794 lines
41 KiB
Plaintext
794 lines
41 KiB
Plaintext
Entering Gaussian System, Link 0=g09
|
|
Input=F_vdz.inp
|
|
Output=F_vdz.out
|
|
Initial command:
|
|
/share/apps/gaussian/g09d01/nehalem/g09/l1.exe "/mnt/beegfs/tmpdir/42437/Gau-41417.inp" -scrdir="/mnt/beegfs/tmpdir/42437/"
|
|
Entering Link 1 = /share/apps/gaussian/g09d01/nehalem/g09/l1.exe PID= 41418.
|
|
|
|
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
|
|
Gaussian, Inc. All Rights Reserved.
|
|
|
|
This is part of the Gaussian(R) 09 program. It is based on
|
|
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
|
|
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
|
|
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
|
|
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
|
|
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
|
|
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
|
|
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
|
|
University), and the Gaussian 82(TM) system (copyright 1983,
|
|
Carnegie Mellon University). Gaussian is a federally registered
|
|
trademark of Gaussian, Inc.
|
|
|
|
This software contains proprietary and confidential information,
|
|
including trade secrets, belonging to Gaussian, Inc.
|
|
|
|
This software is provided under written license and may be
|
|
used, copied, transmitted, or stored only in accord with that
|
|
written license.
|
|
|
|
The following legend is applicable only to US Government
|
|
contracts under FAR:
|
|
|
|
RESTRICTED RIGHTS LEGEND
|
|
|
|
Use, reproduction and disclosure by the US Government is
|
|
subject to restrictions as set forth in subparagraphs (a)
|
|
and (c) of the Commercial Computer Software - Restricted
|
|
Rights clause in FAR 52.227-19.
|
|
|
|
Gaussian, Inc.
|
|
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
|
|
|
|
|
|
---------------------------------------------------------------
|
|
Warning -- This program may not be used in any manner that
|
|
competes with the business of Gaussian, Inc. or will provide
|
|
assistance to any competitor of Gaussian, Inc. The licensee
|
|
of this program is prohibited from giving any competitor of
|
|
Gaussian, Inc. access to this program. By using this program,
|
|
the user acknowledges that Gaussian, Inc. is engaged in the
|
|
business of creating and licensing software in the field of
|
|
computational chemistry and represents and warrants to the
|
|
licensee that it is not a competitor of Gaussian, Inc. and that
|
|
it will not use this program in any manner prohibited above.
|
|
---------------------------------------------------------------
|
|
|
|
|
|
Cite this work as:
|
|
Gaussian 09, Revision D.01,
|
|
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
|
|
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
|
|
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
|
|
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
|
|
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
|
|
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
|
|
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
|
|
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
|
|
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
|
|
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
|
|
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
|
|
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
|
|
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
|
|
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
|
|
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
|
|
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
|
|
|
|
******************************************
|
|
Gaussian 09: ES64L-G09RevD.01 24-Apr-2013
|
|
1-Apr-2019
|
|
******************************************
|
|
-------------------------------------
|
|
#p ROCCSD(T) cc-pVDZ pop=full gfprint
|
|
-------------------------------------
|
|
1/38=1/1;
|
|
2/12=2,17=6,18=5,40=1/2;
|
|
3/5=16,11=2,16=1,24=100,25=1,30=1,116=101/1,2,3;
|
|
4//1;
|
|
5/5=2,38=5/2;
|
|
8/5=-1,6=4,9=120000,10=1/1,4;
|
|
9/5=7,14=2/13;
|
|
6/7=3/1;
|
|
99/5=1,9=1/99;
|
|
Leave Link 1 at Mon Apr 1 14:48:25 2019, MaxMem= 0 cpu: 0.0
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l101.exe)
|
|
--
|
|
G2
|
|
--
|
|
Symbolic Z-matrix:
|
|
Charge = 0 Multiplicity = 2
|
|
F
|
|
|
|
NAtoms= 1 NQM= 1 NQMF= 0 NMMI= 0 NMMIF= 0
|
|
NMic= 0 NMicF= 0.
|
|
Isotopes and Nuclear Properties:
|
|
(Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM)
|
|
in nuclear magnetons)
|
|
|
|
Atom 1
|
|
IAtWgt= 19
|
|
AtmWgt= 18.9984033
|
|
NucSpn= 1
|
|
AtZEff= 0.0000000
|
|
NQMom= 0.0000000
|
|
NMagM= 2.6288670
|
|
AtZNuc= 9.0000000
|
|
Leave Link 101 at Mon Apr 1 14:48:26 2019, MaxMem= 33554432 cpu: 0.0
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l202.exe)
|
|
Input orientation:
|
|
---------------------------------------------------------------------
|
|
Center Atomic Atomic Coordinates (Angstroms)
|
|
Number Number Type X Y Z
|
|
---------------------------------------------------------------------
|
|
1 9 0 0.000000 0.000000 0.000000
|
|
---------------------------------------------------------------------
|
|
Stoichiometry F(2)
|
|
Framework group OH[O(F)]
|
|
Deg. of freedom 0
|
|
Full point group OH NOp 48
|
|
Largest Abelian subgroup D2H NOp 8
|
|
Largest concise Abelian subgroup C1 NOp 1
|
|
Standard orientation:
|
|
---------------------------------------------------------------------
|
|
Center Atomic Atomic Coordinates (Angstroms)
|
|
Number Number Type X Y Z
|
|
---------------------------------------------------------------------
|
|
1 9 0 0.000000 0.000000 0.000000
|
|
---------------------------------------------------------------------
|
|
Leave Link 202 at Mon Apr 1 14:48:26 2019, MaxMem= 33554432 cpu: 0.0
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l301.exe)
|
|
Standard basis: CC-pVDZ (5D, 7F)
|
|
Ernie: Thresh= 0.10000D-02 Tol= 0.10000D-05 Strict=F.
|
|
Ernie: 2 primitive shells out of 22 were deleted.
|
|
AO basis set (Overlap normalization):
|
|
Atom F1 Shell 1 S 7 bf 1 - 1 0.000000000000 0.000000000000 0.000000000000
|
|
0.1471000000D+05 0.7229535153D-03
|
|
0.2207000000D+04 0.5569055564D-02
|
|
0.5028000000D+03 0.2834429748D-01
|
|
0.1426000000D+03 0.1067956983D+00
|
|
0.4647000000D+02 0.2878097307D+00
|
|
0.1670000000D+02 0.4517054881D+00
|
|
0.6356000000D+01 0.2668829077D+00
|
|
Atom F1 Shell 2 S 7 bf 2 - 2 0.000000000000 0.000000000000 0.000000000000
|
|
0.1471000000D+05 0.9329717475D-05
|
|
0.5028000000D+03 0.3153039638D-03
|
|
0.1426000000D+03 -0.3125687006D-02
|
|
0.4647000000D+02 -0.1184270573D-01
|
|
0.1670000000D+02 -0.1257376908D+00
|
|
0.6356000000D+01 -0.9650219096D-01
|
|
0.1316000000D+01 0.1094036315D+01
|
|
Atom F1 Shell 3 S 1 bf 3 - 3 0.000000000000 0.000000000000 0.000000000000
|
|
0.3897000000D+00 0.1000000000D+01
|
|
Atom F1 Shell 4 P 3 bf 4 - 6 0.000000000000 0.000000000000 0.000000000000
|
|
0.2267000000D+02 0.6483402149D-01
|
|
0.4977000000D+01 0.3405353598D+00
|
|
0.1347000000D+01 0.7346464068D+00
|
|
Atom F1 Shell 5 P 1 bf 7 - 9 0.000000000000 0.000000000000 0.000000000000
|
|
0.3471000000D+00 0.1000000000D+01
|
|
Atom F1 Shell 6 D 1 bf 10 - 14 0.000000000000 0.000000000000 0.000000000000
|
|
0.1640000000D+01 0.1000000000D+01
|
|
There are 6 symmetry adapted cartesian basis functions of AG symmetry.
|
|
There are 1 symmetry adapted cartesian basis functions of B1G symmetry.
|
|
There are 1 symmetry adapted cartesian basis functions of B2G symmetry.
|
|
There are 1 symmetry adapted cartesian basis functions of B3G symmetry.
|
|
There are 0 symmetry adapted cartesian basis functions of AU symmetry.
|
|
There are 2 symmetry adapted cartesian basis functions of B1U symmetry.
|
|
There are 2 symmetry adapted cartesian basis functions of B2U symmetry.
|
|
There are 2 symmetry adapted cartesian basis functions of B3U symmetry.
|
|
There are 5 symmetry adapted basis functions of AG symmetry.
|
|
There are 1 symmetry adapted basis functions of B1G symmetry.
|
|
There are 1 symmetry adapted basis functions of B2G symmetry.
|
|
There are 1 symmetry adapted basis functions of B3G symmetry.
|
|
There are 0 symmetry adapted basis functions of AU symmetry.
|
|
There are 2 symmetry adapted basis functions of B1U symmetry.
|
|
There are 2 symmetry adapted basis functions of B2U symmetry.
|
|
There are 2 symmetry adapted basis functions of B3U symmetry.
|
|
14 basis functions, 33 primitive gaussians, 15 cartesian basis functions
|
|
5 alpha electrons 4 beta electrons
|
|
nuclear repulsion energy 0.0000000000 Hartrees.
|
|
IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000
|
|
ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000
|
|
IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 IEmpDi= 4
|
|
NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
|
|
Integral buffers will be 131072 words long.
|
|
Raffenetti 2 integral format.
|
|
Two-electron integral symmetry is turned on.
|
|
Leave Link 301 at Mon Apr 1 14:48:26 2019, MaxMem= 33554432 cpu: 0.1
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l302.exe)
|
|
NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1
|
|
NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0.
|
|
One-electron integrals computed using PRISM.
|
|
NBasis= 14 RedAO= T EigKep= 5.91D-01 NBF= 5 1 1 1 0 2 2 2
|
|
NBsUse= 14 1.00D-06 EigRej= -1.00D+00 NBFU= 5 1 1 1 0 2 2 2
|
|
Leave Link 302 at Mon Apr 1 14:48:26 2019, MaxMem= 33554432 cpu: 0.1
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l303.exe)
|
|
DipDrv: MaxL=1.
|
|
Leave Link 303 at Mon Apr 1 14:48:27 2019, MaxMem= 33554432 cpu: 0.0
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l401.exe)
|
|
ExpMin= 3.47D-01 ExpMax= 1.47D+04 ExpMxC= 5.03D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00
|
|
Harris functional with IExCor= 205 and IRadAn= 1 diagonalized for initial guess.
|
|
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14
|
|
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
|
|
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
|
|
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
|
|
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
|
|
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
|
|
Petite list used in FoFCou.
|
|
Harris En= -99.2222381603939
|
|
JPrj=0 DoOrth=F DoCkMO=F.
|
|
Initial guess orbital symmetries:
|
|
Occupied (A1G) (A1G) (T1U) (T1U) (T1U)
|
|
Virtual (T1U) (T1U) (T1U) (A1G) (EG) (EG) (T2G) (T2G)
|
|
(T2G)
|
|
Leave Link 401 at Mon Apr 1 14:48:27 2019, MaxMem= 33554432 cpu: 0.1
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l502.exe)
|
|
Restricted open shell SCF:
|
|
Using DIIS extrapolation, IDIIS= 1040.
|
|
Integral symmetry usage will be decided dynamically.
|
|
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=855092.
|
|
IVT= 20457 IEndB= 20457 NGot= 33554432 MDV= 33530566
|
|
LenX= 33530566 LenY= 33529684
|
|
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
|
|
Requested convergence on MAX density matrix=1.00D-06.
|
|
Requested convergence on energy=1.00D-06.
|
|
No special actions if energy rises.
|
|
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
|
|
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
|
|
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
|
|
NMat0= 1 NMatS0= 105 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
|
|
Petite list used in FoFCou.
|
|
|
|
Cycle 1 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-04
|
|
Density has only Abelian symmetry.
|
|
E= -99.3689482486251
|
|
DIIS: error= 6.67D-02 at cycle 1 NSaved= 1.
|
|
NSaved= 1 IEnMin= 1 EnMin= -99.3689482486251 IErMin= 1 ErrMin= 6.67D-02
|
|
ErrMax= 6.67D-02 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.03D-02 BMatP= 2.03D-02
|
|
IDIUse=3 WtCom= 3.33D-01 WtEn= 6.67D-01
|
|
Coeff-Com: 0.100D+01
|
|
Coeff-En: 0.100D+01
|
|
Coeff: 0.100D+01
|
|
Gap= 1.614 Goal= None Shift= 0.000
|
|
GapD= 1.614 DampG=2.000 DampE=0.500 DampFc=1.0000 IDamp=-1.
|
|
RMSDP=3.14D-03 MaxDP=3.13D-02 OVMax= 1.03D-02
|
|
|
|
Cycle 2 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
E= -99.3716501951579 Delta-E= -0.002701946533 Rises=F Damp=F
|
|
DIIS: error= 5.60D-03 at cycle 2 NSaved= 2.
|
|
NSaved= 2 IEnMin= 2 EnMin= -99.3716501951579 IErMin= 2 ErrMin= 5.60D-03
|
|
ErrMax= 5.60D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.91D-04 BMatP= 2.03D-02
|
|
IDIUse=3 WtCom= 9.44D-01 WtEn= 5.60D-02
|
|
Coeff-Com: 0.230D-01 0.977D+00
|
|
Coeff-En: 0.000D+00 0.100D+01
|
|
Coeff: 0.217D-01 0.978D+00
|
|
Gap= 1.607 Goal= None Shift= 0.000
|
|
RMSDP=9.34D-04 MaxDP=6.68D-03 DE=-2.70D-03 OVMax= 8.30D-04
|
|
|
|
Cycle 3 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
E= -99.3718318194682 Delta-E= -0.000181624310 Rises=F Damp=F
|
|
DIIS: error= 2.68D-03 at cycle 3 NSaved= 3.
|
|
NSaved= 3 IEnMin= 3 EnMin= -99.3718318194682 IErMin= 3 ErrMin= 2.68D-03
|
|
ErrMax= 2.68D-03 0.00D+00 EMaxC= 1.00D-01 BMatC= 6.12D-05 BMatP= 2.91D-04
|
|
IDIUse=3 WtCom= 9.73D-01 WtEn= 2.68D-02
|
|
Coeff-Com: -0.182D-01 0.268D+00 0.751D+00
|
|
Coeff-En: 0.000D+00 0.000D+00 0.100D+01
|
|
Coeff: -0.177D-01 0.260D+00 0.757D+00
|
|
Gap= 1.607 Goal= None Shift= 0.000
|
|
RMSDP=2.98D-04 MaxDP=3.14D-03 DE=-1.82D-04 OVMax= 9.41D-04
|
|
|
|
Cycle 4 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
E= -99.3718614475826 Delta-E= -0.000029628114 Rises=F Damp=F
|
|
DIIS: error= 1.78D-04 at cycle 4 NSaved= 4.
|
|
NSaved= 4 IEnMin= 4 EnMin= -99.3718614475826 IErMin= 4 ErrMin= 1.78D-04
|
|
ErrMax= 1.78D-04 0.00D+00 EMaxC= 1.00D-01 BMatC= 4.86D-07 BMatP= 6.12D-05
|
|
IDIUse=3 WtCom= 9.98D-01 WtEn= 1.78D-03
|
|
Coeff-Com: 0.296D-02-0.791D-01-0.184D+00 0.126D+01
|
|
Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.100D+01
|
|
Coeff: 0.296D-02-0.789D-01-0.184D+00 0.126D+01
|
|
Gap= 1.607 Goal= None Shift= 0.000
|
|
RMSDP=5.02D-05 MaxDP=4.08D-04 DE=-2.96D-05 OVMax= 1.48D-04
|
|
|
|
Cycle 5 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
E= -99.3718619401377 Delta-E= -0.000000492555 Rises=F Damp=F
|
|
DIIS: error= 1.61D-06 at cycle 5 NSaved= 5.
|
|
NSaved= 5 IEnMin= 5 EnMin= -99.3718619401377 IErMin= 5 ErrMin= 1.61D-06
|
|
ErrMax= 1.61D-06 0.00D+00 EMaxC= 1.00D-01 BMatC= 2.17D-11 BMatP= 4.86D-07
|
|
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
|
|
Coeff-Com: -0.392D-03 0.106D-01 0.244D-01-0.169D+00 0.113D+01
|
|
Coeff: -0.392D-03 0.106D-01 0.244D-01-0.169D+00 0.113D+01
|
|
Gap= 1.607 Goal= None Shift= 0.000
|
|
RMSDP=1.86D-07 MaxDP=2.43D-06 DE=-4.93D-07 OVMax= 3.96D-07
|
|
|
|
Cycle 6 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
E= -99.3718619401494 Delta-E= -0.000000000012 Rises=F Damp=F
|
|
DIIS: error= 7.28D-08 at cycle 6 NSaved= 6.
|
|
NSaved= 6 IEnMin= 6 EnMin= -99.3718619401494 IErMin= 6 ErrMin= 7.28D-08
|
|
ErrMax= 7.28D-08 0.00D+00 EMaxC= 1.00D-01 BMatC= 3.86D-14 BMatP= 2.17D-11
|
|
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
|
|
Coeff-Com: 0.511D-04-0.138D-02-0.318D-02 0.221D-01-0.152D+00 0.113D+01
|
|
Coeff: 0.511D-04-0.138D-02-0.318D-02 0.221D-01-0.152D+00 0.113D+01
|
|
Gap= 1.607 Goal= None Shift= 0.000
|
|
RMSDP=1.16D-08 MaxDP=9.42D-08 DE=-1.17D-11 OVMax= 5.43D-08
|
|
|
|
Cycle 7 Pass 1 IDiag 1:
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
E= -99.3718619401495 Delta-E= 0.000000000000 Rises=F Damp=F
|
|
DIIS: error= 5.95D-09 at cycle 7 NSaved= 7.
|
|
NSaved= 7 IEnMin= 7 EnMin= -99.3718619401495 IErMin= 7 ErrMin= 5.95D-09
|
|
ErrMax= 5.95D-09 0.00D+00 EMaxC= 1.00D-01 BMatC= 1.92D-16 BMatP= 3.86D-14
|
|
IDIUse=1 WtCom= 1.00D+00 WtEn= 0.00D+00
|
|
Coeff-Com: -0.836D-06 0.238D-04 0.533D-04-0.379D-03 0.198D-02-0.719D-01
|
|
Coeff-Com: 0.107D+01
|
|
Coeff: -0.836D-06 0.238D-04 0.533D-04-0.379D-03 0.198D-02-0.719D-01
|
|
Coeff: 0.107D+01
|
|
Gap= 1.607 Goal= None Shift= 0.000
|
|
RMSDP=7.91D-10 MaxDP=1.01D-08 DE=-5.68D-14 OVMax= 2.36D-09
|
|
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
SCF Done: E(ROHF) = -99.3718619401 A.U. after 7 cycles
|
|
NFock= 7 Conv=0.79D-09 -V/T= 2.0000
|
|
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
|
|
<L.S>= 0.000000000000E+00
|
|
KE= 9.937398124718D+01 PE=-2.386479254175D+02 EE= 3.990208223014D+01
|
|
Annihilation of the first spin contaminant:
|
|
S**2 before annihilation 0.7500, after 0.7500
|
|
Leave Link 502 at Mon Apr 1 14:48:27 2019, MaxMem= 33554432 cpu: 0.1
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l801.exe)
|
|
Windowed orbitals will be sorted by symmetry type.
|
|
Density matrix breaks symmetry, PCut= 1.00D-07
|
|
Density has only Abelian symmetry.
|
|
GenMOA: NOpAll= 48 NOp2=8 NOpUse= 8 JSym2X=1
|
|
FoFJK: IHMeth= 1 ICntrl= 0 DoSepK=F KAlg= 0 I1Cent= 0 FoldK=F
|
|
IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 1.
|
|
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
|
|
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
|
|
wScrn= 0.000000 ICntrl= 0 IOpCl= 1 I1Cent= 0 NGrid= 0
|
|
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
|
|
Petite list used in FoFCou.
|
|
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
|
|
ExpMin= 3.47D-01 ExpMax= 1.47D+04 ExpMxC= 5.03D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
|
|
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
|
|
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
|
|
Largest valence mixing into a core orbital is 4.28D-05
|
|
Largest core mixing into a valence orbital is 1.44D-05
|
|
Largest valence mixing into a core orbital is 5.94D-05
|
|
Largest core mixing into a valence orbital is 3.10D-05
|
|
Range of M.O.s used for correlation: 2 14
|
|
NBasis= 14 NAE= 5 NBE= 4 NFC= 1 NFV= 0
|
|
NROrb= 13 NOA= 4 NOB= 3 NVA= 9 NVB= 10
|
|
Singles contribution to E2= -0.2619986399D-02
|
|
Leave Link 801 at Mon Apr 1 14:48:28 2019, MaxMem= 33554432 cpu: 0.1
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l804.exe)
|
|
Open-shell transformation, MDV= 33554432 ITran=4 ISComp=2.
|
|
Semi-Direct transformation.
|
|
ModeAB= 2 MOrb= 4 LenV= 33387806
|
|
LASXX= 405 LTotXX= 405 LenRXX= 405
|
|
LTotAB= 598 MaxLAS= 6240 LenRXY= 6240
|
|
NonZer= 7332 LenScr= 720896 LnRSAI= 0
|
|
LnScr1= 0 LExtra= 0 Total= 727541
|
|
MaxDsk= -1 SrtSym= F ITran= 4
|
|
DoSDTr: NPSUse= 1
|
|
JobTyp=1 Pass 1: I= 1 to 4.
|
|
(rs|ai) integrals will be sorted in core.
|
|
Complete sort for first half transformation.
|
|
First half transformation complete.
|
|
Complete sort for second half transformation.
|
|
Second half transformation complete.
|
|
ModeAB= 2 MOrb= 3 LenV= 33387806
|
|
LASXX= 326 LTotXX= 326 LenRXX= 4680
|
|
LTotAB= 232 MaxLAS= 4680 LenRXY= 232
|
|
NonZer= 5499 LenScr= 720896 LnRSAI= 0
|
|
LnScr1= 0 LExtra= 0 Total= 725808
|
|
MaxDsk= -1 SrtSym= F ITran= 4
|
|
DoSDTr: NPSUse= 1
|
|
JobTyp=2 Pass 1: I= 1 to 3.
|
|
(rs|ai) integrals will be sorted in core.
|
|
Complete sort for first half transformation.
|
|
First half transformation complete.
|
|
Complete sort for second half transformation.
|
|
Second half transformation complete.
|
|
Spin components of T(2) and E(2):
|
|
alpha-alpha T2 = 0.4247195279D-02 E2= -0.2433253292D-01
|
|
alpha-beta T2 = 0.1834802549D-01 E2= -0.1055954125D+00
|
|
beta-beta T2 = 0.2032552052D-02 E2= -0.1154501786D-01
|
|
ANorm= 0.1012504905D+01
|
|
E2 = -0.1440929497D+00 EUMP2 = -0.99515954889864D+02
|
|
(S**2,0)= 0.75000D+00 (S**2,1)= 0.75000D+00
|
|
E(PUHF)= -0.99371861940D+02 E(PMP2)= -0.99515954890D+02
|
|
Leave Link 804 at Mon Apr 1 14:48:29 2019, MaxMem= 33554432 cpu: 0.1
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l913.exe)
|
|
CIDS: MDV= 33554432.
|
|
Frozen-core window: NFC= 1 NFV= 0.
|
|
IFCWin=0 IBDFC=1 NFBD= 0 0 NFCmp= 0 0 NFFFC= 0 0
|
|
Using original routines for 1st iteration, S=T.
|
|
Using DD4UQ or CC4UQ for 2nd and later iterations.
|
|
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=828711.
|
|
FoFCou: FMM=F IPFlag= 0 FMFlag= 0 FMFlg1= 0
|
|
NFxFlg= 0 DoJE=F BraDBF=F KetDBF=F FulRan=T
|
|
wScrn= 0.000000 ICntrl= 600 IOpCl= 0 I1Cent= 0 NGrid= 0
|
|
NMat0= 1 NMatS0= 105 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
|
|
Petite list used in FoFCou.
|
|
CCSD(T)
|
|
=======
|
|
Iterations= 50 Convergence= 0.100D-06
|
|
Iteration Nr. 1
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
MP4(R+Q)= 0.10436362D-01
|
|
Maximum subspace dimension= 5
|
|
Norm of the A-vectors is 4.8302664D-03 conv= 1.00D-05.
|
|
RLE energy= -0.1432452175
|
|
E3= -0.95727190D-02 EROMP3= -0.99525527609D+02
|
|
E4(SDQ)= -0.91239944D-03 ROMP4(SDQ)= -0.99526440008D+02
|
|
VARIATIONAL ENERGIES WITH THE FIRST-ORDER WAVEFUNCTION:
|
|
DE(Corr)= -0.14323987 E(Corr)= -99.515101808
|
|
NORM(A)= 0.10123559D+01
|
|
Iteration Nr. 2
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 6.9326191D-02 conv= 1.00D-05.
|
|
RLE energy= -0.1438538589
|
|
DE(Corr)= -0.15269463 E(CORR)= -99.524556566 Delta=-9.45D-03
|
|
NORM(A)= 0.10124541D+01
|
|
Iteration Nr. 3
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 6.6102669D-02 conv= 1.00D-05.
|
|
RLE energy= -0.1504851482
|
|
DE(Corr)= -0.15279305 E(CORR)= -99.524654995 Delta=-9.84D-05
|
|
NORM(A)= 0.10136794D+01
|
|
Iteration Nr. 4
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 2.7330470D-02 conv= 1.00D-05.
|
|
RLE energy= -0.1543351045
|
|
DE(Corr)= -0.15396566 E(CORR)= -99.525827601 Delta=-1.17D-03
|
|
NORM(A)= 0.10145248D+01
|
|
Iteration Nr. 5
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 2.9693102D-03 conv= 1.00D-05.
|
|
RLE energy= -0.1543510678
|
|
DE(Corr)= -0.15469273 E(CORR)= -99.526554666 Delta=-7.27D-04
|
|
NORM(A)= 0.10145383D+01
|
|
Iteration Nr. 6
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 2.5834333D-03 conv= 1.00D-05.
|
|
RLE energy= -0.1547793891
|
|
DE(Corr)= -0.15470108 E(CORR)= -99.526563023 Delta=-8.36D-06
|
|
NORM(A)= 0.10146361D+01
|
|
Iteration Nr. 7
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 2.4370846D-05 conv= 1.00D-05.
|
|
RLE energy= -0.1547787778
|
|
DE(Corr)= -0.15477910 E(CORR)= -99.526641040 Delta=-7.80D-05
|
|
NORM(A)= 0.10146358D+01
|
|
Iteration Nr. 8
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 5.6442299D-06 conv= 1.00D-05.
|
|
RLE energy= -0.1547788777
|
|
DE(Corr)= -0.15477882 E(CORR)= -99.526640760 Delta= 2.80D-07
|
|
NORM(A)= 0.10146358D+01
|
|
Iteration Nr. 9
|
|
**********************
|
|
DD1Dir will call FoFMem 1 times, MxPair= 34
|
|
NAB= 12 NAA= 6 NBB= 3.
|
|
Norm of the A-vectors is 8.9588109D-07 conv= 1.00D-05.
|
|
RLE energy= -0.1547788786
|
|
DE(Corr)= -0.15477888 E(CORR)= -99.526640820 Delta=-6.05D-08
|
|
NORM(A)= 0.10146358D+01
|
|
CI/CC converged in 9 iterations to DelEn=-6.05D-08 Conv= 1.00D-07 ErrA1= 8.96D-07 Conv= 1.00D-05
|
|
Largest amplitude= 4.76D-02
|
|
Time for triples= 1.21 seconds.
|
|
T4(CCSD)= -0.94155097D-03
|
|
T5(CCSD)= 0.41431909D-04
|
|
CCSD(T)= -0.99527540939D+02
|
|
Discarding MO integrals.
|
|
Leave Link 913 at Mon Apr 1 14:48:52 2019, MaxMem= 33554432 cpu: 3.4
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l601.exe)
|
|
Copying SCF densities to generalized density rwf, IOpCl= 0 IROHF=1.
|
|
|
|
**********************************************************************
|
|
|
|
Population analysis using the SCF density.
|
|
|
|
**********************************************************************
|
|
|
|
Orbital symmetries:
|
|
Occupied (A1G) (A1G) (?A) (?A) (?A)
|
|
Virtual (?A) (?A) (?A) (A1G) (EG) (T2G) (T2G) (T2G) (EG)
|
|
Unable to determine electronic state: an orbital has unidentified symmetry.
|
|
Alpha occ. eigenvalues -- -26.39941 -1.65457 -0.81850 -0.71507 -0.71507
|
|
Alpha virt. eigenvalues -- 1.31859 1.38675 1.38675 1.71998 3.83104
|
|
Alpha virt. eigenvalues -- 3.85587 3.85587 3.93026 3.93026
|
|
Molecular Orbital Coefficients:
|
|
1 2 3 4 5
|
|
(A1G)--O (A1G)--O O O O
|
|
Eigenvalues -- -26.39941 -1.65457 -0.81850 -0.71507 -0.71507
|
|
1 1 F 1S 0.99719 -0.23457 0.00000 0.00000 0.00000
|
|
2 2S 0.01386 0.51441 0.00000 0.00000 0.00000
|
|
3 3S -0.00250 0.56881 0.00000 0.00000 0.00000
|
|
4 4PX 0.00000 0.00000 0.00000 0.68740 0.00000
|
|
5 4PY 0.00000 0.00000 0.68740 0.00000 0.00000
|
|
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.71167
|
|
7 5PX 0.00000 0.00000 0.00000 0.46362 0.00000
|
|
8 5PY 0.00000 0.00000 0.46362 0.00000 0.00000
|
|
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.43545
|
|
10 6D 0 -0.00031 -0.00122 0.00000 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
6 7 8 9 10
|
|
V V V (A1G)--V (EG)--V
|
|
Eigenvalues -- 1.31859 1.38675 1.38675 1.71998 3.83104
|
|
1 1 F 1S 0.00000 0.00000 0.00000 -0.08471 0.00036
|
|
2 2S 0.00000 0.00000 0.00000 1.56341 -0.00548
|
|
3 3S 0.00000 0.00000 0.00000 -1.52688 0.00666
|
|
4 4PX 0.00000 0.00000 -0.91872 0.00000 0.00000
|
|
5 4PY 0.00000 -0.91872 0.00000 0.00000 0.00000
|
|
6 4PZ -0.90004 0.00000 0.00000 0.00000 0.00000
|
|
7 5PX 0.00000 0.00000 1.04957 0.00000 0.00000
|
|
8 5PY 0.00000 1.04957 0.00000 0.00000 0.00000
|
|
9 5PZ 1.06157 0.00000 0.00000 0.00000 0.00000
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00391 0.99999
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 12 13 14
|
|
(T2G)--V (T2G)--V (T2G)--V (EG)--V
|
|
Eigenvalues -- 3.85587 3.85587 3.93026 3.93026
|
|
1 1 F 1S 0.00000 0.00000 0.00000 0.00000
|
|
2 2S 0.00000 0.00000 0.00000 0.00000
|
|
3 3S 0.00000 0.00000 0.00000 0.00000
|
|
4 4PX 0.00000 0.00000 0.00000 0.00000
|
|
5 4PY 0.00000 0.00000 0.00000 0.00000
|
|
6 4PZ 0.00000 0.00000 0.00000 0.00000
|
|
7 5PX 0.00000 0.00000 0.00000 0.00000
|
|
8 5PY 0.00000 0.00000 0.00000 0.00000
|
|
9 5PZ 0.00000 0.00000 0.00000 0.00000
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00000
|
|
11 6D+1 1.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 1.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 1.00000
|
|
14 6D-2 0.00000 0.00000 1.00000 0.00000
|
|
Alpha Density Matrix:
|
|
1 2 3 4 5
|
|
1 1 F 1S 1.04941
|
|
2 2S -0.10684 0.26481
|
|
3 3S -0.13592 0.29257 0.32355
|
|
4 4PX 0.00000 0.00000 0.00000 0.47251
|
|
5 4PY 0.00000 0.00000 0.00000 0.00000 0.47251
|
|
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
7 5PX 0.00000 0.00000 0.00000 0.31869 0.00000
|
|
8 5PY 0.00000 0.00000 0.00000 0.00000 0.31869
|
|
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
10 6D 0 -0.00002 -0.00063 -0.00069 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
6 7 8 9 10
|
|
6 4PZ 0.50647
|
|
7 5PX 0.00000 0.21495
|
|
8 5PY 0.00000 0.00000 0.21495
|
|
9 5PZ 0.30989 0.00000 0.00000 0.18961
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 12 13 14
|
|
11 6D+1 0.00000
|
|
12 6D-1 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000
|
|
Beta Density Matrix:
|
|
1 2 3 4 5
|
|
1 1 F 1S 1.04941
|
|
2 2S -0.10684 0.26481
|
|
3 3S -0.13592 0.29257 0.32355
|
|
4 4PX 0.00000 0.00000 0.00000 0.47251
|
|
5 4PY 0.00000 0.00000 0.00000 0.00000 0.47251
|
|
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
7 5PX 0.00000 0.00000 0.00000 0.31869 0.00000
|
|
8 5PY 0.00000 0.00000 0.00000 0.00000 0.31869
|
|
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
10 6D 0 -0.00002 -0.00063 -0.00069 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
6 7 8 9 10
|
|
6 4PZ 0.00000
|
|
7 5PX 0.00000 0.21495
|
|
8 5PY 0.00000 0.00000 0.21495
|
|
9 5PZ 0.00000 0.00000 0.00000 0.00000
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 12 13 14
|
|
11 6D+1 0.00000
|
|
12 6D-1 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000
|
|
Full Mulliken population analysis:
|
|
1 2 3 4 5
|
|
1 1 F 1S 2.09881
|
|
2 2S -0.04944 0.52961
|
|
3 3S -0.05030 0.46197 0.64710
|
|
4 4PX 0.00000 0.00000 0.00000 0.94503
|
|
5 4PY 0.00000 0.00000 0.00000 0.00000 0.94503
|
|
6 4PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
7 5PX 0.00000 0.00000 0.00000 0.31254 0.00000
|
|
8 5PY 0.00000 0.00000 0.00000 0.00000 0.31254
|
|
9 5PZ 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
6 7 8 9 10
|
|
6 4PZ 0.50647
|
|
7 5PX 0.00000 0.42989
|
|
8 5PY 0.00000 0.00000 0.42989
|
|
9 5PZ 0.15196 0.00000 0.00000 0.18961
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000 0.00000
|
|
11 12 13 14
|
|
11 6D+1 0.00000
|
|
12 6D-1 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000
|
|
Gross orbital populations:
|
|
Total Alpha Beta Spin
|
|
1 1 F 1S 1.99907 0.99954 0.99954 0.00000
|
|
2 2S 0.94215 0.47107 0.47107 0.00000
|
|
3 3S 1.05878 0.52939 0.52939 0.00000
|
|
4 4PX 1.25757 0.62878 0.62878 0.00000
|
|
5 4PY 1.25757 0.62878 0.62878 0.00000
|
|
6 4PZ 0.65843 0.65843 0.00000 0.65843
|
|
7 5PX 0.74243 0.37122 0.37122 0.00000
|
|
8 5PY 0.74243 0.37122 0.37122 0.00000
|
|
9 5PZ 0.34157 0.34157 0.00000 0.34157
|
|
10 6D 0 0.00000 0.00000 0.00000 0.00000
|
|
11 6D+1 0.00000 0.00000 0.00000 0.00000
|
|
12 6D-1 0.00000 0.00000 0.00000 0.00000
|
|
13 6D+2 0.00000 0.00000 0.00000 0.00000
|
|
14 6D-2 0.00000 0.00000 0.00000 0.00000
|
|
Condensed to atoms (all electrons):
|
|
1
|
|
1 F 9.000000
|
|
Atomic-Atomic Spin Densities.
|
|
1
|
|
1 F 1.000000
|
|
Mulliken charges and spin densities:
|
|
1 2
|
|
1 F 0.000000 1.000000
|
|
Sum of Mulliken charges = 0.00000 1.00000
|
|
Mulliken charges and spin densities with hydrogens summed into heavy atoms:
|
|
1 2
|
|
1 F 0.000000 1.000000
|
|
Electronic spatial extent (au): <R**2>= 9.9430
|
|
Charge= 0.0000 electrons
|
|
Dipole moment (field-independent basis, Debye):
|
|
X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000
|
|
Quadrupole moment (field-independent basis, Debye-Ang):
|
|
XX= -4.7433 YY= -4.7433 ZZ= -3.8871
|
|
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
|
|
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
|
|
XX= -0.2854 YY= -0.2854 ZZ= 0.5708
|
|
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
|
|
Octapole moment (field-independent basis, Debye-Ang**2):
|
|
XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000
|
|
XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000
|
|
YYZ= 0.0000 XYZ= 0.0000
|
|
Hexadecapole moment (field-independent basis, Debye-Ang**3):
|
|
XXXX= -2.5452 YYYY= -2.5452 ZZZZ= -1.8270 XXXY= 0.0000
|
|
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
|
|
ZZZY= 0.0000 XXYY= -0.8484 XXZZ= -0.7287 YYZZ= -0.7287
|
|
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
|
|
N-N= 0.000000000000D+00 E-N=-2.386479254448D+02 KE= 9.937398124718D+01
|
|
Symmetry AG KE= 8.270514271257D+01
|
|
Symmetry B1G KE= 0.000000000000D+00
|
|
Symmetry B2G KE= 1.024234899483D-37
|
|
Symmetry B3G KE= 1.024234899483D-37
|
|
Symmetry AU KE= 0.000000000000D+00
|
|
Symmetry B1U KE= 3.460250014456D+00
|
|
Symmetry B2U KE= 6.604294260079D+00
|
|
Symmetry B3U KE= 6.604294260079D+00
|
|
Orbital energies and kinetic energies (alpha):
|
|
1 2
|
|
1 (A1G)--O -26.399410 37.263577
|
|
2 (A1G)--O -1.654569 4.088995
|
|
3 O -0.818504 3.302147
|
|
4 O -0.715066 3.302147
|
|
5 O -0.715066 3.460250
|
|
6 V 1.318595 4.242589
|
|
7 V 1.386748 4.400692
|
|
8 V 1.386748 4.400692
|
|
9 (A1G)--V 1.719981 5.189987
|
|
10 (EG)--V 3.831038 5.739970
|
|
11 (T2G)--V 3.855866 5.740000
|
|
12 (T2G)--V 3.855866 5.740000
|
|
13 (T2G)--V 3.930262 5.740000
|
|
14 (EG)--V 3.930262 5.740000
|
|
Total kinetic energy from orbitals= 1.028342312616D+02
|
|
Isotropic Fermi Contact Couplings
|
|
Atom a.u. MegaHertz Gauss 10(-4) cm-1
|
|
1 F(19) 0.00000 0.00000 0.00000 0.00000
|
|
--------------------------------------------------------
|
|
Center ---- Spin Dipole Couplings ----
|
|
3XX-RR 3YY-RR 3ZZ-RR
|
|
--------------------------------------------------------
|
|
1 Atom -2.984518 -2.984518 5.969035
|
|
--------------------------------------------------------
|
|
XY XZ YZ
|
|
--------------------------------------------------------
|
|
1 Atom 0.000000 0.000000 0.000000
|
|
--------------------------------------------------------
|
|
|
|
|
|
---------------------------------------------------------------------------------
|
|
Anisotropic Spin Dipole Couplings in Principal Axis System
|
|
---------------------------------------------------------------------------------
|
|
|
|
Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes
|
|
|
|
Baa -2.9845 -1498.901 -534.845 -499.980 1.0000 0.0000 0.0000
|
|
1 F(19) Bbb -2.9845 -1498.901 -534.845 -499.980 0.0000 1.0000 0.0000
|
|
Bcc 5.9690 2997.802 1069.690 999.959 0.0000 0.0000 1.0000
|
|
|
|
|
|
---------------------------------------------------------------------------------
|
|
|
|
No NMR shielding tensors so no spin-rotation constants.
|
|
Leave Link 601 at Mon Apr 1 14:48:52 2019, MaxMem= 33554432 cpu: 0.2
|
|
(Enter /share/apps/gaussian/g09d01/nehalem/g09/l9999.exe)
|
|
1\1\GINC-COMPUTE-40-0\SP\ROCCSD(T)-FC\CC-pVDZ\F1(2)\LOOS\01-Apr-2019\0
|
|
\\#p ROCCSD(T) cc-pVDZ pop=full gfprint\\G2\\0,2\F\\Version=ES64L-G09R
|
|
evD.01\HF=-99.3718619\MP2=-99.5159549\MP3=-99.5255276\PUHF=-99.3718619
|
|
\PMP2-0=-99.5159549\MP4SDQ=-99.52644\CCSD=-99.5266408\CCSD(T)=-99.5275
|
|
409\RMSD=7.912e-10\PG=OH [O(F1)]\\@
|
|
|
|
|
|
TRUTH, IN SCIENCE, CAN BE DEFINED AS THE WORKING HYPOTHESIS
|
|
BEST FITTED TO OPEN THE WAY TO THE NEXT BETTER ONE.
|
|
|
|
-- KONRAD LORENZ
|
|
Job cpu time: 0 days 0 hours 0 minutes 4.8 seconds.
|
|
File lengths (MBytes): RWF= 53 Int= 0 D2E= 0 Chk= 1 Scr= 1
|
|
Normal termination of Gaussian 09 at Mon Apr 1 14:48:52 2019.
|