturbation expansion is done in terms of a screened interaction instead of the bare interaction.

In one point Hedinʼs equations are given by

= + +y z y z y z zy z y z s y z y z( ) ( ) ( ) ( ) ( ) ( ( )) ( ), (27)H H H xc

λ=s y z y z u z g y z( ( )) ( ) ( ) ˜ ( ( )), (28)xc

= −u z v vp z u z( ) ˜ ( ) ( ), (29)

=p z y z g y z˜ ( ) ( ) ˜ ( ( )), (30)2

= +g y z
s y

y
y z g y z˜ ( ( )) 1

d ( )

d
( ) ˜ ( ( )), (31)xc 2

where sxc is the exchange–correlation part of the self-energy in one point and p z˜ ( ) and g y z˜ ( ( ))
represent the irreducible polarizability and vertex function in one point, respectively. The
derivation of the expressions given in equations (27)–(31) can be found in appendix B. Hedinʼs
equations form a closed set and are equivalent to the KBE of equation (5). Hedinʼs equations are
usually expressed for a vanishing external potential φ. Equivalent expressions can be obtained
in one point by setting z = 0 in the above equations.

Since Hedinʼs equations are equivalent to the KBE, their general solution for y(z) is given
by equation (6) and its physical solution by equation (9) in the case λ = 1. For λ = 1

2
the general

and physical solution are given by equations (11) and (13), respectively. We can now use this

Figure 4. The real part of the screened interaction in one point u v as a function of the
interaction y v[ ]0

0 2 (λ = 1

2
). Continuous line (black): u ylin

0
0
0; dashed line (red): u v/RPA ;

double-dot-dashed line (orange): u v/GW ; dot-double-dashed line (violet): Γu v/GW ; dotted
line (green): exact solution. Inset (top-left corner): zoom for small y v[ ]0

0 2 . Inset (bottom-
left corner): the imaginary part of u v.
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knowledge to find exact expressions for the other quantities appearing in Hedinʼs equations
with the help of the expressions derived in appendix B. Below we summarize the results for
λ = 1,

=
−

y z
y

y z
( )

1
, (32)0

0

0
0

=
−

s z
vy

y z
( )

1
, (33)xc

0
0

0
0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= −

−
u z v

vy

y z
( )

1
, (34)0

0

0
0

2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

=
− −( )

p z
y

y z v y
˜ ( )

1
, (35)

0
0 2

0
0 2

0
0 2

⎡⎣ ⎤⎦
=

−

− −

( )
( )

g z
y z

y z v y
˜ ( )

1

1
(36)

0
0 2

0
0 2

0
0 2

and for λ = 1

2
,

=
−( )

y z
y y z

b z
( )

2 1

( )
, (37)

0
0

0
0

=
−( )

s z
y va z

y z b z
( )

( )

2 1 ( )
, (38)xc

0
0

0
0

⎡⎣ ⎤⎦= +u z v y v
a z

b z
( ) 2

( )

( )
, (39)0

0 2 2
2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

= −
+

p z
y a z

b z y va z
˜ ( )

2 ( )

( ) 2 ( )
, (40)

0
0 2

2
0
0 2

⎜ ⎟
⎛
⎝ ⎡⎣ ⎤⎦ ⎞

⎠
= −

− +( )
g z

a z b z

y z b z y va z
˜ ( )

( ) ( )

2 1 ( ) 2 ( )
, (41)

2

0
0 2 2

0
0 2

where the functions a(z) and b(z) are defined by

⎡⎣ ⎤⎦= − −( )a z v y y z( ) 2 1 , (42)0
0 2

0
0 2
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⎡⎣ ⎤⎦= + −( )b z v y y z( ) 2 1 . (43)0
0 2

0
0 2

We see that for λ = 1 the exchange–correlation part of the self-energy sxc(z) is equal to minus
the Hartree potential. This is a consequence of the fact that in one point the physical solution is
equal to the noninteracting solution. In this case the interactions included in the Hartree
potential that are implicitly contained in yH(z) are spurious. Therefore, the only purpose of sxc(z)
is to cancel the effects of the Hartree potential. As a result the Greenʼs function in one point y(z)
becomes equal to the noninteracting Greenʼs function as it should.

We note that Molinari et al [12, 13] have studied a set of Hedinʼs equations (at z = 0)
within the one-point model that are slightly modified with respect to those presented in this
section. The modification is in the irreducible polarization given in equation (30) to which they
added a minus sign, i.e., = −p y g˜ ˜2 . Starting from these modified Hedinʼs equations Pavlyukh
and Hübner [14] found an implicit solution for the Greenʼs function. In appendix C we
demonstrate how one can obtain an explicit solution.

In the following we will evaluate some approximations to Hedinʼs equations. Since we are
mainly interested in the Greenʼs function at vanishing external potential φ, we will only
consider the case z = 0 in the remainder of this section.

4.1. GW

The GW approximation in one point is obtained by setting =s 0xc and performing one iteration
of Hedinʼs equations starting with the vertex function g̃. Therefore, in the GW approximation,
Hedinʼs equations in one point are written as

=g̃ 1, (44)

=p y˜ , (45)2

=
+

u
v

vy1
, (46)

2

λ=
+

s
vy

vy1
, (47)xc 2

=
−

y
y

y s1
(48)H

0

H
0

xc

λ
=

+

+ − + +
( )y vy

y vy vy y v y

1

1 (1 )
, (49)

0
0 2

0
0 2

0
0 2 3

where in the last step we used equation (19).

4.1.1. Exact solution. The GW Dyson equation in one point given in equation (49) can be
rewritten as a quartic equation for y:

λ+ − + − =y v y vy y vy y y 0. (50)0
0 2 4 3

0
0 2

0
0
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The four solutions can be obtained analytically and are given by

= − − ± − − +y
y v

S S r
q

S

1

4

1
2

4 2 , (51)1,2
0
0

2

= − + ± − − −y
y v

S S r
q

S

1

4

1
2

4 2 , (52)3,4
0
0

2

where

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

λ
= −

+
r

y v

y v

8 3

8
, (53)

0
0 2

0
0 2 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
λ

=
+ +

q
y v

y v

(8 4 ) 1

8
, (54)

0
0 2

0
0 3 3

⎛
⎝⎜

⎞
⎠⎟

Δ
= − + +S r

y v
Q

Q

1
2

2
3

1

3
, (55)

0
0 2

0

Figure 5. The real part of the GW Greenʼs function in one point as a function of the
interaction y v[ ]0

0 2 (λ = 1). Continuous line (black): the physical solution y yGW 0
0;

dashed line (red): the nonphysical GW solution y y2 0
0; dot-dashed line (blue): the

nonphysical GW solution y y3 0
0; double-dot-dashed line (orange): the nonphysical GW

solution y y4 0
0. Inset: the imaginary part of the GW Greenʼs function.
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⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Δ Δ Δ
=

+ −
Q

4

2
(56)

1 1
2

0
3

1 3

with

⎡⎣ ⎤⎦Δ λ= − − −( )v y v3 12 (57)0
2

0
0 2 2

⎡⎣ ⎤⎦Δ λ λ λ= − +( )y v y v9 72 2 . (58)1 0
0 2 2

0
0 3 3

We note that in [2] yH
0 is kept fixed instead of y0

0 and y is obtained in terms of u instead of
v. As a consequence Lani et al only find two solutions, one physical solution and one
nonphysical solution. In figure 5 we report the four solutions as a function of the scaled
interaction y v[ ]0

0 2 for λ = 1. The physical solution is identified by verifying that in the limit

→v 0 the Greenʼs function y reduces to the noninteracting Greenʼs function y0
0. It is given by

= = − − + − − +y y
y v

S S p
q

S

1

4

1
2

4 2 . (59)GW 1
0
0

2

The other three solutions diverge when →v 0. We note that this is consistent with the first
theorem derived in [15]. We obtain similar results for λ = 1

2
.

In figures 1 and 2 we compare yGW to the exact physical solution of the KBE and the
approximate physical solution of the linearized KBE. For λ = 1 at small interaction y0lin is
somewhat better than yGW. Otherwise, we observe that the GW approximation leads to results
that are generally very close to those obtained from the linearized KBE. This finding can be
surprising since in the full functional problem the linearized KBE contains many more diagrams
than GW . However, in the one-point model many features, such as the spectral function, for
which these diagrams are important [3–7], are absent. For this reason the difference between
GW and the linearized KBE cannot be detected in one point.

In figures 3 and 4 we compare the GW screened interaction uGW, given by

=
+

u
v

vy1
, (60)GW

GW
2

to the exact screening and to u0lin. For λ = 1 theGW screening is slightly worse than u0lin while in
the case of λ = 1

2
the GW screening is somewhat better than u0lin.

4.1.2. Iterative solution. A direct solution of the full GW Dyson equation is, in general, not
feasible. Therefore the GW equations are usually solved iteratively. It is important to verify that
the iterative GW solution is indeed equal to the physical GW solution for all interaction
strenghts. Since for the one-point model we have obtained the exact physical solution we can
now compare it to the iterative GW solution.

The GW Dyson equation can be rewritten in several ways and therefore many iterative
schemes are possible. Let us first study the most common iteration scheme. It is given by

⎡⎣ ⎤⎦= −+
− −

G G G Wi , (61)n n n n1 H,
1 1
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Figure 6. The GW Greenʼs function in one point as a function of the interaction y v[ ]0
0 2

(λ = 1). Continuous line (black): the physical solution y yGW 0
0; dashed line (red): the

iterative GW result (see main text for details); dotted line (blue): y yG W 0
0

0 0 ; dot-dashed
line (green): y yG W 0

0
1 1 . Inset: the screened interaction u v/GW as a function of the

interaction y v[ ]0
0 2 .

Figure 7. The GW Greenʼs function in one point as a function of the interaction y v[ ]0
0 2

(λ = 1

2
). Continuous line (black): the physical solution y yGW 0

0; dashed line (red): the

iterative GW result (see main text for details); dotted line (blue): y yG W 0
0

0 0 ; dot-dashed
line (green): y yG W 0

0
1 1 . Inset: the screened interaction u v/GW as a function of the

interaction y v[ ]0
0 2 .
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where the Hartree Greenʼs function G nH, and the screened interaction Wn are given by

= + −[ ]G G v G G1 i , (62)n nH, 0 c
1

0

= + −[ ]W v G G v1 i . (63)n n nc
1

c

In the one-point model this iteration scheme corresponds to

λ
=

+

+ − + ++
( )

y
y vy

y vy vy y v y

1

1 (1 )
. (64)n

n

n n n
1

0
0 2

0
0 2

0
0 2 3

To iteratively solve Hedinʼs equations we start from the noninteracting solution, i.e.,
=y y

0 0
0, followed by substitution of this expression into the right-hand side of equation (64).

This leads to the first-order approximation to the GW solution,

⎜ ⎟
⎛
⎝ ⎡⎣ ⎤⎦ ⎞

⎠
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦λ

≡ =
+

+ − + +
y y

y v y

v y v y v y

1

1 (1 )
. (65)G W1

0
0

0
0 2

0
0 2

0
0 2 2

0
0 4

0 0

This result represents the G W0 0 solution in one point. By substituting the first-order result into
equation (64) one obtains the second-order approximation to yGW and continuation of this
iteration scheme will lead to higher-order approximations to yGW.

In figures 6 and 7 we compare several of these approximations to the exact GW result in
one point for λ = 1 and λ = 1

2
, respectively. We see that yG W0 0

is close to yGW for small values of
the interaction but largely underestimates it when the interaction becomes stronger. Instead,
yG W1 1

largely overestimates yGW for large v. However, the most interesting result is that beyond a

certain interaction strength, i.e., λ>y v[ ] 40
0 2 2, the iterative result does not converge to yGW. In

fact, the iterative result oscillates between two values, neither of which is equal to yGW. This
conclusion also holds when the starting point is chosen close to yGW.

To explain the discrepancy between the exact and iterative GW result we first note that
equation (64) is of the form =y f y( ). As a consequence yGW is a fixed point of this equation,
i.e., =y f y( )GW GW . A fixed point is called attracting if upon iteration the result converges to
yGW when one starts from an initial value that lies in the vicinity of yGW and it is called repelling
otherwise. If ′ <f y| ( ) | 1GW >( 1) then yGW is an attracting (repelling) fixed point. It can thus be

verified that yGW is a repelling fixed point when λ>y v[ ] 40
0 2 2. This demonstrates that iteration

of equation (49) for λ>y v[ ] 40
0 2 2 will never lead to the physical GW solution. Similarly, one

can verify that yGW is an attracting fixed point when λ⩽ <y v0 [ ] 40
0 2 2. We note that this is

consistent with the second theorem derived in [15].
In [2] it was shown that the solution obtained by solving the GW equations iteratively

depends strongly on the iteration scheme used. In their case they solved Hedinʼs equations
iteratively for fixed values of y0H and u. This leads to two solutions of which only one is a
physical solution. They showed that depending on the chosen iteration scheme the solution
could be either the physical or the nonphysical solution. Here we show that, moreover, there are
iteration schemes that lead to results that are not solutions at all. We also note that we have
obtained this result using an iterative scheme that is equivalent to that used in most practical
applications [16–18].
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We obtain a different iteration scheme when, instead of writing the Dyson equation as in
equation (61) we write it according to

= ++G G G G W Gi . (66)n n n n n n1 H, H,

In the one-point model this iteration scheme corresponds to

λ
=

+ +

+ + ++
( )

y
y vy

y vy vy y v y

1 (1 )

1
. (67)n

n

n n n
1

0
0 2

0
0 2

0
0 2 3

One can verify that yGW is an attracting fixed point of equation (67) for all v. Therefore, iteration
of equation (67) is guaranteed to converge to the exact GW solution (provided that the initial
value lies in the vicinity of yGW).

However, one prefers to iterate the Dyson equation of equation (48) since this form has
been implemented in many computer codes. Therefore, we propose an alternative scheme that
also converges to the physical solution for all v and entails only a small modification of these
codes. The small modification consists of iterating equation (61) for fixed W according to

⎡⎣ ⎤⎦= −+
− −

G G G Wi (68)n n n1 H,
1 1

and when convergence is reached for G update W according to

= + ∞ ∞
−[ ]W v G G v1 i , (69)c

1
c

where ∞G represents the converged G for fixed W. Then reiterate equation (68) with W obtained
from equation (69), etc, until convergence for both G andW is achieved. In the one-point model
this scheme will also lead to the exactGW solution for all v. Finally, we note that in the absence
of analytical results there does not yet exist a general strategy which permits one to know
whether the converged result of a given iteration scheme corresponds to a physical or a
nonphysical solution. Therefore, the study of models for which analytical results exist give
important insights on how to solve this problem.

4.2. GWΓ

To obtain higher-order approximations of the Greenʼs function y it is convenient to combine
equations (28)–(31). Thus we obtain the following expression for the self-energy of the nth
iteration of Hedinʼs equations,

λ=
+ −

−( )
s y

vy

y v
( )

1
. (70)n

s

y

xc
( )

2 d

d

n
xc
( 1)

We see that the self-energy of the nth iteration requires the derivative of the self-energy of
the −n( 1)th iteration. For example, setting n = 1 (with =s 0xc

(0) ) leads to the GW self-energy
given in equation (47). We can then insert s n

xc
( ) in the Dyson equation (27) (for z = 0) to obtain

the nth order approximation to y,

=
+ −

y
y

y vy y s1
, (71)n

n n
( ) 0

0

0
0 ( )

0
0

xc
( )
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where we used equation (19). We therefore have to solve the following nonlinear equation

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦+ − − =y v y y s y y1 0. (72)n n n
0
0 ( ) 2

0
0

xc
( ) ( )

0
0

The sxc obtained from a second iteration of Hedinʼs equations is given by

λ

λ λ
=

+

+ − + + +
( )

s
vy vy

vy v y v y

1

1 (3 ) (3 )
. (73)xc

(2)
2 2

2 2 4 3 6

With this self-energy we will obtain the direct solutions of equation (72) as well as its iterative
solution using equation (71) in the next two subsections.

4.2.1. Exact solution. Substitution of equation (73) into equation (72) leads to the following
8th-order polynomial equation for y(2),

λ λ

λ

− + − − +

− + − − − =

y y y vy vy y v y

v y y v y v y y v y

2 (3 ) 4

(3 ) 2 0 (74)

0
0

0
0 2 3

0
0 2 4

2 5
0
0 3 6 3 7

0
0 4 8

where, for notational convenience, we dropped the superscript (2). The above equation for y(2)

cannot be solved analytically. We can, however, solve it numerically for any given value of v.
We obtain eight solutions of which only one tends to y0

0 in the limit →v 0. This is the
physical solution ΓyGW . The remaining seven solutions are nonphysical solutions which diverge
in the limit →v 0. In figures 1 and 2 we compare ΓyGW to the exact Greenʼs functions, the

Figure 8. The ΓGW Greenʼs function in one point as a function of the interaction y v[ ]0
0 2

(λ = 1). Continuous line (black): the physical solution Γy yGW 0
0; dashed line (red): the

iterative ΓGW result (see main text for details); dotted line (blue): Γy yG W 0
0

0 0 0 ; dot-
dashed line (green): Γy yG W 0

0
1 1 1 . Inset: the screened interaction Γu v/GW as a function of

the interaction y v[ ]0
0 2 .

20

New J. Phys. 16 (2014) 113025 J A Berger et al



approximate Greenʼs functions obtained with the approximate solution of the linearized KBE
and the GW Greenʼs function. For λ = 1 we see that ΓyGW provides a slight improvement over

yGW, in particular for weak interactions. However, in the case λ = 1

2
, yGW and ΓyGW are almost

identical for all values of y v[ ]0
0 2 . We conclude that in one point the iteration of Hedinʼs

equations will, at best, converge very slowly.
Finally, in figures 3 and 4 we compare ΓuGW , given by

λ λ

λ λ
=

+ − + +

+ − + + +Γ
Γ Γ

Γ Γ Γ

u v
vy v y

vy v y v y

1 (2 ) (1 )

1 (3 ) (3 )
, (75)GW

GW GW

GW GW GW

2 2 4

2 2 4 3 6

to the exact screening, to u0lin and to uGW. We see that for λ = 1

2
the ΓGW screening provides the

best approximation to the exact screening for small interactions.

4.2.2. Iterative solution. The ΓGW Dyson equation can be rewritten in even more ways than
the GW Dyson equation and therefore a large number of iteration schemes are possible. Here
we will report the results of the iteration scheme that is similar to the most common GW
iteration scheme given in equation (61), i.e.,

⎡⎣ ⎤⎦Γ= −+
− −

G G G Wi . (76)n n n n n1 H,
1 1

In the one-point model this iteration scheme corresponds to

⎡⎣ ⎤⎦
⎡⎣

⎤⎦

λ λ

λ λ λ

λ

= + − + + +

+ − + − + −

+ + + + +

+ ( )y y vy v y v y

y vy vy y v y

v y y v y v y y v y

1 (3 ) (3 )

1 (1 ) (3 ) 3(1 )

(3 ) 3 . (77)

n n n n

n n n

n n n n

1 0
0 2 2 4 3 6

0
0 2

0
0 2 3

2 4
0
0 3 5 3 6

0
0 4 7

In figure 8 we compare the results obtained with this iteration scheme to the physical ΓGW
solution for λ = 1. Once more we observe that the iterative result does not converge to the
physical solution beyond a certain interaction strength. As for GW it oscillates between two
values. Moreover, compared to the iterative GW result, the range over which the iteration
scheme converges to the physical solution is reduced by about 30%. We have obtained similar
results for λ = 1

2
. This seems to indicate that using a more complex self-energy reduces the

convergence range. In other words, beyond GW the choice of the iteration scheme becomes
more crucial.

5. Conclusions

We solved the KBE in one point. We obtained a family of solutions and we showed that only
one is a physical solution. Moreover, we presented a strategy to obtain the physical solution that
is, in principle, not limited to the one-point model.

We showed that in the one-point model the physical solution is equal to the noninteracting
solution. This is due to the fact that the terms in the KBE that contain the interaction cancel.
Therefore, we proposed a slightly modified KBE in which this cancelation is partial, just as in
the full functional problem. We also solved this DE and found its unique physical solution.
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We assessed the accuracy of an approximate linearized KBE that lies at the heart of the
GW+cumulant method. We compared it to the exact physical solution of the full KBE in one
point as well as to standard approximations such as GW . The solutions of the linearized KBE
are nearly exact for small interactions but deviate from the exact results for larger interactions.
We showed that the solution of the linearized KBE can be improved by employing an RPA
screened interaction. Adding low order vertex corrections does not seem to lead to significant
improvement.

Much of the results are governed by the structure of the equations, which is the same in
the one-point model and in real systems. One can hence extrapolate the findings, as long as
one is careful not to over-interpret. Of course, important questions such as the position of
poles corresponding to excitation energies can by definition not be treated in the one-point
model.

Finally, we demonstrated that by iterating the GW Dyson equation in the usual way one
does not always converge to a GW solution. We proposed a practical iterative scheme that leads
to the physical GW solution for all interaction strengths.
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Appendix A. Solving the KBE in one point

In this appendix we solve the KBE in one point given in equation (5) for λ = 1 and λ = 1

2
.

Using the substitution = −x z
y

1

0
0 we can rewrite equation (5) as a Riccati equation:

⎡
⎣⎢

⎤
⎦⎥λ

′ = − −y x y x
x

v
y x

v
( )

1
( ) ( )

1
. (A.1)2

We will now address the two cases, λ = 1 and λ = 1

2
.

A.1. General solution for λ ¼ 1

For λ = 1 equation (A.1) becomes

′ = − −y x y x
x

v
y x

v
( ) ( ) ( )

1
. (A.2)2

The general solution of a Riccati equation can be found if a particular solution is known. A
particular solution of this Riccati equation is = −y x( )p x

1 as can be verified by substitution.
We can now transform this nonlinear DE into a linear DE by defining the function w(x)
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according to

= + = − +y x y x
w x x w x

( ) ( )
1
( )

1 1
( )

. (A.3)p

Substitution of the above expression in equation (A.2) and rearranging leads to the following
linear DE for w(x):

′ = + −w x
x v

xv
w x( )

2
( ) 1. (A.4)

2

The solution of the homogeneous equation corresponding to the above equation is
=w x Kx( ) ex v2 22

with K a constant. We can then vary the constant to obtain the solution of
the inhomogeneous equation. It is given by

⎛

⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞

⎠
⎟⎟

π= + +
( )

w x x x
v

x

v C v y
( ) e

2
erf

2

1

,
, (A.5)2

0
0

x
v
2

2

where C v y( , )0
0 is a function that could depend on both y0

0 and v. Plugging this result into

equation (A.3) and substituting = −x z y1 0
0 leads to the general solution given in

equation (6).

A.2. General solution for λ ¼ 1
2

For λ = 1

2
equation (A.1) becomes

′ = − −y x y x
x

v
y x

v
( ) 2 ( )

2
( )

2
. (A.6)2

To solve the above equation we first rewrite this nonlinear first-order DE as a linear second-
order DE by defining the function u(x) as

= − ′
y x

u x

u x
( )

( )
2 ( )

. (A.7)

We can thus rewrite equation (A.6) according to

″ + ′ + =u x p x u x q x u x( ) ( ) ( ) ( ) ( ) 0 (A.8)

with =p x( ) x

v

2 and = −q x( )
v

4 . A particular solution of this second-order DE is

= +
u x

v x

v
( )

2
(A.9)1

2

which can be verified by substitution into equation (A.8). A second independent solution is then
given by [19]

∫ ∫= −u x u x t
u t

( ) ( ) d
1

( )
e (A.10)

x
p s s

2 1
1
2

( )d
t

⎡

⎣
⎢
⎢

⎡
⎣⎢

⎤
⎦⎥

⎤

⎦
⎥
⎥

π= +
+

+
−

( )v x
x

v x v

x

v
2

e

2 4

1
4

erf . (A.11)2
2

x
v
2
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The general solution for u(x) can therefore be written as

⎡

⎣
⎢
⎢

⎡
⎣⎢

⎤
⎦⎥

⎤

⎦
⎥
⎥

π= +
+

+ +
−

( )u x C v x
x

v x v

x

v

C

v
( ) 2

e

2 4

1
4

erf , (A.12)1
2

2

2
x
v
2

where for notational convenience we have suppressed the dependence of C1 and C2 on v and y0
0.

The derivative of u(x) is given by

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

π′ = + +−u x C x
v

x

v

x

v
C( ) e erf

4
. (A.13)1 2

x
v
2

Substituting these results into equation (A.7) then leads to the general solution for y(x)

⎡⎣ ⎤⎦
⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥

= −
+ +

+ + +

π

π

−

− ( )( )
y x

x C

x x C
( )

e erf

e erf
(A.14)v

x

v

x

v

v

v

x

v v

4
2

2
2

4
2

x
v

x
v

2

2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎡

⎣

⎢
⎢
⎢
⎢⎢

⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥

⎤

⎦

⎥
⎥
⎥
⎥⎥

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= − + +
+π

− −

( )

x
v

x
x

2
1

1

e erf

, (A.15)

v

x

v C v y

1

,

1 1

x
v
2

0
0

where we defined

π=( ) ( )
C v y

v

C v y
,

4 ,
. (A.16)0

0

2 0
0

Substituting = −x z
y

1

0
0 leads to equation (11).

Appendix B. Hedinʼs equations in one point

In analogy with the full functional problem we can define the exchange–correlation part of the
self-energy sxc(y) in one point as

λ= ′
s y v

y z

y z
( )

( )

( )
. (B.1)xc

The KBEs in equations (5) and (15) can then be rewritten as Dyson equations:

= + +y z y y z z y z y s y y z( ) ( ) ( ) ( ) ( ), (B.2)0
0

0
0

tot 0
0

xc

= + +y z y z y z zy z y z s y y z( ) ( ) ( ) ( ) ( ) ( ) ( ), (B.3)H H H xc

where = −z z z vy z( ) ( )tot , which represents the total classical potential in one point. Using the
chain rule we can rewrite sxc(y) defined in equation (B.1) according to

λ λ= =
( )

s y v
y z

y z z

z

z

z

u z p z

y z
( )

1
( )

d ( )

d

d

d

( ) ˜ ( )

( )
, (B.4)xc

tot

tot

tot
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where we used equations (20), (21), and (24) and where we defined

=
( )

p z
y z z

z
˜ ( )

d ( )

d
(B.5)

tot

tot

which represents the irreducible polarizability in one point.
The irreducible polarizability is related to the reducible polarizability of equation (21) by

= +p z p z p z vp z˜ ( ) ( ) ( ) ˜ ( ). (B.6)

which can be verified by applying the chain rule to equation (B.5). The screened interaction u(z)
defined in equation (24) can be rewritten in terms of p z˜ ( ) with the help of equation (B.6):

=
+

= −u z
v

vp z
v vp z u z( )

1 ˜ ( )
˜ ( ) ( ). (B.7)

The irreducible polarizability can be rewritten as

= = − =
−

p z
y

z
y

y

z
y g y˜ ( )

d

d

d

d
˜ ( ), (B.8)

tot

2
1

tot

2

where g y˜ ( ) represents the irreducible vertex function in one point:

= −
−

g y
y

z
˜ ( )

d

d
. (B.9)

1

tot

For notational convenience we have suppressed the dependence of y on z z( ( ))tot in the above
expressions. We will continue to do so in the remainder of this section. With the help of
equation (B.8) we can now rewrite the self-energy given in equation (B.4) as

λ=s y y z u z g z( ) ( ) ( ) ˜ ( ). (B.10)xc

Dividing both sides of equation (B.2) by y y z( )0
0 and differentiating with respect to ztot

leads to

= + + = − + +
−y

z

s y

z
g y

s y

y
y g y0

d

d
1

d ( )

d
˜ ( ) 1

d ( )

d
˜ ( ), (B.11)

1

tot

xc

tot

xc 2

where we used equations (B.5), (B.8), and (B.9). This expression can be rewritten as

= +g y
s y

y
y g y˜ ( ) 1

d ( )

d
˜ ( ). (B.12)xc 2

The expressions given in equations (B.3), (B.7), (B.8), (B.10), and (B.12) constitute Hedinʼs
equations in one point.

Appendix C. Solution of a modified KBE in one point

In this appendix we investigate a slightly modified set of Hedinʼs equations in one point that
was introduced by Molinari et al to count diagrams [12, 13]. The modification is in the
irreducible polarization given in equation (30) to which they added a minus sign, i.e.,

= −p y g˜ ˜.2 Pavlyukh and Hübner solved this set of equations (for z = 0) and found an implicit
solution for y [14]. In the next two subsections we show how to obtain an explicit solution and
how to determine the physical solution.
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C.1. General solution

We can find an explicit solution for these modified Hedinʼs equations by realizing that it is
equivalent to the solution of the KBE in the limit of vanishing φ if we modify the KBE given in
(3) in the following way,

= + + + ′y z y vy y z y zy z vy y z( ) ( ) ( ) ( ), (C.1)0
0

0
0 2

0
0

0
0

i.e., we added a minus sign to the quadratic term which represents the Hartree contribution in
one point.

The solution of the modified KBE in equation (C.1) is given by

⎡

⎣
⎢
⎢
⎢

⎛

⎝
⎜
⎜⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟
⎟⎟

⎤

⎦
⎥
⎥
⎥

π= + − −

−
+−

−

( )y z
vy z

v

vy z
C v y( )

1
( )

e
2

erf
1

2 ( )
, , (C.2)

0 0
2 0

0

1

vy z

1

2 0
2 ( )

where C v y( , )0
0 is a function that could depend on both v and y0

0. The derivation of this result
can be found in appendix D. This explicit solution of the modified KBE is equivalent to the
implicit solution of the modified Hedinʼs equations obtained by Pavlyukh and Hübner for the
case z = 0. Their implicit solution can be obtained by setting z = 0 in equation (C.2) followed by

the substitution =
+ =

y
y

vy y z0
0

1 ( 0)
H
0

H
0 .

C.2. Physical solution

To obtain the physical solution we investigate equation (C.2) in the limit →v 0 in which y(z)
should reduce to y z( )0 for any z. As a first step we will determine =C v y( 0, )0

0 by studying

potentials z for which <y z| ( ) | 00
2 . We use the asymptotic expansion of the error function given

in equation (7) to rewrite y(z) given in equation (C.2) as

⎡
⎣⎢

⎤
⎦
⎥⎥∑

π= + − +

− −
=

∞
+ +

−

( )( )y z
vy z

v
C v y

n v y z

( )
1
( )

e
2

1 ,

(2 1) !! ( ) . (C.3)
n

n n

0
0
0

0

1
0
2 1

1

v y z

1

2 0
2 ( )

In the limit → +v 0 the first term on the right-hand will tend to ∓ ∞i while the second term
on the right-hand side will tend either to zero (for = ≠ −C v y( 0, ) 10

0 ) or to ± ∞i (for

= = −C v y( 0, ) 10
0 ). This means that y(z) will tend to ∓ ∞i for any = ≠ −C v y( 0, ) 10

0 . In the

case = −C v y( , ) 10
0 we can rewrite the above expression as

=
+ ∑ +

+ ∑ −
=

∞ +

=
∞y z

y z n v y z

n v y z
( )

( ) (2 1) !! ( )

1 (2 1) !! ( )
. (C.4)n

n n

n
n n

0 1 0
2 1

1 0
2

We see that in the limit →v 0 we obtain the noninteracting solution y z( )0 . We conclude that

= = −C v y( 0, ) 10
0 corresponds to the physical solution.

In order to determineC v y( , )0
0 for finite v we assume thatC v y( , )0

0 has a Taylor expansion

around v = 0. Then, for <y z( ) 00
2 , in the limit → +v 0 the right-hand side of equation (C.3)
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tends to y z( )0 if and only if all the coefficients of the Taylor expansion of C v y( , )0
0 vanish

except the first. We conclude that = −C v y( , ) 10
0 for all v. Therefore the physical solution is

given by

⎡

⎣
⎢
⎢
⎢

⎛

⎝
⎜
⎜⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟
⎟⎟

⎤

⎦
⎥
⎥
⎥

π= − −
−

+−

−

y z
vy z

v

vy z
( )

1
( )

e
2

erf
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The solution for z = 0 becomes
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Appendix D. General solution of the modified KBE

In this section we solve the modified KBE given in equation (C.1). Using a change of variable
= −x z y1 0

0 the modified KBE in equation (C.1) can be rewritten as

− ′ = + +y x y x
x

v
y x

v
( ) ( ) ( )

1
. (D.1)2

A particular solution of this Riccati equation is = −y x( ) x

v
as can be verified by substitution.

We now write the general solution in the form = − +y x( ) x

v w x

1

( )
. Substitution in equation (D.1)

leads to the following linear DE

′ = − +w x
x

v
w x( ) ( ) 1. (D.2)

The solution of this linear DE is

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

π= −
−

+− ( )w x
v x

v
C v y( ) e

2
erf

2
˜ , , (D.3)0

0x
v
2

2

where C v y˜ ( , )0
0 is a function that could depend on both v and y0

0. The general solution for y(x)
therefore becomes

⎡
⎣⎢

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
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⎦⎥

π= − + −
−

+−
−

( )y x
x

v

v x

v
C v y( ) e

2
erf

2
, , (D.4)0

0
1

x
v

2
2

where we defined = −
π

C v y C v y( , ) ˜ ( , )
v0

0 2
0
0 . Substituting = −x z

y

1

0
0 leads to equation (C.2).
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