a few changes

This commit is contained in:
Julien Toulouse 2019-10-24 16:06:49 +02:00
parent fbdaf33346
commit aefa690a1e
2 changed files with 15 additions and 13 deletions

View File

@ -350,7 +350,7 @@ For example, if the reference is Hartree-Fock ($\HF$), $\Sig{\text{ref}}{\Bas}(\
In this subsection, we provide the minimal set of equations required to describe {\GOWO}. In this subsection, we provide the minimal set of equations required to describe {\GOWO}.
More details can be found, for example, in Refs.~\citenum{vanSetten_2013, Kaplan_2016, Bruneval_2016}. More details can be found, for example, in Refs.~\citenum{vanSetten_2013, Kaplan_2016, Bruneval_2016}.
For the sake of simplicity, we consider closed-shell systems with a $\KS$ single-particle reference. For the sake of simplicity, we only give the equations for closed-shell systems with a $\KS$ single-particle reference.
The one-electron energies $\e{p}$ and their corresponding (real-valued) orbitals $\MO{p}(\br{})$ (which defines the basis set $\Bas$) are then $\KS$ energies and orbitals. The one-electron energies $\e{p}$ and their corresponding (real-valued) orbitals $\MO{p}(\br{})$ (which defines the basis set $\Bas$) are then $\KS$ energies and orbitals.
Within the {\GW} approximation, the correlation part of the self-energy reads Within the {\GW} approximation, the correlation part of the self-energy reads
@ -365,16 +365,16 @@ Within the {\GW} approximation, the correlation part of the self-energy reads
& + 2 \sum_{a}^\text{virt} \sum_{m} \frac{[pa|m]^2}{\omega - \e{a} - \Om{m} + i \eta}, & + 2 \sum_{a}^\text{virt} \sum_{m} \frac{[pa|m]^2}{\omega - \e{a} - \Om{m} + i \eta},
\end{split} \end{split}
\end{equation} \end{equation}
where $m$ corresponds to a sum over the single excitations and $\eta$ is a positive infinitesimal. where $m$ labels excited states and $\eta$ is a positive infinitesimal.
The screened two-electron integrals The screened two-electron integrals
\begin{equation} \begin{equation}
[pq|m] = \sum_{ia} (pq|ia) (\bX+\bY)_{ia}^{m} [pq|m] = \sum_{ia} (pq|ia) (\bX_m+\bY_m)_{ia}
\end{equation} \end{equation}
are obtained via the contraction of the bare two-electron integrals \cite{Gill_1994} are obtained via the contraction of the bare two-electron integrals \cite{Gill_1994}
\begin{equation} \begin{equation}
(pq|rs) = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}', (pq|rs) = \iint \frac{\MO{p}(\br{}) \MO{q}(\br{}) \MO{r}(\br{}') \MO{s}(\br{}')}{\abs*{\br{} - \br{}'}} \dbr{} \dbr{}',
\end{equation} \end{equation}
and the transition densities $(\bX+\bY)_{ia}^{m}$ originating from a (direct) random phase approximation (RPA) calculation \cite{Casida_1995, Dreuw_2005} and the transition densities $(\bX_m+\bY_m)_{ia}$ originating from a (direct) random-phase approximation (RPA) calculation \cite{Casida_1995, Dreuw_2005}
\begin{equation} \begin{equation}
\label{eq:LR} \label{eq:LR}
\begin{pmatrix} \begin{pmatrix}
@ -382,20 +382,20 @@ and the transition densities $(\bX+\bY)_{ia}^{m}$ originating from a (direct) ra
-\bB & -\bA \\ -\bB & -\bA \\
\end{pmatrix} \end{pmatrix}
\begin{pmatrix} \begin{pmatrix}
\bX \\ \bX_m \\
\bY \\ \bY_m \\
\end{pmatrix} \end{pmatrix}
= =
\bOm \Om{m}
\begin{pmatrix} \begin{pmatrix}
\bX \\ \bX_m \\
\bY \\ \bY_m \\
\end{pmatrix}, \end{pmatrix},
\end{equation} \end{equation}
with with
\begin{align} \begin{align}
\label{eq:RPA} \label{eq:RPA}
A_{ia,jb} & = \delta_{ij} \delta_{ab} (\e{a} - \e{i}) + 2 (ib|aj), A_{ia,jb} & = \delta_{ij} \delta_{ab} (\e{a} - \e{i}) + 2 (ia|bj),
& &
B_{ia,jb} & = 2 (ia|jb), B_{ia,jb} & = 2 (ia|jb),
\end{align} \end{align}

View File

@ -155,6 +155,7 @@
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France} \newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique (UMR 7616), Sorbonne Universit\'e, CNRS, Paris, France} \newcommand{\LCT}{Laboratoire de Chimie Th\'eorique (UMR 7616), Sorbonne Universit\'e, CNRS, Paris, France}
\newcommand{\IUF}{Institut Universitaire de France, Paris, France}
\begin{document} \begin{document}
@ -163,7 +164,7 @@
\author{Pierre-Fran\c{c}ois Loos} \author{Pierre-Fran\c{c}ois Loos}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr} \email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ} \affiliation{\LCPQ}
\author{Bath\'elemy Pradines} \author{Barth\'el\'emy Pradines}
\affiliation{\LCT} \affiliation{\LCT}
\affiliation{\ISCD} \affiliation{\ISCD}
\author{Anthony Scemama} \author{Anthony Scemama}
@ -173,6 +174,7 @@
\author{Julien Toulouse} \author{Julien Toulouse}
\email[Corresponding author: ]{toulouse@lct.jussieu.fr} \email[Corresponding author: ]{toulouse@lct.jussieu.fr}
\affiliation{\LCT} \affiliation{\LCT}
\affiliation{\IUF}
\begin{abstract} \begin{abstract}
\end{abstract} \end{abstract}
@ -182,7 +184,7 @@
\begin{figure*} \begin{figure*}
\includegraphics[width=\linewidth]{IP_G0W0HF} \includegraphics[width=\linewidth]{IP_G0W0HF}
\caption{ \caption{
IPs (in eV) computed at the {\GOWO}@HF (black circles), {\GOWO}@HF+srLDA (red squares) and {\GOWO}@HF+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ and cc-pV5Z) for the 20 smallest molecules of the GW100 set. IPs (in eV) computed at the {\GOWO}@HF (black circles), {\GOWO}@HF+srLDA (red squares), and {\GOWO}@HF+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets. The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
\label{fig:IP_G0W0HF} \label{fig:IP_G0W0HF}
} }
@ -191,7 +193,7 @@
\begin{figure*} \begin{figure*}
\includegraphics[width=\linewidth]{IP_G0W0PBE0} \includegraphics[width=\linewidth]{IP_G0W0PBE0}
\caption{ \caption{
IPs (in eV) computed at the {\GOWO}@PBE0 (black circles), {\GOWO}@PBE0+srLDA (red squares) and {\GOWO}@PBE0+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ and cc-pV5Z) for the 20 smallest molecules of the GW100 set. IPs (in eV) computed at the {\GOWO}@PBE0 (black circles), {\GOWO}@PBE0+srLDA (red squares), and {\GOWO}@PBE0+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets. The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
\label{fig:IP_G0W0HF} \label{fig:IP_G0W0HF}
} }