start theory section on Green functions
This commit is contained in:
parent
7cd996b343
commit
1207455cf2
@ -142,7 +142,13 @@
|
|||||||
|
|
||||||
% coordinates
|
% coordinates
|
||||||
\newcommand{\br}[1]{\mathbf{r}_{#1}}
|
\newcommand{\br}[1]{\mathbf{r}_{#1}}
|
||||||
|
\renewcommand{\b}[1]{\mathbf{#1}}
|
||||||
|
\renewcommand{\d}{\text{d}}
|
||||||
\newcommand{\dbr}[1]{d\br{#1}}
|
\newcommand{\dbr}[1]{d\br{#1}}
|
||||||
|
\renewcommand{\bra}[1]{\ensuremath{\langle #1 \vert}}
|
||||||
|
\renewcommand{\ket}[1]{\ensuremath{\vert #1 \rangle}}
|
||||||
|
\renewcommand{\braket}[2]{\ensuremath{\langle #1 \vert #2 \rangle}}
|
||||||
|
|
||||||
|
|
||||||
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
|
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
|
||||||
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||||
@ -179,6 +185,46 @@
|
|||||||
\label{sec:intro}
|
\label{sec:intro}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\section{Theory}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
\subsection{Many-body Green-function theory with DFT basis-set correction}
|
||||||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
|
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we start by defining, for a $N$-electron system with nuclei-electron potential $v_{ne}(\b{r})$, the approximate ground-state energy for one-electron densities $n$ representable in a finite basis set ${\cal B}$
|
||||||
|
\begin{equation}
|
||||||
|
E_0^{\cal B} = \min_{n \in {\cal D}^{\cal B}} \left\{ F[n] + \int v_{ne}(\b{r}) n(\b{r}) \d\b{r}\right\},
|
||||||
|
\end{equation}
|
||||||
|
where ${\cal D}^{\cal B}$ is the set of $N$-representable densities which can be extracted from a wave function $\Psi^{\cal B}$ expandable in the Hilbert space generated by ${\cal B}$. In this expression, $F[n]=\min_{\Psi\to n} \bra{\Psi} \hat{T} + \hat{W}_\text{ee}\ket{\Psi}$ is the exact Levy-Lieb universal density functional, where $\hat{T}$ and $\hat{W}_\text{ee}$ are the kinetic and electron-electron interaction operators, which is then decomposed as
|
||||||
|
\begin{equation}
|
||||||
|
F[n] = F^{\cal B}[n] + \bar{E}^{\cal B}[n],
|
||||||
|
\end{equation}
|
||||||
|
where $F^{\cal B}[n]$ is the Levy-Lieb density functional with wave functions $\Psi^{\cal B}$ expandable in the Hilbert space generated by ${\cal B}$
|
||||||
|
\begin{equation}
|
||||||
|
F^{\cal B}[n] = \min_{\Psi^{\cal B}\to n} \bra{\Psi^{\cal B}} \hat{T} + \hat{W}_\text{ee}\ket{\Psi^{\cal B}},
|
||||||
|
\end{equation}
|
||||||
|
and $\bar{E}^{\cal B}[n]$ is the complementary basis-correction density functional. In the present work, instead of using wave-function methods for calculating $F^{\cal B}[n]$, we reexpress it with a contrained search over one-electron Green functions $G^{\cal B}(\b{r},\b{r}',\omega)$ representable in the basis set ${\cal B}$
|
||||||
|
\begin{equation}
|
||||||
|
F^{\cal B}[n] = \min_{G^{\cal B}\to n} \Omega[G^{\cal B}],
|
||||||
|
\end{equation}
|
||||||
|
where $\Omega[G]$ is a universal Luttinger-Ward-like functional of the Green function
|
||||||
|
%\begin{equation}
|
||||||
|
%\Omega[G] = - \Tr \left[\ln ( - G^{-1} ) \right] - \Tr \left[ G_\text{s}^{-1} G -1 \right] + \Phi[G]
|
||||||
|
%\end{equation}
|
||||||
|
%$\Tr [A B] = 1/(2\pi i) \int \! \d \omega \, e^{i \omega 0^+} \! \iint \! \d \b{r} \d \b{r}' A(\b{r},\b{r}',\omega) B(\b{r}',\b{r},\omega)$
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
E_0^{\cal B} = \min_{G^{\cal B}} \left\{ \Omega[G^{\cal B}] + \int v_{ne}(\b{r}) n_{G^{\cal B}}(\b{r}) \d\b{r} + \bar{E}^{\cal B}[n_{G^{\cal B}}] \right\}
|
||||||
|
\end{equation}
|
||||||
|
ddd
|
||||||
|
\begin{equation}
|
||||||
|
G^{\cal B}(\omega)^{-1} = G_\text{0}^{-1}(\omega) - \Sigma_\text{Hxc}(\omega) - \bar{v}_\text{c}^{\cal B}[n_{G^{\cal B}}]
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
|
||||||
From Julien:
|
From Julien:
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\fdv{E[n_G]}{G(r,r',\omega)} = \int \fdv{E[n_G]}{n(r'')}] \fdv{n_G(r'')}{G(r,r',w)} dr''
|
\fdv{E[n_G]}{G(r,r',\omega)} = \int \fdv{E[n_G]}{n(r'')}] \fdv{n_G(r'')}{G(r,r',w)} dr''
|
||||||
@ -205,9 +251,6 @@ n_G(r'') = i \int G(r'',r'',w) d\omega
|
|||||||
\end{split}
|
\end{split}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\section{Theory}
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\subsection{The GW Approximation}
|
\subsection{The GW Approximation}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
Here, we provide self-contained summary of the main equations and quantities behind {\GOWO} and {\evGW}.
|
Here, we provide self-contained summary of the main equations and quantities behind {\GOWO} and {\evGW}.
|
||||||
@ -350,6 +393,6 @@ This work was performed using HPC resources from GENCI-TGCC (Grant No.~2018-A004
|
|||||||
\end{acknowledgements}
|
\end{acknowledgements}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
\bibliography{GW,GW-srDFT,GW-srDFT-control}
|
\bibliography{GW-srDFT,GW-srDFT-control,biblio}
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
14959
Manuscript/biblio.bib
Normal file
14959
Manuscript/biblio.bib
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user