minor corrections in SI
This commit is contained in:
parent
8902ebfea6
commit
f65b865e57
@ -215,7 +215,7 @@ with
|
||||
\begin{equation}
|
||||
\be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{}) = \be{\text{c}}{\srLDA}(\n{}{},\rsmu{}{}) + \Delta^{\text{lr-sr}}(n,\mu),
|
||||
\end{equation}
|
||||
with $\be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{})$ is the complementary short-range LDA correlation energy functional (with single-determinant reference) and $\Delta^{\text{lr-sr}}(n,\mu)$ is a mixed long-range/short-range contribution, both parametrized in Ref.~\onlinecite{Paziani_2006}.
|
||||
where $\be{\text{c,md}}{\srLDA}(\n{}{},\rsmu{}{})$ is the complementary short-range LDA correlation energy functional (with single-determinant reference) and $\Delta^{\text{lr-sr}}(n,\mu)$ is a mixed long-range/short-range contribution, both parametrized in Ref.~\onlinecite{Paziani_2006}.
|
||||
|
||||
The corresponding complementary srLDA potential is
|
||||
\begin{eqnarray}
|
||||
@ -229,7 +229,7 @@ The density derivative of $\be{\text{c,md}}{\srLDA}$ is calculated as
|
||||
\begin{eqnarray}
|
||||
\frac{\partial \be{\text{c,md}}{\srLDA}}{\partial n} = \frac{\partial \be{\text{c}}{\srLDA}}{\partial n} + \frac{\partial \Delta^{\text{lr-sr}}}{\partial n},
|
||||
\end{eqnarray}
|
||||
where $\partial \be{\text{c}}{\srLDA}/\partial n$ is given as a subroutine on Paola Gori-Giorgi's web site (\url{https://www.quantummatter.eu/source-codes-2}) and we have calculated $\partial \Delta^{\text{lr-sr}}/\partial n$ by taking the derivative of Eq. (42) of Ref.~\onlinecite{Paziani_2006}.
|
||||
where $\partial \be{\text{c}}{\srLDA}/\partial n$ is given as a subroutine on Paola Gori-Giorgi's website (\url{https://www.quantummatter.eu/source-codes-2}) and we have calculated $\partial \Delta^{\text{lr-sr}}/\partial n$ by taking the derivative of Eq. (42) of Ref.~\onlinecite{Paziani_2006}.
|
||||
|
||||
\subsection{Complementary short-range PBE correlation potential}
|
||||
|
||||
@ -243,7 +243,7 @@ with
|
||||
\label{eq:def_epsipbeueg}
|
||||
\epspbeueg(n,s,\mu) = \frac{\epspbe(n,s)}{1+\beta(n,s)\mu^3}.
|
||||
\end{equation}
|
||||
Here, $\epspbe(n,s)$ is the usual PBE correlation functional \cite{Perdew_1996}, $s$ is the reduced density gradient,
|
||||
Here, $\epspbe(n,s)$ is the usual PBE correlation functional,\cite{Perdew_1996} $s$ is the reduced density gradient,
|
||||
\begin{equation}
|
||||
\beta(n,s) = \frac{3}{2\sqrt{\pi}(1-\sqrt{2})}\frac{\epspbe(n,s)}{n_2^{\text{UEG}}(n)/n},
|
||||
\end{equation}
|
||||
@ -321,7 +321,7 @@ with
|
||||
|
||||
\section{Additional graphs of the convergence of the IPs of the GW20 subset}
|
||||
|
||||
Graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the {\GOWO}@{\HF} and {\GOWO}@{\PBEO} levels are given in Figure~\ref{fig:IP_G0W0HF} and~\ref{fig:IP_G0W0PBE0}, respectively.
|
||||
Graphs reporting the convergence of the IPs of each molecule of the GW20 subset at the {\GOWO}@{\HF} and {\GOWO}@{\PBEO} levels are given in Figs.~\ref{fig:IP_G0W0HF} and~\ref{fig:IP_G0W0PBE0}, respectively.
|
||||
|
||||
\begin{figure*}
|
||||
\includegraphics[width=\linewidth]{IP_G0W0HF}
|
||||
|
Loading…
Reference in New Issue
Block a user