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ABSTRACT: Electron−hole or quasiparticle representation plays a central role in
describing electronic excitations in many-electron systems. For charge-neutral excita-
tion, the electron−hole interaction kernel is the quantity of interest for calculating
important excitation properties such as optical gap, optical spectra, electron−hole
recombination, and electron−hole binding energies. The electron−hole interaction
kernel can be formally derived from the density−density correlation function using
both Green’s function and time-dependent density functional theory (TDDFT)
formalism. The accurate determination of the electron−hole interaction kernel remains
a significant challenge for precise calculations of optical properties in the GW+BSE
formalism. From the TDDFT perspective, the electron−hole interaction kernel has
been viewed as a path to systematic development of frequency-dependent exchange−
correlation functionals. Traditional approaches, such as many-body perturbation
theory formalism, use unoccupied states (which are defined with respect to Fermi
vacuum) to construct the electron−hole interaction kernel. However, the inclusion of unoccupied states has long been recog-
nized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an
alternative derivation that avoids using unoccupied states to construct the electron−hole interaction kernel is presented.
The central idea of this approach is to use explicitly correlated geminal functions for treating electron−electron correlation for
both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques
that the electron−hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the
cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron−hole
interaction kernel derived in this work was used to calculate excitation energies in many-electron systems, and results were found
to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the
developed method for overcoming the computational barrier of accurately determining the electron−hole interaction kernel to
applications of large finite systems such as quantum dots and nanorods.

1. INTRODUCTION

The concept of electron−hole or particle−hole quasiparticle
formulation is central to the treatment of electronically excited
states in many-electron systems. The electron−hole picture
represents excitation from the Fermi vacuum and constitutes
the zeroth-order treatment of electronic excitation. In addition,
the electron−hole excitation is used extensively in various for-
mulations for treating electron correlation for both ground and
electronically excited states.1

For charge-neutral excitations, the accurate treatment of
electron−hole interaction is extremely important.2−5 For example,
in the Bethe−Salpeter (BSE) approach, the electron−hole inter-
action kernel is used for calculations of excitation energies.6−14

The electron−hole interaction kernel can be obtained using
both many-body perturbation theory (MBPT)1,15−21 and time-
dependent density functional theory (TDDFT).1,22−26 In both
of these approaches, it has been shown convincingly that accu-
rate determination of electron−hole screening is crucial for the
accurate calculation of excitation energy.
The overarching objective of this work is the determination

of electron−hole screening in excited states without using

unoccupied states. Although the BSE approach has been very
successful in predicting the optical spectra of periodic solids
and finite-size clusters, it is restricted by the computational
effort it takes to construct the electron−hole interaction kernel.
In a traditional approach, the construction of the electron−hole
interaction kernel requires knowledge of a large number of
virtual or unoccupied states. This feature puts severe limitations
on the applicability of the BSE and other methods that rely on
electron−hole screening for treating large finite-size clusters
such as quantum dots and rods. In this work, we present the
derivation of the electron−hole interaction kernel that does not
require unoccupied states. This is a real-space formulation that
uses the connection between electron−hole screening and
electron−electron correlation to avoid unoccupied states in the
construction of the electron−hole interaction kernel. A simi-
lar strategy has also been developed by Nichols and Rassolov
using real-space electron correlator approach.27 We anticipate
that using such a kernel will result in significant reduction in
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the cost of the BSE method. This work is also relevant in the
TDDFT formulation with respect to the construction of
the effective exchange−correlation functional.5 Because the
derivation presented here is using real-space as opposed to
occupation-number space, we expect this approach is much
more amenable to the development of exchange−correlation
functionals.
Recently, in a series of articles, Galli and co-workers have

developed the WEST method that addresses the issue of
removing contributions of unoccupied states from the GW and
BSE equations.28−30 This method relies on projecting out non-
contributing terms from the dielectric matrix. The derivation
presented here uses a strategy different than the one used for
the WEST method. First, this method is derived from the
equation-of-motion approach developed by Simons et al.,31−37

Cederbaum et al.,38−42 and Yeager and McKoy.43−50 This
method calculates the electron−hole interaction kernel directly
for charge-neutral excitations without requiring the construc-
tion or knowledge of the one-particle Green’s function. This
derivation also does not assume that it is a post-DFT procedure
and in general can be applied to both Hartree−Fock and
ground state DFT formulations. In this work, the bare electron
and hole quasiparticles are defined with respect to the Fermi
vacuum and are constructed from single-particle states of an
effective one-electron Hamiltonian. We present two equivalent
derivations of the electron−hole interaction kernel. In the first
derivation, we show a compact derivation using Hugenholtz
diagrams in section 2, and we present the derivation using
algebraic representation in Appendix A.
An important connection between electron−hole screening

and electron−electron correlation is that electron−hole screening
is a consequence of electron−electron correlation. For example,
in a hypothetical many-electron system that lacks electron−
electron correlation, the electron−hole interaction can be
described exactly as the bare Coulomb interaction. Hence,
treatment of electron−electron correlation is very important for
studying electron−hole interaction. In this work, we use the
two-body geminal operator, G, for treating electon−electon
correlation,

Ψ = ΦG 0 (1)

where G is a real-space operator that depends explicitly on the
electron−electron separation distance, r12. An explicitly corre-
lated operator with r12 dependence can be used to provide a
better description of the many-electron wave function near the
electron−electron coalescence point.51 For example, both varia-
tional Monte Carlo52,53 and transcorrelated Hamiltonian54,55 are
methods that use the ansatz in eq 1 for the many-electron wave
function. The connection between the explicitly corre-
lated wave function (eq 1) and configuration interaction (CI)
can be seen by applying the identity operator on the correlated
wave function (eq 2),

∑
∞

|Φ ⟩⟨Φ | =
=

I
k

k k
0 (2)

and substituting in eq 1,

∑|Ψ⟩ = |Φ ⟩ =
∞

|Φ ⟩⟨Φ | |Φ ⟩
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥IG G

k
k k0

0
0

(3)

Equation 3 is an infinite-order CI expansion which is shown in
eq 4,

∑|Ψ⟩ =
∞

|Φ ⟩
=

c
k

k
G

k
0 (4)

where the expansion coefficients ck
G = ⟨Φk|G|Φ0⟩ are con-

strained to be a functional of G. The inclusion of this explicit r12
dependence in the wave function has been used since the early
days of quantum mechanics to achieve accurate ground state
energies. Slater56,57 and Hylleraas58,59 first used the explicitly
correlated wave function calculating the ground state energy in
helium atom in 1929. Since then and especially within the past
30 years, the inclusion of explicit correlation has been imple-
mented in various methods such as variational Monte
Carlo,52,53 transcorrelated Hamiltonian,54,55,60−62 explicitly
correlated Hartree−Fock,63−72 geminal augmented MCSCF,73

the electronic mean field configuration interaction method,74

and the strongly orthogonal geminal method.75,76 The field of
explicitly correlated method has been recently reviewed by
various authors.77−80

2. THEORY
In this section, we present the derivation of the electron−hole
interaction kernel using Hugenholtz diagrams. We start by
defining a zeroth-order Hamiltonian,

∑= −ℏ ∇ + +
⎡
⎣⎢

⎤
⎦⎥H

N

m
v i v i

2
( ) ( )

i
i0

2
2

ext eff
(5)

where veff is a one-particle effective potential for which the
eigenvalues and eigenfunctions of H0 can be computed exactly.
This derivation does not require a specific form of the effective
potential, and veff can be obtained using various methods such
as Hartree−Fock (vHF), KS-DFT (vKS), pseudopotential (vps),
or empirical model potential (vemp). The ground and excited
electronic states in the non-interacting system (described by H0)
are represented by Φ0 and Φi

a, respectively.

|Ψ ⟩ = |Φ ⟩H E0 0 0
(0)

0 (6)

|Φ ⟩ = |Φ ⟩H Ei
a

ia i
a

0
(0)

(7)

The excitation energy in the non-interacting system is repre-
sented by ωX

0 and is calculated from the difference in the eigen-
values of the one-particle Hamiltonian,

ω = − = ϵ − ϵE E( )ia a iX
0 (0)

0
(0)

(8)

Using the effective potential, we define the residual electron−
electron interaction operatorW which is the part of the Coulomb
operator not included in the effective potential. Mathematically,
W is a two-body operator which is expressed as,

∑ ∑ ∑= = −
< <

−W w i j
N

r
N

v i( , ) ( )
i j i j

ij
i

1
eff

(9)

The many-electron Hamiltonian is defined as

= +H H W0 (10)

and the corresponding ground and excited state wave functions
are defined as

|Ψ ⟩ = |Ψ ⟩H E0 0 0 (11)

|Ψ ⟩ = |Ψ ⟩H EX X X (12)
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where the subscript “X” is used to represent excited state. The
excitation energy in the correlated system is analogously
defined as

ω = −E E( )X X 0 (13)

The ground and excited state correlated wave functions are
normalized using the following intermediate normalization
condition,

⟨Φ |Ψ ⟩ = ⟨Φ |Ψ ⟩ = 1i
a

0 0 X (14)

In this derivation, we assume that the ansatz for the corre-
lated ground state, Ψ0, and the excited state, ΨX, wave functions
are defined with respect to their corresponding uncorrelated wave
function and correlation operator, G. The expressions for the
correlated ground and excited state wave functions are given by

Ψ = ΦG0 0 0 (15)

Ψ = ΦG i
a

X X (16)

where the correlation operator is a two-body operator with the
following form,

∑=
<

G
N

g i j( , )
i j

0 0
(17)

∑=
<

G
N

g i j( , )
i j

X X
(18)

The derivation presented here is general and does not
depend on the choice of g(1,2). However, practical imple-
mentation of this method requires specific choice of g(1,2), and
the functional form used in this work will be discussed in
Results and Discussion.
The goal of this derivation is to find the relationship between

the excitation energies of the correlated (ωX) and the uncorre-
lated (ωX

0) systems. We start by left-multiplying the eigenvalue
equation for the correlated system (eq 11) by the uncorrelated
bra-vectors, shown as follows,

⟨Φ | |Ψ ⟩ = ⟨Φ |Ψ ⟩H E0 0 0 0 0 (19)

⟨Φ | |Ψ ⟩ = ⟨Φ |Ψ ⟩H Ei
a

i
a

X X X (20)

Using intermediate normalization (eq 14) and expanding the
Hamiltonian (eq 10) we get

⟨Φ | + |Ψ ⟩ =H W E[ ]0 0 0 0 (21)

⟨Φ | + |Ψ ⟩ =H W E[ ]i
a

0 X X (22)

Operating on the bra-vector with H0 gives

+ ⟨Φ | |Ψ ⟩ =E W E0
(0)

0 0 0 (23)

+ ⟨Φ | |Ψ ⟩ =E W Eia i
a(0)

X X (24)

Subtracting the two equations gives

− = − + ⟨Φ | |Ψ ⟩ − ⟨Φ | |Ψ ⟩E E E E W W( )ia i
a

X 0
(0)

0
(0)

X 0 0
(25)

Using eq 8 and eq 13, the above equation can be used to relate
the excitation energies of the correlated system with the excita-
tion energies of the uncorrelated system,

ω ω= + ⟨Φ | |Ψ ⟩ − ⟨Φ | |Ψ ⟩W Wi
a

X X
0

X 0 0 (26)

Substituting eq 15 and eq 16 into eq 26, we arrive at the
following expression of the excitation energy,

ω ω= + ⟨ | | ⟩ − ⟨ | | ⟩† †i a WG a i WG0 { } { } 0 0 0X X
0

X 0 (27)

where

|Φ ⟩ ≡ | ⟩

|Φ ⟩ ≡ | ⟩†a i

0 (28)

{ } 0 (29)i
a

0

We recognize that the expression in eq 27 involves evaluation
of the vacuum expectation value of operators. Using Wick’s
contraction theorem, we can immediately conclude than only
fully contracted terms will contribute to the above expression,15

because as shown below, the expectation value of uncontracted
terms with respect to the Fermi vacuum will have zero
contribution,

⟨ | | ⟩ = ⟨ | | ⟩ =

‐

†X X

X

0 0 0 0 0

( is any second quantized operator) (30)

Therefore, we can write the following expression,

⟨ | | ⟩ = ⟨ | | ⟩† † † †i a WG a i i a WG a i0 { } { } 0 0 { } { } 0X X FC (31)

⟨ | | ⟩ = ⟨ | | ⟩WG WG0 0 0 00 0 FC (32)

where as the subscript “FC” implies, only fully contracted terms
are evaluated in the above expression. The set of all fully
contracted terms will contain both linked and unlinked terms
and will be discussed later. Substituting eq 31 and eq 32 into eq
27 gives

ω ω= + ⟨ | | ⟩ − ⟨ | | ⟩† †i a WG a i WG0 { } { } 0 0 0X X
0

X FC 0 FC (33)

The first term in the above expression represents the excitation
energy in the zeroth-order Hamiltonian. The second term con-
tains the electron−hole interaction terms. The expression of
this term in terms of electron and hole indices can be obtained
using diagrammatic techniques, and in this work we will use the
Hugenholtz diagrams15,72,81 for a compact representation of the
diagrams. To derive expression for the second term in eq 33,
we note that operator WGX is a product of two, two-body
operators W and GX. Therefore, this product can be expanded
into a sum of two-body, three-body, and four-body operators72

by substituting the definitions of W and GX from eq 9 and
eq 18. The resulting expansion is shown below,

∑ ∑

∑ ∑ ∑κ κ κ

= ×

= + +

= Ω + Ω + Ω

< <

< < < < < <

WG w i j g i j

i j i j k i j k l

( , ) ( , ) (34)

( , ) ( , , ) ( , , , ) (35)

(36)

i j i j

i j i j k i j k l

X X

2
X

3
X

4
X

2
X

3
X

4
X

The expression for (κ2
X,κ3

X,κ4
X) can be obtained using the opera-

tors of the complete symmetric group N , for example,

∑

κ =

=
!

+

=
! α

∈α

w g

w g w g

P w g

(1,2) (1,2) (1,2) (37)

1
2

[ (1,2) (1,2) (2,1) (2,1)] (38)

1
2

[ (1,2) (1,2)] (39)
P

2
X

X

X X

2

where Pα is the permutation operator in N that permutes the
symbols [1,2] to one of the N! arrangements,
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π π=αP [1,2] [ , ]1 2 (40)

Therefore,

∑

∑

κ

κ

=
!

=
!

α

α

∈

∈

α

α

P w g

P w g

(1,2,3)
1
3

[ (1,2) (2,3)] (41)

(1,2,3,4)
1
4

[ (1,2) (3,4)] (42)

P

P

3
X

X

4
X

X

3

4

We note that the above expression guarantees that operators
are completely symmetric with respect to the permutation of
electronic coordinates. We have similar expressions for the
WG0 term,

∑ ∑

∑ ∑ ∑κ κ κ

=

= + +

= Ω + Ω + Ω

< <

< < < < < <

WG w i j g i j

i j i j k i j k l

( , ) ( , ) (43)

( , ) ( , , ) ( , , , ) (44)

(45)

i j i j

i j i j k i j k l

0 0

2
0

3
0

4
0

2
0

3
0

4
0

The evaluation of the matrix elements of operators ⟨0|
{i†a}Ω{a†i}|0⟩ can then be performed using second-quantized
algebra. We note that matrix element is of the general form
⟨0|···|0⟩ and is an expectation value expression with respect to
the vacuum state. This allows us to apply Wick’s contraction
theorem and conclude that only fully contracted terms will have
nonzero contributions to the matrix elements. The expressions
resulting from Wick’s contraction are represented diagrammati-
cally for a compact representation and are presented in Figure 1.
An equivalent but longer derivation using algebraic represen-
tation is presented in Appendix A, and description of Hugenholtz
diagrams are presented in the Supporting Information.81 Specifi-
cally, fully contracted terms from ⟨0|WG0|0⟩ are represented by
diagrams D1, D2, and D3 in panel A of Figure 1,

⟨ |Ω | ⟩ =

⟨ |Ω | ⟩ =

⟨ |Ω | ⟩ =

D

D

D

0 0 (46)

0 0 (47)

0 0 (48)

2
0

FC 1

3
0

FC 2

4
0

FC 3

substituting

⟨ | | ⟩ = ⟨ |Ω | ⟩ + ⟨ |Ω | ⟩ + ⟨ |Ω | ⟩

= + +

WG

D D D

0 0 0 0 0 0 0 0 (49)

(50)

0 FC 2
0

FC 3
0

FC 4
0

FC

1 2 3

These diagrams do not have any particle−hole lines because
these expressions only involve occupied states which are repre-
sented by closed loops in the diagrams. Therefore, as shown in
Figure 1, all the terms are obtained from linked diagrams,

⟨ | | ⟩ = ⟨ | | ⟩WG WG0 0 0 00 FC 0 L (51)

The equivalent algebraic derivation of eq 51 using second-
quantized operators is presented in Appendix A.
The fully contracted terms from ⟨0|WGX|0⟩ are represented

by diagrams D4, ..., D18 in panel B of Figure 1,

⟨ | Ω | ⟩ = + + +

⟨ | Ω | ⟩ = + + +

⟨ | Ω | ⟩ = + + +

† †

† †

† †

i a a i D D D D D

i a a i D D D D D

i a a i D D D D D

0 { } { } 0 (52)

0 { } { } 0 (53)

0 { } { } 0 (54)

2
X

FC 4 7 10 13 16

3
X

FC 5 8 11 14 17

4
X

FC 6 9 12 15 18

We note that the diagram pairs (D13,D16), (D14,D17), and
(D15,D18) form the set of all unlinked diagrams. However,

analysis of the bubble diagrams D16, D17, and D18 reveals that all
these diagrams refer to the same electron−hole pair and are
exactly equal to 1. Algebraically, they represent the following
Wick’s contraction,

= = = ⟨ | | ⟩ =† †D D D i a a i0 { }{ } 0 116 17 18 (55)

Substituting eq 55 in eq 52, we get

⟨ | Ω | ⟩ = + + +

⟨ | Ω | ⟩ = + + +

⟨ | Ω | ⟩ = + + +

† †

† †

† †

i a a i D D D D

i a a i D D D D

i a a i D D D D

0 { } { } 0 (56)

0 { } { } 0 (57)

0 { } { } 0 (58)

2
X

FC 4 7 10 13

3
X

FC 5 8 11 14

4
X

FC 6 9 12 15

Combining all the terms in eq 56

⟨ | | ⟩ = + + +

+ + + +

+ + + +

† †i a WG a i D D D D

D D D D

D D D D

0 { } { } 0X FC 4 7 10 13

5 8 11 14

6 9 12 15 (59)

We note that all the diagrams in the above expression are linked
diagrams, therefore the left-hand side of eq 59 can be expressed
solely in terms of linked terms. The summation of loop
diagrams D13, ..., D15 is equal to the vacuum expectation value
of the operator,

+ + = ⟨ | | ⟩D D D WG0 013 14 15 X L (60)

and the summation of the remaining diagrams are related to the
following matrix element,

+ + = ⟨ | | ⟩† †D D i a WG a i... 0 { } { } 04 12 X L (61)

where the subscript L implies that only linked diagrams are
included in that expression. Therefore, we conclude that the
matrix elements (summarized in panels A and B of Figure 1)
consist of only linked diagrams. Combining the results from
eq 60 and eq 61, we conclude that only linked diagrams con-
tribute to the expression as shown in eq 62,

⟨ | | ⟩ = ⟨ | | ⟩

+ ⟨ | | ⟩

† † † †i a WG a i i a WG a i

WG

0 { } { } 0 0 { } { } 0

0 0
X X L

X L (62)

The equivalent algebraic derivation of eq 62 using second-
quantized operators is presented in Appendix A.
To obtain the expression for ωX, we observe that the D1...D3

and D13...D15 diagrams have similar structures and can be
combined together into a single expression. Mathematically,
substituting eq 62 in eq 27 gives the following expression for
ωX,

ω ω= + ⟨ | − | ⟩

+ ⟨ | | ⟩† †

W G G

i a WG a i

0 ( ) 0

0 { } { } 0
X X

0
X 0

X L (63)

The diagrammatic expression for eq 63 is given in panel C of
Figure 1. An important result from this derivation is the proof
that the excitation energy of the correlated system can be
expressed entirely in terms of linked diagrams. The
diagrammatic representation in Figure 1 implies the following
expression for the excitation energy,

ω ω= + + +D D...X X
0

19 30 (64)

The diagrams can be related to matrix elements of the following
one-body and two-body operators,
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ω ω= + ⟨ | − | ⟩

+ ⟨ | | ⟩ + ⟨ | | ⟩ + ⟨ | | ⟩

W G G

i U i a U a ia K ai

0 ( ) 0X X
0

X 0

h e eh (65)

The first term, ωX
0 , in eq 65 is the excitation energy in the

reference system. The remaining terms in the equation are
corrections to the reference excitation energy due to the
electron−electron correlation effect. The second term in eq 65
is obtained from the following combination of diagrams,

⟨ | − | ⟩ = + +W G G D D D0 ( ) 0X 0 19 20 21 (66)

In this diagrammatic representation, D19 = D8 − D1, D20 = D13
− D2, and D21 = D18 − D3, respectively. The expressions of
these terms in terms of the one-particle basis functions {χp} are
presented in Appendix A. This term is a vacuum expectation
value and therefore does not contribute to the electron−hole
interaction kernel. Because of theW(GX−G0) term in the above
expression (represented by ▲ in Figure 1), this expression

Figure 1. Derivation represented using Hugenholtz diagrams. Diagrams D19 through D21 have the operator represented by ▲, which corresponds to
the operator W(GX−G0). Diagrams with ■ represent operators κ2

X, κ3
X, and κ4

X.
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represents the correction to the reference excitation energy, ωX
0 ,

due to the difference in the treatment of electron−electron
correlation in the ground and excited state wave functions. In
the limit where the electron−electron correlation operator for
both ground and excited states are identical, the contribution
from this term will be zero. The terms Uh and Ue are obtained
from the following diagrams,

⟨ | | ⟩ + ⟨ | | ⟩ = + +i U i a U a D D...h e 22 27 (67)

In diagrammatic representation, Ue,h implies that the operators
are one-body operators that operate either on the quasielectron
or quasihole particles. The correction to the excitation energy
due to Ue,h can be interpreted as the consequence of the
renormalization of the electron and hole energy levels due to
the presence of the electron−electron correlation. We note that
Ue,h depends only on the form of the electron−electron
correlation operator for the excited state and not on the ground
state correlator operator. The operator (■) in diagrams
D28, D29, and D30 operates simultaneously on both electron
and hole lines and represents the electron−hole interaction
kernel,

⟨ | | ⟩ = + +ia K ai D D Deh 28 29 30 (68)

As shown in panel C of Figure 1, the expression for Keh is
completely described only by linked diagrams. The result from
this derivation also shows that Keh depends only on the
correlator operator of the excited state wave function. We note
that since we are using Hugenholtz diagrams (as opposed to
Goldstone diagrams), the expression for Keh is a nonlocal opera-
tor and includes the antisymmetrized operator in its definition.81

The loops in diagrams D29 and D30 are associated with the
summation over occupied orbital indices and can be interpreted
as the renormalization of the three-body and four-body opera-
tors into effective two-body particle−hole operators. As claimed
in our title, eq 68 and panel C of Figure 1 present the expres-
sion of the electron−hole interaction kernel only in terms of
the real-space operators, w(1,2) and gX(1,2), without involving
any unoccupied states.

3. RESULTS AND DISCUSSION
The derived expressions for the electron−hole interaction
kernel and excitation energy were used to perform proof-of-
concept calculations on molecules, clusters, and quantum dots.
Practical implementation required us to make additional approxi-
mations to the derived expressions. For the proof-of-concept
calculations, all the higher order diagrams were neglected and
we included only the lowest order diagrams for describing the
electron−hole interaction kernel. Also, for the excitation energy
calculations, all contributions from diagrams that do not involve
a particle−hole line were ignored. Applying these two approxi-
mations, the final expressions for the geminal-screened electron−
hole interaction kernel (GSIK) and the excitation energy are
given by the following expressions,

= = −K D w g P(1,2) (1,2) (1,2)(1 )I
eh
( )

28 X 12 (69)

ω ω

ω

= + + +

= + ⟨ | | ⟩ + ⟨ | | ⟩ + ⟨ | | ⟩

D D D

i U i a U a ia K ai

(70)

(71)

X X
0

22 23 28

X
0

h e eh

In this work, the uncorrelated Hamiltonian was defined as
the Fock operator obtained from Hartree−Fock calculation.
The transition of interest was the HOMO to LUMO transition

and the single-particle (quasi) hole and electron states were
defined using the HOMO and LUMO states,

χ

χ

| ⟩ ≡ | ⟩

| ⟩ ≡ | ⟩

i

a

(72)

(73)

HOMO

LUMO

The uncorrelated excitation energy was defined as the
HOMO−LUMO gap,

ω = ϵ − ϵ( )X
0

LUMO HOMO (74)

All operators Uh, Ue, and Keh depend on gX(1,2), which was
chosen to be an explicitly correlated Gaussian-type geminal
function that depends explicitly on the electron−electron sepa-
ration distance,

∑ γ= −
=

g
N

b r(1,2) exp[ ]
k

g

k kX
1

X
12

2

(75)

where Ng is the number of Gaussian functions. Geminal func-
tions have been used extensively in the past27,73,82−85 for treating
electron−electron correlation and were used in this work for
construction of the correlator operator.

3.1. Excitation Energy of Water and CdSe Cluster. The
excitation energy of a single water molecule was computed
using eq 70, and the results were compared with EOM-CCSD15

calculations. Both calculations were performed using 6-31G*
basis, and the single-particle states were obtained from Hartree−
Fock calculations. Electron−electron correlation effects for both
ground and excited states were entirely treated using the explic-
itly correlated Gaussian-type geminal functions, and only one
geminal function was used. We assumed that the correlator
operator for the excited state is of a similar form to the ground
state and the expansion coefficients, (bk,γk), were obtained from
previously published results on ground state calculations and
are given in Table 3 (Appendix B).72 Comparison of the GSIK
with the EOM-CC results (Table 1) shows that the excitation

energies are in good agreement with each other. We also calcu-
lated the excitation energy of a small CdSe cluster, Cd20Se19,
using the LANL2DZ ECP basis and the results were compared
with previously reported pseudopotential+CI (pseudopot.+CI)
calculations.86 The geminal parameters for CdSe clusters were
obtained from previously reported calculations on parabolic
quantum dots.87,88 In both cases, we found that the excitation
energies obtained using the geminal-screened electron−hole inter-
action kernel were in good agreement with previously reported
results (Table 1). These results also highlight the transferability
of the geminal parameters from a model potential (parabolic
quantum dots in this case) to electronic structure calculations.

3.2. Exciton Binding Energies. In addition to calculation
of the excitation energies, proof-of-concept calculations were per-
formed on calculation of exciton binding energies. Excition bind-
ing energies are directly related to the electron−hole interaction
kernel and provide a direct route to verify the quality of the
derived expression. The exciton binding energies for Cd6Se6
and Cd20Se19 were calculated using the geminal-screened

Table 1. Comparison of Excitation Energy (eV) for H2O and
Cd20Se19

system this work (GSIK) existing methods

H2O 8.601 8.539 (EOM-CCSD)15

Cd20Se19 3.139 3.096 (pseudopot.+CI)86
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electron−hole interaction kernel and were compared with
previously published results obtained using GW/BSE89 and
pseudopotential+CI calculations.86 As shown in Table 2, the

results from this work were found to be in good agreement with
both of these methods.
3.3. Extension to Spin-Resolved States. In its present

form, the particle−hole excitation operator used in eq 16 is not
spin-resolved. As a consequence of that, the excited state (ΨX)
of the correlated system is not an eigenfunction of the total spin
operator, S ̂2. To extend the derivation for spin-resolved states
such as singlet and triplet excited states, a modified particle−
hole excitation operator with well-defined spin states must be
used. For example, the singlet excitation operator is defined as90

̂ = +α α β β
= = † †E a i a i{ } { }ia

S M0, 0s
(76)

where ψi(r) and ψa(r) refer to occupied and unoccupied spatial
molecular orbitals, respectively, and α and β are the spin states.
Similarly, the triplet excitation operator is defined as90

̂ = −

̂ =

̂ = −

α β

α β

α α β β

= = †

= =− †

= = † †

T a i

T a i

T a i a i

{ } (77)

{ } (78)

{ } { } (79)
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Using these particle−hole creation operators, the singlet and
triplet excited states can be defined as

|Ψ ⟩ = ̂ | ⟩

|Ψ ⟩ = ̂ | ⟩

= =

= =

G E

G T

0 (80)

0 (81)
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X
S

X
S

ia

0 0

1 1

An important aspect of treating electron correlation in spin-
resolved states is the choice of the two-body correlator opera-
tor, G. For example, in the above expression, the two-body
correlator operators for the singlet and triplet states have dif-
ferent functional forms. This is a consequence of the different
cusp conditions at the electron−electron coalescence point for
spin-paired and spin-unpaired electrons. The spin dependence
of the functional form near the electron−electron coalescence
point has been studied extensively in the past,91,92 and an excel-
lent review on this topic is presented by Kong et al.79 Future
development of the GSIK method will focus on using the spin-
resolved excitation operators for describing electron−hole
interaction.

4. CONCLUSION
The expression for the electron−hole interaction kernel, Keh,
was derived without using unoccupied states. One key result
from this derivation is our proof-by-construction demonstration
that Keh can be expressed entirely in terms of linked diagrams.
By factorization of the diagrams, it was shown that contri-
butions from all unlinked diagrams rigorously vanish from the
expressions for both excitation energy and electron−hole inter-
action kernel. It was also shown that the electron−hole inter-
action kernel depends only on the electron correlator operator
associated with the excited state and is independent of the level

and quality of treatment of electron correlation in the ground
electronic state. For the excitation energy calculations, the
derivation also demonstrated the emergence of effective one-
body operators that are responsible for the renormalization of
the quasielectron and quasihole states. This is an important
point, because in conventional GW/BSE calculations, the
quasiparticle energies are obtained from the GW calculations;
however, in the present derivation although GW was not
performed, the renormalization of the quasiparticle states
emerges in the natural course of the derivation. We note that
the renormalization of quasiparticle energies also satisfies the
link-cluster theorem and they are evaluated as a sum of only
linked diagrams. The derived expressions were implemented
and proof-of-concept calculations of excitation energies and
exciton binding energies were performed for water and CdSe
clusters. In all cases, the results were found to be in good
agreement with the previously reported calculations. These
results demonstrate the effectiveness of the geminal-screened
electron−hole interaction kernel method for the efficient
calculation of excited state properties in many-electron systems.

■ APPENDIX A
In this appendix, we present the derivation of the electron−hole
interaction kernel using algebraic representation.
A.1. Evaluation of ⟨0|WG0|0⟩FC
To start, we write WG0 (eq 44) in second-quantized
representation,

∑

∑

∑
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⟨ | | ⟩
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⟨ | | ⟩
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Using eq 33 and eq 82,
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(83)

where the subscript “FC” implies that only fully contracted
terms are evaluated. Inspection of the expressions show that the
only nonzero terms in the above expressions must involve only
occupied state indices. Including all possible nonzero
contractions gives us the following expression,
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where subscript “A” in ⟨...⟩A implies an antisymmetrized matrix
element. Comparing to a diagrammtic representation, the

Table 2. Comparison of Exciton Binding Energies (eV)

system this work (GSIK) previously reported

Cd6Se6 3.374 3.33 (GW/BSE)89

Cd20Se19 0.960 1.003 (pseudopot.+CI)86
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above expression corresponds to the following closed-loop
diagrams,

⟨ | | ⟩ = + +WG D D D0 00 FC 1 2 3 (85)

A.2. Evaluation of ⟨0|{i†a}WGX{a
†i}|0⟩FC

WGX (eq 35) in second-quantized representation is written as
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Using eq 33 and eq 86, we get the following expression,
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To analyze the various resulting contracted terms, we introduce
the following shorthand notation,

=

=

=

=
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† †
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C q q
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{ } (88)

( ...) (89)
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{ } (91)

1 2

2 1

Using the above notation, the operator strings can be
compactly expressed as,
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We note that, in all cases, the set of fully contracted terms can
be factored in the following two non-overlapping subsets,

The first term in eq 95 represents pairwise contraction of only
the excitation operators A and D, whereas the second term
represents terms that involve all the operators. Substituting in
earlier expression, we get,

The above expression can be simplified by noting that the
contraction involving the excitation operators contributes “1” to
the total expression,

The remaining contractions link all of the four different types of
operators and are collectively referred to as the linked terms.
This implies the following simplification,

⟨ | | ⟩ = ⟨ | | ⟩ + ⟨ | | ⟩ABCD BC ABCD0 0 0 0 0 0FC FC L (98)

where subscript “L” implies only linked, fully contracted terms.
Because ⟨0|BC|0⟩FC does not contain any terms from excitation
operators, it is similar to the expression of ⟨0|WG0|0⟩ derived
earlier. Consequently, we can write the expression for ⟨0|{i†a}
WGn{a

†i}|0⟩FC as

⟨ | | ⟩

= ⟨ | | ⟩ + ⟨ | | ⟩
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Comparing to the diagrammtic representation, the fully
contracted terms can be compactly represented as

⟨ | | ⟩ = + +† †i a WG a i D D0 { } { } 0 ...n FC 4 18 (100)

■ APPENDIX B
The b and γ values used in this work are presented in Table 3.
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(80) Haẗtig, C.; Klopper, W.; Köhn, A.; Tew, D. P. Explicitly
Correlated Electrons in Molecules. Chem. Rev. 2012, 112, 4−74.
(81) See Supporting Information. Contains the Hugenholtz diagrams
review.
(82) Szalewicz, K.; Jeziorski, B. Explicitly-correlated Gaussian
geminals in electronic structure calculations. Mol. Phys. 2010, 108,
3091−3103.
(83) Mitroy, J.; Bubin, S.; Horiuchi, W.; Suzuki, Y.; Adamowicz, L.;
Cencek, W.; Szalewicz, K.; Komasa, J.; Blume, D.; Varga, K. Theory
and application of explicitly correlated Gaussians. Rev. Mod. Phys.
2013, 85, 693−749.
(84) Bubin, S.; Pavanello, M.; Tung, W.-C.; Sharkey, K. L.;
Adamowicz, L. Born-Oppenheimer and Non-Born-Oppenheimer,
Atomic and Molecular Calculations with Explicitly Correlated
Gaussians. Chem. Rev. 2013, 113, 36−79.
(85) Mitroy, J.; Bubin, S.; Horiuchi, W.; Suzuki, Y.; Adamowicz, L.;
Cencek, W.; Szalewicz, K.; Komasa, J.; Blume, D.; Varga, K. Theory
and application of explicitly correlated Gaussians. Rev. Mod. Phys.
2013, 85, 693−749.
(86) Wang, L.-W.; Zunger, A. Pseudopotential calculations of
nanoscale CdSe quantum dots. Phys. Rev. B: Condens. Matter Mater.
Phys. 1996, 53, 9579−9582.
(87) Elward, J.; Chakraborty, A. Effect of dot size on exciton binding
energy and electron-hole recombination probability in CdSe quantum
dots. J. Chem. Theory Comput. 2013, 9, 4351−4359.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00123
J. Chem. Theory Comput. 2018, 14, 3656−3666

3665

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00123/suppl_file/ct8b00123_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.8b00123


(88) Elward, J.; Chakraborty, A. Effect of heterojunction on exciton
binding energy and electron-hole recombination probability in CdSe/
ZnS quantum dots. J. Chem. Theory Comput. 2015, 11, 462−471.
(89) Noguchi, Y.; Sugino, O.; Nagaoka, M.; Ishii, S.; Ohno, K. A GW
+Bethe-Salpeter calculation on photoabsorption spectra of (CdSe)3
and (CdSe)6 clusters. J. Chem. Phys. 2012, 137, 024306.
(90) Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-
structure Theory; Wiley, 2008.
(91) Thakkar, A. J. The higher order electronelectron coalescence
condition for the intracule function for states of maximum spin
multiplicity. J. Chem. Phys. 1986, 84, 6830−6832.
(92) Huang, C.-J.; Filippi, C.; Umrigar, C. J. Spin contamination in
quantum Monte Carlo wave functions. J. Chem. Phys. 1998, 108,
8838−8847.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00123
J. Chem. Theory Comput. 2018, 14, 3656−3666

3666

http://dx.doi.org/10.1021/acs.jctc.8b00123

