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We present a method for the evaluation of electronic excitations of advanced materials by reformulating
spectral sum-over-states expressions such that only occupied states appear. All empty states are accounted for
by one effective energy. Thus we keep the simplicity and precision of the sum-over-states approach while
speeding up calculations by more than an order of magnitude. We demonstrate its power by applying it to the
GW method, where a huge summation over empty states appears twice �screening and self-energy�. The
precision is shown for bulk Si and solid and atomic Ar. We then use it to determine the band gap of the
technologically important oxide SnO2.
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Many crucial physical quantities, e.g., electron spectral
functions, optical response, or total energies, can be ex-
pressed in terms of one- or two-particle Green’s functions
that contain information about the propagation of an electron
and/or hole in the system. This physics is directly reflected in
their spectral representations in terms of amplitudes and en-
ergies. In practice, calculations are often performed using
this relatively simple sum-over-states �SOS� formulation in
an independent-particle or quasiparticle �QP� approximation.
However, the SOS approach suffers from two main draw-
backs. First, it does not scale well with the size of the sys-
tem. Second, one has to sum over an, in principle, infinite,
and, in practice, �at convergence� huge number of empty
states. This is especially true for large unit cells �dense
bands� or for materials with localized states �high-energy
cutoff�. Prototype examples are, e.g., the transparent con-
ducting oxides �TCOs� based on SnO2 and ZnO, for which
calculations of many-body Green’s functions are close to
prohibitive. However, for these technologically important
materials it is particularly desirable to predict electronic
properties and first of all a reliable QP band structure. QP
energies can be obtained from many-body perturbation
theory; the state-of-the-art approach is the GW
approximation.1 However, in a standard GW calculation two
SOS expressions appear since the self-energy �, which ac-
counts for all the many-body effects beyond the Hartree po-
tential, is given by the following convolution:

��r,r�,�� = i� d��

2�
ei���G�r,r�,� + ���W�r,r�,��� , �1�

where G is the single-particle Green’s function and
W=�−1vc is the screened Coulomb potential in which � is the
dielectric function in the random-phase approximation
�RPA�: �=1−vc�

0, where �0 is the time-ordered
independent-particle polarizability.2 Most often both �0 and
� are evaluated using a slowly converging3–5 SOS expres-
sion. Several methods have been proposed to decrease or
avoid completely the summation over empty states,1,6–10

ranging from a static Coulomb-hole plus screened exchange
�COHSEX� approximation1 which eliminates empty states in
� only and at the price of a crude description of QP energies,

to methods using a Sternheimer type of approach7,11 that are,
in principle, exact. When applied in a straightforward man-
ner the latter approach does not speed up with respect to the
standard SOS formulation7 but it can be improved by using
efficient algorithms8,9 and by introducing an optimal polariz-
ability basis.8 The latter methods are promising but require a
profound restructuring of the GW method and detailed com-
parisons, in particular, concerning the prefactor and hence
the crossover, with the SOS approach are still missing.12

In this work, we present a very efficient method which
retains all advantages of the SOS approach, namely, simplic-
ity, a good prefactor, and systematic and controlled accuracy
but completely eliminates empty states from the entire calcu-
lation, leading to an immediate speedup for all system sizes,
as well as an improved scaling. Here we calculate GW QP
energies to demonstrate the power of our approach but the
method is general and can be applied to other spectral quan-
tities.

In the calculation of the GW self-energy, the main numeri-
cal effort lies in the calculation of the matrix elements of �c,
the correlation part of the self-energy. For simplicity, we will
focus here on the diagonal matrix elements. The extension to
off-diagonal elements is straightforward. In its spectral rep-
resentation, the diagonal matrix elements �c

n are given by

�c
n��� = �

i
�
j�0

��n�Vj�i��2

� + � j sgn�� − 	i� − 	i
. �2�

Here �i� and 	i are the QP states and energies, respectively,
� j =E�N , j�−E�N ,0�− i
 are the excitation energies of the
N-electron system minus an infinitesimal 
 which ensures
the correct time ordering, � is the chemical potential, and
Vj�r� are fluctuation potentials13 which, together with � j rep-
resent W. Although the method that we will describe in this
work is valid for both finite and extended systems we will
focus here on the latter. Therefore, i and n should be consid-
ered multi-indices composed of the band index and the Bloch
vector. The summation over i in Eq. �2� can be split into a
summation over v with 	v�� and a summation over c with
	c��. In the following, we will focus on the latter since it is
the bottleneck in the calculation of �c

n as it sums over the, in
principle, infinite, empty states of the system. Introducing the
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Fourier transforms of the fluctuation potentials, we can re-
write this part as

�c
n,emp��� = �

j�0
�

q,G,G�

VG
j �q�VG�

j� �q�Sj
n�q,G,G�,�� , �3�

where we defined

Sj
n�q,G,G�,�� = �

c

̃cn
� �q + G�̃cn�q + G��

� − � j − 	c
�4�

in which ̃cn�q+G�= �c�e−i�q+G�·r�n�. It is the above summa-
tion over empty states that we want to eliminate. One can
always find a function �nj�q ,G ,G� ,�� such that the follow-
ing equality holds:

Sj
n�q,G,G�,�� =

�
c

̃cn
� �q + G�̃cn�q + G��

� − � j − 	n − �nj�q,G,G�,��
�5�

since �nj�q ,G ,G� ,�� has sufficient degrees of freedom. Us-
ing the closure relation �c�c��c�=1−�v�v��v�, we obtain an
expression for Sj

n which contains a sum over occupied states
only. At variance with related ideas,6,10 the relation in Eq. �5�
is exact; the effective energy 	n+�nj�q ,G ,G� ,�� takes into
account the contributions of all the empty states to
Sj

n�q ,G ,G� ,��. For this reason we will refer to this ap-
proach as the effective-energy technique �EET�. It now re-
mains to transform the expression for �nj�q ,G ,G� ,�� such
that no empty states appear. Subtracting Eq. �5� from Eq. �4�
and making use of the fact that the 	i are eigenvalues of the

Hamiltonian Ĥ�r� with eigenstates �i� �Ref. 6�, we obtain

�nj�q,G,G�,��Sj
n�q,G,G�,��

= �
c

̃cn
� �q + G��c��Ĥ�r��,e−i�q+G��·r�	�n�

�� − � j − 	c	
. �6�

For notational convenience, we consider a Hamiltonian that
contains only a local potential. The derivation can be easily
generalized to include Hamiltonians with nonlocal potentials.
Working out the commutator and dividing both sides by Sj

n,
we obtain

�nj�q,G,G�,�� =
�q + G��2

2
+

S̃j
n�q,G,G�,��

Sj
n�q,G,G�,��

, �7�

where we defined

S̃j
n�q,G,G�,�� = �

c

̃cn
� �q + G� j̃cn�q + G��

�� − � j − 	c	
�8�

in which

j̃cn�q + G� = �c�e−i�q+G�·r�i�r	�n� · �q + G� . �9�

In Eq. �7�, �nj is expressed in terms of itself through Sj
n.

Since S̃j
n depends on a summation over the empty states solv-

ing for �nj will not lead to the desired result. However, in
view of the similarity of Eqs. �4� and �8�, we can also rewrite
Eq. �8� in terms of only occupied states in an equivalent
manner as Eq. �5� using a modified �nj. In principle, this

procedure could be continued ad infinitum. However, one
wishes to truncate the expression for �nj since, in practice,
one would like to use simple expressions. In the following,
we will show that these simple expressions already lead to
excellent results. Here we give explicitly the first three ap-
proximations for �nj that we obtain

��0��q,G�� =
�q + G��2

2
, �10�

�n
�1��q,G,G�� =

�q + G��2

2
+

fn
j�q,G,G��

fn
�q,G,G��

, �11�

�nj
�2��q,G,G�,�� =

�q + G��2

2
+

fn
j�q,G,G��

fn
�q,G,G��

� 
�nj −
�q + G��2

2
−

fn
j�q,G,G��

fn
�q,G,G��

�nj −
�q + G�2

2
−

fn
jj�q,G,G��

fn
j�q,G,G��

� ,

�12�

where �nj =�−� j −	n and

fn
ab�q,G,G�� = �

c

ãcn
� �q + G�b̃cn�q + G�� , �13�

where a and b can be either  or j.14 We use the closure
relation to get rid of the sum over empty states in fn

ab. Note
that, in particular, the expression for �nj

�2� is simple but highly
nontrivial due to its frequency dependence. Higher-order ex-
pressions for �nj will contain terms with higher-order deriva-
tives of the valence wave functions as well as derivatives of
the potential. Our results show that these terms can be safely
neglected. We note that the EET is exact in the limit of a
homogeneous electron gas starting at order �n

�1�.15 The ap-
proximations for �nj in Eqs. �10�–�12� are asymmetric with
respect to G and G�. This is due to the freedom in choosing
whether the Hamiltonian in Eq. �6� is applied inside the left
or right matrix element. Since the exact �nj is Hermitian, we
symmetrize the above results such that this exact constraint
is met at each level of approximation.

In practice, the excitation energies � j that enter �c
n are not

known and as a first step � has to be calculated. This � relies
on the calculation of �0 which in its spectral representation is
given by

�GG�
0 �q,�� = �

s=�1
�
v,c

̃cv
� �q + G�̃cv�q + G��
s� − �	c − 	v� + i


. �14�

Since �0 has a similar structure as �c
n, we can also apply the

EET here to obtain an expression that does not contain any
empty states. The result is given by

�GG�
0 �q,�� = �

s=�1
�
v

fv
�q,G,G��

s� − �v��q,G,G�,s�� + i

. �15�

The approximations for �� equal those for � given in Eqs.
�10�–�12� with the difference that �nj has to be replaced by
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�. We have thus arrived at a simple GW method without
summations over empty states. Moreover, once the fn

ab are
determined the calculation of �c

emp ��0� scales as NnNG
2

�NvNG
2 � versus NcNnNG

2 �NcNvNG
2 � for the SOS approach,

where Nn is the number of diagonal matrix elements of �c,
Nv and Nc are the number of occupied and empty states,
respectively, and NG is the number of plane waves. The cal-
culation of the fn

ab can be done straightforwardly from ̃ and
j̃ for an immediate overall speedup for any system on the
order of Nc /Nv with respect to the SOS approach or one can
improve the scaling using fast-Fourier transforms.16 We note
that since Eqs. �4� and �5� are similar and also Eqs. �14� and
�15�, if desired, the EET can be combined with the ideas of
Refs. 8 and 9, e.g., basis design, to get further speedups.

To illustrate the EET, we have implemented it in the AB-

INIT software package17 and performed G0W0 calculations
for some materials with zero-order energies and wave func-
tions obtained from Kohn-Sham density-functional theory
within the local-density approximation �LDA�.18 We used a
generalized plasmon-pole model fitting �−1 at imaginary
frequencies.19 In Fig. 1, we plot the real part of �c for the
highest occupied band of bulk silicon at the � point as a
function of the frequency around the LDA orbital energy. We
compare our EET results using various approximations for �
and �� with the converged SOS results �200 empty bands�
and those obtained with the static COHSEX approximation.
Using ���2� in �0 and ��0� in �, we already obtain results that
are in excellent agreement with the SOS result over the
whole frequency range of interest, thereby largely improving
on the COHSEX self-energy �using ���0� in �0 we obtain
self-energies which are, in general, not sufficiently accurate�.
With higher-order approximations, we can improve the re-
sults further. Since, in general, ��2� and ���2� lead to G0W0

results that are in good agreement with the exact SOS results
and since the difference with results obtained using higher-
order approximations is small, we will use ��2� and ���2� in
the remainder unless stated otherwise.

We also applied the EET to solid and atomic argon be-
cause they provide good test cases for two reasons: first, they
are very inhomogeneous systems and therefore very different
from the homogeneous systems for which our expressions
become exact and, second, the G0W0 QP energies lie far from
the LDA energies. In Fig. 2, we plot the G0W0 band structure
of solid argon for the three highest occupied bands and four
lowest empty bands using the standard SOS approach and
the EET. The two band structures are almost indistinguish-
able. We also reported the LDA band structure to show the
large difference between LDA and G0W0 energies. In Table I,
we summarize our EET results for the fundamental gaps of
silicon and solid argon, the direct band gap at � of silicon
and the highest occupied molecular orbital �HOMO�-lowest
unoccupied molecular orbital �LUMO� gap of atomic argon.
We obtain a large improvement with respect to the COHSEX
results which largely overestimate the G0W0 band gaps and a
very good agreement with the SOS approach. Moreover, the
accuracy of the absolute COHSEX energies is in the order of
1 eV while the accuracy of the absolute EET energies is in
the order of 0.1 eV. This means that accurate calculations of,
for example, band off-sets with the EET can be performed
since, contrary to COHSEX, it does not rely on error cancel-
lation.

In Table I, we also report the G0W0 band gap of SnO2
obtained using the SOS approach and the EET which again
agree well. We note that the �0 and � SOS calculations for
SnO2 required 1000 and 1600 bands, respectively, while the

TABLE I. Fundamental gaps �Eg� of silicon, solid argon, and
SnO2, the direct band gap at � ��v−�c� of silicon and the HOMO-
LUMO gap of atomic argon �H-L�.

LDA G0W0 �SOS� G0W0 �EET� COHSEX

Silicon �Eg� 0.52 1.20 1.19 1.75

Silicon ��v−�c� 2.56 3.23 3.22 3.76

Solid argon �Eg� 7.53 12.4 12.3 14.6

Atomic argon �H-L� 9.81 14.6 14.5 15.8

SnO2 �Eg� 0.91 2.88 2.94 4.61
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FIG. 1. �Color online� The real part of �c��� for the highest
occupied band at � for Si around the LDA orbital energy
�set to 0 eV�. Solid line �black�: G0W0 �SOS�; dotted line �green�:
G0W0 �EET: ���2� and ��0��; dashed line �red�: G0W0 �EET: ���2� and
��2��; dotted-dashed line �blue�: G0W0 �EET: ���4� and ��4��; double-
dotted-dashed line �violet�: COHSEX.
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FIG. 2. �Color online� Band structure of solid argon. Solid line
�black�: G0W0 �SOS�; dashed line �red�: G0W0 �EET�; dotted line
�blue�: LDA.
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EET calculations just required 34 occupied bands. The G0W0

band gap of SnO2 is not in good agreement with the experi-
mental band gap of 3.6 eV.20 This is due to the fact that the
LDA energies and wave functions do not provide a good
starting point for the G0W0 calculation. However, within the
GW method, we can recalculate the screening and self-
energy using updated energies and wave functions by includ-
ing some form of self-consistency. Using the SOS approach,
even the simplest GW method involving self-consistency, the
self-consistent COHSEX+G0W0 approach21 is computation-
ally quite demanding because �0 has to be recalculated. This
means that the energies and wave functions have to be up-
dated during self-consistency. This bottleneck can now be
reduced by applying the EET to the calculation of both the
static �0 in the self-consistent COHSEX calculation and the
subsequent G0W0 self-energy. We can thus include self-
consistency effects using occupied states only. Using the
EET, we were now able to determine the GW band gap of
SnO2 to be 3.8 eV which is in good agreement with experi-

ment. This result, which is summarized in Table II, confirms
that the EET could indeed be the method of choice for the
study of, e.g., TCOs.

In conclusion, we have introduced the effective-energy
technique which permits a simple and efficient evaluation of
spectral representations without summing over the infinite
number of empty states. Moreover, the EET speeds up cal-
culations by more than an order of magnitude for systems of
any size. We have illustrated our approach by applying it to
the G0W0 method and shown that the results perfectly repro-
duce the SOS results. Furthermore, by combining the EET
with the self-consistent COHSEX+G0W0 approach, we dem-
onstrated its power by calculating the band gap of SnO2. The
band gap thus obtained is in good agreement with that found
in experiment. Large speedups of more advanced self-
consistent GW approaches23 are also expected when com-
bined with the EET since only QP wave functions and ener-
gies of occupied states need to be updated. Other potential
applications of the EET include the calculation of RPA total
energies,24 optimized effective potentials25 and kernels,26 and
the modeling of self-energies.
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