revision theory

This commit is contained in:
Pierre-Francois Loos 2019-12-06 14:06:25 +01:00
parent 1b65087c29
commit 33c1719397
4 changed files with 246 additions and 22 deletions

View File

@ -56,6 +56,8 @@
\newcommand{\cD}{\mathcal{D}}
\newcommand{\Ne}{N}
\newcommand{\Nbas}{N_\text{bas}}
\newcommand{\Nocc}{N_\text{occ}}
\newcommand{\Nvirt}{N_\text{virt}}
% energies
@ -365,9 +367,9 @@ Within the {\GW} approximation, the correlation part of the self-energy reads
\Sig{\text{c},p}{\Bas}(\omega)
& = \mel*{\MO{p}}{\Sig{\text{c}}{\Bas}(\omega)}{\MO{p}}
\\
& = 2 \sum_{i}^\text{occ} \sum_{m} \frac{[pi|m]^2}{\omega - \e{i} + \Om{m} - i \eta}
& = 2 \sum_{i}^{\Nocc} \sum_{m} \frac{[pi|m]^2}{\omega - \e{i} + \Om{m} - i \eta}
\\
& + 2 \sum_{a}^\text{virt} \sum_{m} \frac{[pa|m]^2}{\omega - \e{a} - \Om{m} + i \eta},
& + 2 \sum_{a}^{\Nvirt} \sum_{m} \frac{[pa|m]^2}{\omega - \e{a} - \Om{m} + i \eta},
\end{split}
\end{equation}
where $m$ labels excited states and $\eta$ is a positive infinitesimal.
@ -431,20 +433,36 @@ In particular, the ionization potential (IP) and electron affinity (EA) are extr
where $\eGOWO{\HOMO}$ and $\eGOWO{\LUMO}$ are the HOMO and LUMO orbital energies, respectively.
%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Short-range correlation functionals}
\label{sec:srDFT}
\subsection{Basis set correction}
\label{sec:BSC}
%%%%%%%%%%%%%%%%%%%%%%%%
The fundamental idea behind the present basis set correction is to recognize that the two-electron interaction $\abs*{\br{} - \br{}'}^{-1}$ projected in a finite basis $\Bas$ is a finite, non-divergent quantity at $\abs*{\br{} - \br{}'} = 0$.
We can therefore define an effective two-electron interaction which equals the Coulomb operator in an incomplete basis, \ie,
\titou{The fundamental idea behind the present basis set correction is to recognize that the singular two-electron Coulomb interaction $\abs*{\br{} - \br{}'}^{-1}$ projected in a finite basis $\Bas$ is a finite, non-divergent quantity at $\abs*{\br{} - \br{}'} = 0$, which ``resembles'' the long-range interaction operator $\abs*{\br{} - \br{}'}^{-1} \erf(\rsmu{}{} \abs*{\br{} - \br{}'})$ used within RS-DFT. \cite{Giner_2018}
We can therefore define an effective two-electron operator which equals its Coulomb counterpart in an incomplete basis, \ie,
\begin{equation}
\iint \frac{\n{2}{\Bas}(\br{},\br{}')}{\abs*{\br{} - \br{}'}} d\br{} d\br{}'
=
\iint \n{2}{\Bas}(\br{},\br{}') W(\br{},\br{}') d\br{} d\br{}'.
\iint \n{2}{\Bas}(\br{},\br{}') W^{\Bas}(\br{},\br{}') d\br{} d\br{}'.
\end{equation}
A convenient choice is, for example,
Because the value of $W^{\Bas}(\br{},\br{}')$ at coalescence, $W^{\Bas}(\br{},\br{})$, is necessarily finite in a finite basis $\Bas$, one can map this operator to a non-divergent, long-range interaction of the form
\begin{equation}
\label{eq:Wapprox}
W^{\Bas}(\br{},\br{}')
\approx \frac{1}{2} \qty{
\frac{\erf[\rsmu{}{\Bas}(\br{}) \abs*{\br{} - \br{}'}]}{\abs*{\br{} - \br{}'}}
+ \frac{\erf[\rsmu{}{\Bas}(\br{}') \abs*{\br{} - \br{}'}]}{\abs*{\br{} - \br{}'}}
}.
\end{equation}
The information about the finiteness of the basis set has been transferred to the range-separation \textit{function} $\rsmu{}{\Bas}(\br{})$, and its value can be set by ensuring that the two sides of Eq.~\eqref{eq:Wapprox} are strictly equal at $\abs*{\br{} - \br{}'} = 0$.
Knowing that $\lim_{r \to 0} \erf(\mu r)/r = 2\mu/\sqrt{\pi}$, this yields
\begin{equation}
\rsmu{}{\Bas}(\br{}) = \frac{\sqrt{\pi}}{2} W^{\Bas}(\br{},\br{}).
\end{equation}
}
\titou{A convenient choice for the on-top value of the two-electron effective operator is, for example,
\begin{equation}
\label{eq:W}
W(\br{},\br{}') =
W^{\Bas}(\br{},\br{}) =
\begin{cases}
f^{\Bas}(\br{})/\n{2}{\Bas}(\br{}), & \n{2}{\Bas}(\br{}) \neq 0, \\
\infty, & \text{otherwise}, \\
@ -452,23 +470,23 @@ A convenient choice is, for example,
\end{equation}
where, in the case of a single-determinant method (such as HF and KS-DFT),
\begin{equation}
f(\br{}) = \sum_{pq}^{\Nbas} \sum_{ij}^\text{occ} \MO{p}(\br{}) \MO{q}(\br{}) \braket{pq}{ij} \MO{i}(\br{}) \MO{j}(\br{})
f^{\Bas}(\br{}) = \sum_{pq}^{\Nbas} \sum_{ij}^{\Nocc} \MO{p}(\br{}) \MO{q}(\br{}) (pi|qj) \MO{i}(\br{}) \MO{j}(\br{}),
\end{equation}
and
\begin{equation}
\n{2}{\Bas}(\br{}) = \frac{[\n{}{\Bas}(\br{})]^2}{4}
\n{2}{\Bas}(\br{}) = \frac{1}{4} [\n{}{\Bas}(\br{})]^2
\end{equation}
is the opposite-spin on-top pair density.
The effective operator $W(\br{},\br{}')$ has some interesting properties.
is the opposite-spin on-top pair density in a closed-shell system.
}
\titou{The effective operator $W^{\Bas}(\br{},\br{}')$ has some interesting properties.
For example, we have
\begin{equation}
\lim_{\Bas \to \CBS} W(\br{},\br{}') = \abs*{\br{} - \br{}'}^{-1}
\lim_{\Bas \to \CBS} W^{\Bas}(\br{},\br{}') = \abs*{\br{} - \br{}'}^{-1},
\end{equation}
which means that, in the limit of a complete basis, one recovers the genuine (divergent) Coulomb operator.
Consequently, the magnitude of the correction tends to zero (see Eq.~\eqref{eq:limSig}).
Note also that the divergence condition of $W(\br{},\br{}')$ in Eq.~\eqref{eq:W} evidences that one-electron systems are free of correction.
Because the value of $W(\br{},\br{}')$ at coalescence, $W(\br{},\br{})$, is necessarily finite in a finite basis $\Bas$, one can map its value to a non-divergent, long-range interaction of the form $\abs*{\br{} - \br{}'}^{-1} \erf(\rsmu{}{} \abs*{\br{} - \br{}'})$.
which means that, in the limit of a complete basis, one recovers the genuine (divergent) Coulomb operator, and that the magnitude of the energetic correction tends to zero [see Eq.~\eqref{eq:limSig}].
Note also that the divergence condition of $W^{\Bas}(\br{},\br{}')$ in Eq.~\eqref{eq:W} ensures that one-electron systems are free of correction.
}
%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Short-range correlation functionals}
@ -478,7 +496,8 @@ Because the value of $W(\br{},\br{}')$ at coalescence, $W(\br{},\br{})$, is nece
The frequency-independent local self-energy $\bSig{}{\Bas}[\n{}{}](\br{},\br{}') = \bpot{}{\Bas}[\n{}{}](\br{}) \delta(\br{}-\br{}')$ originates from the functional derivative of complementary basis-correction density functionals $\bpot{}{\Bas}[\n{}{}](\br{}) = \delta \bE{}{\Bas}[\n{}{}] / \delta \n{}{}(\br{})$.
Here, we employ two types of complementary, short-range correlation functionals $\bE{}{\Bas}[\n{}{}]$: a short-range local-density approximation ($\srLDA$) functional with multideterminant reference \cite{Toulouse_2005, Paziani_2006} and a short-range Perdew-Burke-Ernzerhof ($\srPBE$) correlation functional \cite{Ferte_2019, Loos_2019} which interpolates between the usual PBE functional \cite{Perdew_1996} at $\mu = 0$ and the exact large-$\mu$ behavior \cite{Toulouse_2004, Gori-Giorgi_2006, Paziani_2006} using the on-top pair density from the uniform-electron gas. \cite{Loos_2019}
Additionally to the one-electron density calculated from the HF or KS orbitals, these RS-DFT functionals require a range-separation function $\rsmu{}{\Bas}(\br{})$ which automatically adapts to the spatial inhomogeneity of the basis-set incompleteness error and is computed using the HF or KS opposite-spin pair-density matrix in the basis set $\Bas$.
We refer the interested reader to Refs.~\onlinecite{Giner_2018, Loos_2019, Giner_2019} where our procedure is thoroughly detailed and the explicit expressions of these two short-range correlation functionals are provided.
We refer the interested reader to Refs.~\onlinecite{Giner_2018, Loos_2019, Giner_2019} where our procedure is thoroughly detailed.
\titou{The explicit expressions of these two short-range correlation functionals, as well as their functional derivative, are provided in the {\SI}.}
The basis set corrected {\GOWO} quasiparticle energies are thus given by
@ -739,8 +758,8 @@ We hope to report on this in the near future.
%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Supporting Information}
%%%%%%%%%%%%%%%%%%%%%%%%
See {\SI} for additional graphs reporting the convergence of the ionization potentials of the GW20 subset with respect to the size of the basis set.
\titou{The numerical data of Tables \ref{tab:GW20_HF} and \ref{tab:GW20_PBE0} are provided in txt and json format.}
See {\SI} for \titou{the explicit expression of the short-range correlation functionals (and their functional derivatives)}, additional graphs reporting the convergence of the ionization potentials of the GW20 subset with respect to the size of the basis set, \titou{and
the numerical data of Tables \ref{tab:GW20_HF} and \ref{tab:GW20_PBE0} (provided in txt and json formats).}
%%%%%%%%%%%%%%%%%%%%%%%%
\begin{acknowledgements}

View File

@ -0,0 +1,205 @@
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,wrapfig}
\usepackage{natbib}
\usepackage[extra]{tipa}
\bibliographystyle{achemso}
\AtBeginDocument{\nocite{achemso-control}}
\usepackage{mathpazo,libertine}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\urlstyle{same}
\newcommand{\alert}[1]{\textcolor{red}{#1}}
\definecolor{darkgreen}{HTML}{009900}
\usepackage[normalem]{ulem}
\newcommand{\titou}[1]{\textcolor{red}{#1}}
\newcommand{\jt}[1]{\textcolor{purple}{#1}}
\newcommand{\manu}[1]{\textcolor{darkgreen}{#1}}
\newcommand{\toto}[1]{\textcolor{brown}{#1}}
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
\newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}}
\newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}}
\newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}}
\newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}}
\newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}}
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
\newcommand{\AS}[1]{\toto{(\underline{\bf TOTO}: #1)}}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
citecolor=blue
}
\newcommand{\mc}{\multicolumn}
\newcommand{\fnm}{\footnotemark}
\newcommand{\fnt}{\footnotetext}
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
\newcommand{\SI}{\textcolor{blue}{supporting information}}
\newcommand{\QP}{\textsc{quantum package}}
% methods
\newcommand{\evGW}{ev$GW$}
\newcommand{\qsGW}{qs$GW$}
\newcommand{\GOWO}{$G_0W_0$}
\newcommand{\GW}{$GW$}
\newcommand{\GnWn}[1]{$G_{#1}W_{#1}$}
% operators
\newcommand{\hH}{\Hat{H}}
% energies
\newcommand{\Ec}{E_\text{c}}
\newcommand{\EHF}{E_\text{HF}}
\newcommand{\EKS}{E_\text{KS}}
\newcommand{\EcK}{E_\text{c}^\text{Klein}}
\newcommand{\EcRPA}{E_\text{c}^\text{RPA}}
\newcommand{\EcGM}{E_\text{c}^\text{GM}}
\newcommand{\EcMP}{E_c^\text{MP2}}
\newcommand{\Egap}{E_\text{gap}}
\newcommand{\IP}{\text{IP}}
\newcommand{\EA}{\text{EA}}
\newcommand{\RH}{R_{\ce{H2}}}
\newcommand{\RF}{R_{\ce{F2}}}
\newcommand{\RBeO}{R_{\ce{BeO}}}
% orbital energies
\newcommand{\nDIIS}{N^\text{DIIS}}
\newcommand{\maxDIIS}{N_\text{max}^\text{DIIS}}
\newcommand{\nSat}[1]{N_{#1}^\text{sat}}
\newcommand{\eSat}[2]{\epsilon_{#1,#2}}
\newcommand{\e}[1]{\epsilon_{#1}}
\newcommand{\eHF}[1]{\epsilon^\text{HF}_{#1}}
\newcommand{\teHF}[1]{\Tilde{\epsilon}^\text{HF}_{#1}}
\newcommand{\eKS}[1]{\epsilon^\text{KS}_{#1}}
\newcommand{\eQP}[1]{\epsilon^\text{QP}_{#1}}
\newcommand{\eGOWO}[1]{\epsilon^\text{\GOWO}_{#1}}
\newcommand{\eGW}[1]{\epsilon^\text{\GW}_{#1}}
\newcommand{\eGnWn}[2]{\epsilon^\text{\GnWn{#2}}_{#1}}
\newcommand{\de}[1]{\Delta\epsilon_{#1}}
\newcommand{\deHF}[1]{\Delta\epsilon^\text{HF}_{#1}}
\newcommand{\Om}[1]{\Omega_{#1}}
\newcommand{\eHOMO}{\epsilon_\text{HOMO}}
\newcommand{\eLUMO}{\epsilon_\text{LUMO}}
\newcommand{\HOMO}{\text{HOMO}}
\newcommand{\LUMO}{\text{LUMO}}
% Matrix elements
\newcommand{\A}[1]{A_{#1}}
\newcommand{\B}[1]{B_{#1}}
\newcommand{\tA}{\Tilde{A}}
\newcommand{\tB}{\Tilde{B}}
\renewcommand{\S}[1]{S_{#1}}
\newcommand{\G}[1]{G_{#1}}
\newcommand{\Po}[1]{P_{#1}}
\newcommand{\W}[1]{W_{#1}}
\newcommand{\Wc}[1]{W^\text{c}_{#1}}
\newcommand{\vc}[1]{v_{#1}}
\newcommand{\SigX}[1]{\Sigma^\text{x}_{#1}}
\newcommand{\SigC}[1]{\Sigma^\text{c}_{#1}}
\newcommand{\tSigC}[1]{\Tilde{\Sigma}^\text{c}_{#1}}
\newcommand{\SigCp}[1]{\Sigma^\text{p}_{#1}}
\newcommand{\SigCh}[1]{\Sigma^\text{h}_{#1}}
\newcommand{\SigGW}[1]{\Sigma^\text{\GW}_{#1}}
\newcommand{\Z}[1]{Z_{#1}}
% Matrices
\newcommand{\bG}{\boldsymbol{G}}
\newcommand{\bW}{\boldsymbol{W}}
\newcommand{\bvc}{\boldsymbol{v}}
\newcommand{\bSig}{\boldsymbol{\Sigma}}
\newcommand{\bSigX}{\boldsymbol{\Sigma}^\text{x}}
\newcommand{\bSigC}{\boldsymbol{\Sigma}^\text{c}}
\newcommand{\bSigGW}{\boldsymbol{\Sigma}^\text{\GW}}
\newcommand{\be}{\boldsymbol{\epsilon}}
\newcommand{\bDelta}{\boldsymbol{\Delta}}
\newcommand{\beHF}{\boldsymbol{\epsilon}^\text{HF}}
\newcommand{\beGW}{\boldsymbol{\epsilon}^\text{\GW}}
\newcommand{\beGnWn}[1]{\boldsymbol{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bdeGnWn}[1]{\Delta\boldsymbol{\epsilon}^\text{\GnWn{#1}}}
\newcommand{\bde}{\boldsymbol{\Delta\epsilon}}
\newcommand{\bdeHF}{\boldsymbol{\Delta\epsilon}^\text{HF}}
\newcommand{\bdeGW}{\boldsymbol{\Delta\epsilon}^\text{GW}}
\newcommand{\bOm}{\boldsymbol{\Omega}}
\newcommand{\bA}{\boldsymbol{A}}
\newcommand{\bB}{\boldsymbol{B}}
\newcommand{\bX}{\boldsymbol{X}}
\newcommand{\bY}{\boldsymbol{Y}}
\newcommand{\bZ}{\boldsymbol{Z}}
\newcommand{\fc}{f_\text{c}}
\newcommand{\Vc}{V_\text{c}}
\newcommand{\MO}[1]{\phi_{#1}}
% coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}}
\renewcommand{\b}[1]{\mathbf{#1}}
\renewcommand{\d}{\text{d}}
\newcommand{\dbr}[1]{d\br{#1}}
\renewcommand{\bra}[1]{\ensuremath{\langle #1 \vert}}
\renewcommand{\ket}[1]{\ensuremath{\vert #1 \rangle}}
\renewcommand{\braket}[2]{\ensuremath{\langle #1 \vert #2 \rangle}}
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique (UMR 7616), Sorbonne Universit\'e, CNRS, Paris, France}
\newcommand{\IUF}{Institut Universitaire de France, Paris, France}
\begin{document}
\title{Supplementary Materials for ``A Density-Based Basis-Set Incompleteness Correction for GW Methods''}
\author{Pierre-Fran\c{c}ois Loos}
\email[Corresponding author: ]{loos@irsamc.ups-tlse.fr}
\affiliation{\LCPQ}
\author{Barth\'el\'emy Pradines}
\affiliation{\LCT}
\affiliation{\ISCD}
\author{Anthony Scemama}
\affiliation{\LCPQ}
\author{Emmanuel Giner}
\affiliation{\LCT}
\author{Julien Toulouse}
\email[Corresponding author: ]{toulouse@lct.jussieu.fr}
\affiliation{\LCT}
\affiliation{\IUF}
\begin{abstract}
\end{abstract}
\maketitle
\begin{figure*}
\includegraphics[width=\linewidth]{IP_G0W0HF}
\caption{
IPs (in eV) computed at the {\GOWO}@HF (black circles), {\GOWO}@HF+srLDA (red squares), and {\GOWO}@HF+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
\label{fig:IP_G0W0HF}
}
\end{figure*}
\begin{figure*}
\includegraphics[width=\linewidth]{IP_G0W0PBE0}
\caption{
IPs (in eV) computed at the {\GOWO}@PBE0 (black circles), {\GOWO}@PBE0+srLDA (red squares), and {\GOWO}@PBE0+srPBE (blue diamonds) levels of theory with increasingly large Dunning's basis sets (cc-pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z) for the 20 smallest molecules of the GW100 set.
The thick black line represents the CBS value obtained by extrapolation with the three largest basis sets.
\label{fig:IP_G0W0HF}
}
\end{figure*}
\bibliography{../GW-srDFT,../GW-srDFT-control}
\end{document}

Binary file not shown.

Binary file not shown.