start theory section on Green functions

This commit is contained in:
Julien Toulouse 2019-09-30 19:17:33 +02:00
parent 7cd996b343
commit 1207455cf2
2 changed files with 15006 additions and 4 deletions

View File

@ -142,7 +142,13 @@
% coordinates % coordinates
\newcommand{\br}[1]{\mathbf{r}_{#1}} \newcommand{\br}[1]{\mathbf{r}_{#1}}
\renewcommand{\b}[1]{\mathbf{#1}}
\renewcommand{\d}{\text{d}}
\newcommand{\dbr}[1]{d\br{#1}} \newcommand{\dbr}[1]{d\br{#1}}
\renewcommand{\bra}[1]{\ensuremath{\langle #1 \vert}}
\renewcommand{\ket}[1]{\ensuremath{\vert #1 \rangle}}
\renewcommand{\braket}[2]{\ensuremath{\langle #1 \vert #2 \rangle}}
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France} \newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
@ -179,6 +185,46 @@
\label{sec:intro} \label{sec:intro}
%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Theory}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Many-body Green-function theory with DFT basis-set correction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we start by defining, for a $N$-electron system with nuclei-electron potential $v_{ne}(\b{r})$, the approximate ground-state energy for one-electron densities $n$ representable in a finite basis set ${\cal B}$
\begin{equation}
E_0^{\cal B} = \min_{n \in {\cal D}^{\cal B}} \left\{ F[n] + \int v_{ne}(\b{r}) n(\b{r}) \d\b{r}\right\},
\end{equation}
where ${\cal D}^{\cal B}$ is the set of $N$-representable densities which can be extracted from a wave function $\Psi^{\cal B}$ expandable in the Hilbert space generated by ${\cal B}$. In this expression, $F[n]=\min_{\Psi\to n} \bra{\Psi} \hat{T} + \hat{W}_\text{ee}\ket{\Psi}$ is the exact Levy-Lieb universal density functional, where $\hat{T}$ and $\hat{W}_\text{ee}$ are the kinetic and electron-electron interaction operators, which is then decomposed as
\begin{equation}
F[n] = F^{\cal B}[n] + \bar{E}^{\cal B}[n],
\end{equation}
where $F^{\cal B}[n]$ is the Levy-Lieb density functional with wave functions $\Psi^{\cal B}$ expandable in the Hilbert space generated by ${\cal B}$
\begin{equation}
F^{\cal B}[n] = \min_{\Psi^{\cal B}\to n} \bra{\Psi^{\cal B}} \hat{T} + \hat{W}_\text{ee}\ket{\Psi^{\cal B}},
\end{equation}
and $\bar{E}^{\cal B}[n]$ is the complementary basis-correction density functional. In the present work, instead of using wave-function methods for calculating $F^{\cal B}[n]$, we reexpress it with a contrained search over one-electron Green functions $G^{\cal B}(\b{r},\b{r}',\omega)$ representable in the basis set ${\cal B}$
\begin{equation}
F^{\cal B}[n] = \min_{G^{\cal B}\to n} \Omega[G^{\cal B}],
\end{equation}
where $\Omega[G]$ is a universal Luttinger-Ward-like functional of the Green function
%\begin{equation}
%\Omega[G] = - \Tr \left[\ln ( - G^{-1} ) \right] - \Tr \left[ G_\text{s}^{-1} G -1 \right] + \Phi[G]
%\end{equation}
%$\Tr [A B] = 1/(2\pi i) \int \! \d \omega \, e^{i \omega 0^+} \! \iint \! \d \b{r} \d \b{r}' A(\b{r},\b{r}',\omega) B(\b{r}',\b{r},\omega)$
\begin{equation}
E_0^{\cal B} = \min_{G^{\cal B}} \left\{ \Omega[G^{\cal B}] + \int v_{ne}(\b{r}) n_{G^{\cal B}}(\b{r}) \d\b{r} + \bar{E}^{\cal B}[n_{G^{\cal B}}] \right\}
\end{equation}
ddd
\begin{equation}
G^{\cal B}(\omega)^{-1} = G_\text{0}^{-1}(\omega) - \Sigma_\text{Hxc}(\omega) - \bar{v}_\text{c}^{\cal B}[n_{G^{\cal B}}]
\end{equation}
From Julien: From Julien:
\begin{equation} \begin{equation}
\fdv{E[n_G]}{G(r,r',\omega)} = \int \fdv{E[n_G]}{n(r'')}] \fdv{n_G(r'')}{G(r,r',w)} dr'' \fdv{E[n_G]}{G(r,r',\omega)} = \int \fdv{E[n_G]}{n(r'')}] \fdv{n_G(r'')}{G(r,r',w)} dr''
@ -205,9 +251,6 @@ n_G(r'') = i \int G(r'',r'',w) d\omega
\end{split} \end{split}
\end{equation} \end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Theory}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{The GW Approximation} \subsection{The GW Approximation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Here, we provide self-contained summary of the main equations and quantities behind {\GOWO} and {\evGW}. Here, we provide self-contained summary of the main equations and quantities behind {\GOWO} and {\evGW}.
@ -350,6 +393,6 @@ This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A004
\end{acknowledgements} \end{acknowledgements}
%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
\bibliography{GW,GW-srDFT,GW-srDFT-control} \bibliography{GW-srDFT,GW-srDFT-control,biblio}
\end{document} \end{document}

14959
Manuscript/biblio.bib Normal file

File diff suppressed because it is too large Load Diff