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I. INTRODUCTION

II. THEORY

A. The DFT basis-set correction in a nutshell

�e basis-set correction investigated here proposes to use
the RSDFT formalism to capture a part of the short-range cor-
relation e�ects missing from the description of the WFT in a
�nite basis set. Here, we brie�y explain the working equations
and notations needed for this work, and the interested reader
can �nd the detailed formal derivation of the theory in? .

B. The basic concepts

Consider an incomplete basis-set B for which we assume
to have accurate approximations of both the FCI density nΨBFCI
and energy EBFCI. According to equation (15) of? , one can
approximate the exact ground state energy E0 as

E0 ≈ EBFCI + ĒB [nΨBFCI
] (1)

where ĒB [n] is the complementary density functional de�ned
in equation (8) of?

ĒB [nΨBFCI
] = min

Ψ→n
ΨBFCI

〈Ψ| T̂ + Ŵee |Ψ〉

− min
ΨB→n

ΨBFCI

〈
ΨB
∣∣∣ T̂ + Ŵee

∣∣∣ΨB〉,
(2)

where Ψ is a general wave function being obtained in a com-
plete basis. Provided that functional ĒB [n] is known exactly,
the only approximation performed in (1) is that the FCI den-
sity nΨBFCI

coincides with the exact ground state density, which
in general is a reasonable approximation as the density con-
verges rapidly with the basis set.

�e functional ĒB [nΨBFCI
] is not universal as it depends on

the basis set B used. A simple analytical form for such a
functional is of course not known and we approximate it in
two-steps. First, we de�ne a real-space representation of the
coulomb interaction projected in B, which is then ��ed with a
long-range interaction thanks to a range-separation parameter
µ(r) varying in space (see�). �en, we choose a speci�c class
of short-range density functionals, namely the short-range
correlation functionals with multi-determinantal reference
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(ECMD) introduced by Toulouse et al? , that we evaluate at
the FCI density nΨBFCI

(see �) and with the range-separation
parameter µ(r) varying in space.

C. Definition of a real-space representation of the
coulomb operator truncated in a basis-set B

One of the consequences of the use of an incomplete basis-
setB is that the wave function does not present a cusp near the
electron coalescence point, which means that all derivatives of
the wave function are continuous. As the exact electronic cusp
originates from the divergence of the coulomb interaction at
the electron coalescence point, a cusp-free wave function
could also come from a non-divergent electron-electron inter-
action. �erefore, the impact of the incompleteness of a �nite
basis-set B can be thought as a cu�ing of the divergence of
the coulomb interaction at the electron coalescence point.
�e present paragraph brie�y describes how to obtain an

e�ective interaction WΨB (X1, X2) which:

• is non-divergent at the electron coalescence point as
long as an incomplete basis set B is used,

• tends to the regular 1/r12 interaction in the limit of a
complete basis set B.

1. General definition of an e�ective interaction for the
basis set B

Consider the coulomb operator projected in the basis-set B

ŴBee =
1
2 ∑

ijkl ∈ B
Vkl

ij â†
k â†

l âj âi, (3)

where the indices run over all orthonormal spin-orbitals
in B and Vkl

ij are the usual coulomb two-electron integrals.
Consider now the expectation value of ŴBee over a general
wave function ΨB belonging to the N−electron Hilbert space
spanned by the basis set B. A�er a few mathematical work
(see appendix A of? for a detailed derivation), such an expec-
tation value can be rewri�en as an integral over IR6:〈

ΨB
∣∣∣ ŴBee ∣∣∣ΨB〉 =

1
2

∫∫
dX1 dX2 fΨB (X1, X2), (4)

where the function fΨB (X1, X2) is

fΨB (X1, X2) = ∑
ijklmn ∈ B

Vkl
ij Γmn

kl [ΨB ]

φn(X2)φm(X1)φi(X1)φj(X2),
(5)
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Γpq
mn[ΨB ] is the two-body density tensor of ΨB

Γpq
mn[ΨB ] =

〈
ΨB
∣∣∣ â†

p â†
q ân âm

∣∣∣ΨB〉, (6)

and X collects the space and spin variables,

X = (r, σ) r ∈ IR3, σ = ±1
2∫

dX = ∑
σ=± 1

2

∫
IR3

dr.
(7)

�en, consider the expectation value of the exact coulomb
operator over ΨB〈

ΨB
∣∣∣ Ŵee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2

1
r12

n(2)
ΨB (X1, X2) (8)

where n(2)
ΨB (X1, X2) is the two-body density associated to ΨB .

Because ΨB belongs to B, such an expectation value coincides
with the expectation value of ŴBee〈

ΨB
∣∣∣ ŴBee ∣∣∣ΨB〉 =

〈
ΨB
∣∣∣ Ŵee

∣∣∣ΨB〉, (9)

which can be rewri�en as:∫∫
dX1 dX2 WΨB (X1, X2) n(2)

ΨB (X1, X2)

=
∫∫

dX1 dX2
1

‖r1 − r2‖
n(2)

ΨB (X1, X2).
(10)

where we introduced WΨB (X1, X2)

WΨB (X1, X2) =
fΨB (X1, X2)

n(2)
ΨB (X1, X2)

, (11)

which is the e�ective interaction in the basis set B.
As already discussed in? , such an e�ective interaction is

symmetric, a priori non translational nor rotational invariant
if the basis set B does not have such symmetries and is neces-
sary �nite at the electron coalescence point for an incomplete
basis set B. Also, as demonstrated in the appendix B of? ,
WΨB (X1, X2) tends to the regular coulomb interaction 1/r12
for all points in (X1, X2) in the limit of a complete basis set
B.

2. Definition of a valence e�ective interaction

As the average inter electronic distances are very di�erent
between the valence electrons and the core electrons, it can
be advantageous to de�ne an e�ective interaction taking into
account only for the valence electrons.

According to (15) and (4), the e�ective interaction is de�ned
by the expectation value of the coulomb operator over a wave
function ΨB . �erefore, to de�ne an e�ective interaction
accounting only for the valence electrons, one needs to de�ne
a function f valΨB (X1, X2) satisfying〈

ΨB
∣∣∣ ŴBvalee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2 f valΨB (X1, X2), (12)

where ŴBvalee is the valence coulomb operator de�ned as

ŴBvalee =
1
2 ∑

ijkl ∈ Bval
Vkl

ij â†
k â†

l âj âi , (13)

and Bval is a given set of molecular orbitals associated to the
valence space which will be de�ned later on. Following the
spirit of (5), the function f valΨB (X1, X2) can be de�ned as

f valΨB (X1, X2) = ∑
ij ∈ B

∑
klmn ∈ Bval

Vkl
ij Γmn

kl [ΨB ]

φn(X2)φm(X1)φi(X1)φj(X2).
(14)

�en, the e�ective interaction associated to the valence
Wval

ΨB (X1, X2) is simply de�nes as

Wval
ΨB (X1, X2) =

f valΨB (X1, X2)

n(2)
ΨB , val(X1, X2)

, (15)

where n(2)
ΨB , val(X1, X2) is the two body density associated to

the valence electrons:

n(2)
ΨB , val(X1, X2) = ∑

klmn ∈ Bval
Γkl

mn[Ψ
B ] φm(X1)φn(X2)φk(X1)φl(X2).

(16)
It is important to notice in (14) the di�erence between the
set of orbitals for the indices (i, j), which span the full set
of MOs within B, and the (k, l, m, n), which span only the
valence space Bval. With such a de�nition, one can show
(see annex) that f valΨB (X1, X2) ful�lls (12) and tends to the
exact interaction 1/r12 in the limit of a complete basis set B,
whatever the choice of subset Bval.

3. Definition of a range-separation parameter varying in
space

To be able to approximate the complementary functional
ĒB [nΨBFCI

] thanks to functionals developed in the �eld of RS-
DFT, we �t the e�ective interaction with a long-range inter-
action having a range-separation parameter varying in space.
More precisely, if we de�ne the value of the interaction at
coalescence as

WΨB (r) = WΨB (X, X̄). (17)

where (X, X̄)means a couple of anti-parallel spins at the same
point in r, we propose a �t for each point in IR3 of WΨB (r1)
with a long-range-like interaction:

WΨB (r) = wlr,µ(r;ΨB)(r, r) (18)

where the long-range-like interaction is de�ned as:

wlr,µ(r)(r1, r2) =
1
2

(erf
(
µ(r1) r12

)
r12

+
erf
(
µ(r2) r12

)
r12

)
.

(19)
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�e equation (17) is equivalent to the following condition for
µ(r; ΨB):

µ(r; ΨB) =
√

π

2
WΨB (r) . (20)

Aswe de�ned an e�ective interaction for the valence electrons,
we also introduce a valence range-separation parameter as

µval(r; ΨB) =
√

π

2
Wval

ΨB (r) . (21)

D. Approximations for the complementary functional

1. General scheme

In? the authors have proposed to approximate the comple-
mentary functional ĒB [n] by using a speci�c class of SRDFT
energy functionals, namely the ECMD whose general de�ni-
tion is:

Ēsr
c,md[n(r); µ] = min

Ψ→n(r)
〈Ψ| T̂ + Ŵee |Ψ〉

− 〈Ψµ[n(r)]| T̂ + Ŵee |Ψµ[n(r)]〉,
(22)

where the wave function Ψµ[n(r)] is de�ned by the con-
strained minimization

Ψµ[n(r)] = arg min
Ψ→n(r)

〈Ψ| T̂ + Ŵlr,µ
ee |Ψ〉, (23)

where Ŵlr,µ
ee is the long-range electron-electron interaction

operator

Ŵlr,µ
ee =

1
2

∫∫
dr1dr2 wlr,µ(|r1 − r2|)n̂(2)(r1, r2), (24)

with

wlr,µ(|r1 − r2|) =
erf(µ|r1 − r2|)
|r1 − r2|

, (25)

and the pair-density operator n̂(2)(r1, r2) = n̂(r1)n̂(r2) −
δ(r1 − r2)n̂(r1).
�ese functionals di�er from the standard RSDFT correla-

tion functional by the fact that the reference is not the Konh-
Sham determinant but a multi determinant wave function,
which makes them much more adapted in the present context
where one aims at correcting the FCI energy.

�e general scheme for estimating ĒB [n] is the follow-
ing. Consider a given approximated ECMD functional
Ēsr
c,md-X [n; µ] labelled by ECMD-X . Such a functional which

might depend on the density n(r) (and potentially its deriva-
tives ∇n(r)) is de�ned for any value of the range-separation
parameter µ. A general scheme to approximate ĒB [nΨBFCI

] is
to use Ēsr

c,md-X [n; µ] with the µ(r) de�ned in (15) and the FCI
density nΨBFCI

ĒB [nΨBFCI
] ≈ Ēsr

c,md-X [nΨBFCI
; µ(r)] (26)

�erefore, any approximated ECMD can be used to estimate
ĒB [nΨBFCI

].

2. LDA approximation for the complementary functional

�erefore, one can de�ne an LDA-like functional for ĒB [n]
as

ĒB,ΨB
LDA [n] =

∫
dr n(r) ε̄sr,unifc,md

(
n(r); µ(r; ΨB)

)
, (27)

where ε̄sr,unifc,md (n, µ) is the multi-determinant short-range cor-
relation energy per particle of the uniform electron gas for
which a parametrization can be found in Ref. ? . In practice,
for open-shell systems, we use the spin-polarized version of
this functional (i.e., depending on the spin densities) but for
simplicity we will continue to use only the notation of the
spin-unpolarized case.

3. New PBE interpolated ECMD functional

�e LDA-like functional de�ned in (38) relies only on the
transferability of the physics of UEG which is certainly valid
for large values of µ but which is known to over correlate
for small values of µ. In order to correct such a defect, we
propose here a new ECMD functional inspired by the recently
proposed functional of some of the present authors? which
interpolates between the usual PBE correlation functional
when µ→ 0 and the exact behaviour which is known when
µ→ ∞.
�e exact behaviour of the Ēsr

c,md[n(r); µ] is known in the
large µ limit? :

Ēsr
c,md[n(r); µ] =

2
√

π
(

1−
√

2
)

3 µ3

∫
dr n(2)(r) (28)

where n(2)(r) is the exact on-top pair density for the ground
state of the system. As the exact ground state on-top pair
density n(2)(r) is not known, we propose here to approximate
it by that of the UEG at the density of the system:

n(2)(r) ≈ n(2)
UEG(n↑(r), n↓(r)) (29)

where n↑(r) and n↓(r) are, respectively, the up and down
spin densities of the physical system at r, n(2)

UEG(n↑ n↓) is the
UEG on-top pair density

n(2)
UEG(n↑ n↓) = 4 n↑ n↓ g0(n↑(, n↓) (30)

and g0(n↑, n↓) is the correlation factor of the UEG whose
parametrization can be found in? .
As such a form diverges for small values of µ as 1/µ3, we

follow the work proposed in? and interpolate with the Kohn-
Sham correlation functional at µ = 0. More precisely, we
propose the following expression for the

Ēsr
c,md[n(r); µ] =

∫
dr ēPBEc,md(n(r),∇n(r); µ) (31)
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with

ēPBEc,md(n,∇n; µ) =
ePBE

c (n,∇n)
1 + βc,md PBE(n,∇n; µ)µ3 (32)

β(n,∇n; µ) =
3ePBE

c (n,∇n)

2
√

π
(

1−
√

2
)

n(2)
UEG(n↑ n↓)

. (33)

�erefore, we propose this approximation for the comple-
mentary functional ĒB [nΨBFCI

]:

ĒB,ΨB
PBE [n] =

∫
dr ēPBEc,md(n(r),∇n(r); µ(r)) (34)

E. Valence-only approximation for the complementary
functional

We now introduce a valence-only approximation for the
complementary functional, which, as we shall see, performs
much be�er than the usual approximations in the context of
atomization energies. De�ning the valence one-body spin
density matrix as

ρvalij,σ[Ψ
B ] =

〈
ΨB
∣∣∣ a†

i,σaj,σ

∣∣∣ΨB〉 if (i, j) ∈ Bval
= 0 in other cases

(35)

then one can de�ne the valence density as:

nval
σ (r) = ∑

i,j
ρvalij,σ[Ψ

B ]φi(r)φj(r) (36)

�erefore, we propose the following valence-only approxima-
tions for the complementary functional

ĒB,ΨB
LDA, val[n] =

∫
dr nval(r) ε̄sr,unifc,md

(
nval(r); µval(r); ΨB)

)
,

(37)

ĒB,ΨB
PBE, val[n] =

∫
dr ēPBEc,md(n

val(r),∇nval(r); µval(r)) (38)

III. RESULTS

A. The case of C2, N2, O2, F2 and the impact of the lack of
basis functions adapted to core correlation

We begin the investigation of the behavior of the basis-
set correction by the study of the atomization energies of
the C2, N2, O2, F2 homo-nuclear diatomic molecules in the
Dunning cc-pVXZ and cc-pCVXZ (X=D,T,Q,5) using the CIPSI
algorithm to obtain reliable estimate of EBFCI and nΨBFCI

.
1. CIPSI calculations

All CIPSI calculations were performed in two steps. First, a
CIPSI calculation was performed until the zeroth-order wave
function reaches 106 Slater determinants, from which we ex-
tracted the natural orbitals. From this set of natural orbitals,
we performed CIPSI calculations until the EBexFCI reaches about
0.1 mH convergence for each systems. Such convergence cri-
terion is more than su�cient for the CIPSI densities nBCIPSI(r).
�erefore, from now on, we assume that

EBFCI ≈ EBexFCI (39)

and that

n(r)ΨBFCI
≈ nBCIPSI(r). (40)

Regarding the wave function chosen to de�ne the local range-
separation parameter µ(r), we take a single Slater determi-
nant built with the natural orbitals of the �rst CIPSI calcula-
tion.

2. Treating the valence electrons
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TABLE I. Dissociation energy (De) in kcal/mol of the C2, O2, N2 and F2 molecules computed with various methods and basis sets.

Dunning’s basis set

Molecule Method cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Exp.

C2 FCIQMC 130.0(1) 139.9(3) 143.3(2) 146.9(5)a
FCIQMC+F12 142.3 145.3
ex (FC)FCI 132.0 140.3 143.6 144.3
ex (FC)FCI+LDA 141.9 142.8 145.8 146.2
ex (FC)FCI+LDA-val 143.0 145.4 146.4 146.0
ex (FC)FCI+PBE 146.1 143.9 145.9 145.12
ex (FC)FCI+PBE -val 147.4 146.1 146.4 145.9

cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z

ex (FC)FC-FCI 130.5 140.5 143.8 144.9
ex (FC)FCI+LDA 140.9 145.7 146.6 146.4
ex (FC)FCI+LDA-val 141.3 145.6 146.5 146.4
ex (FC)FCI+PBE 144.5 145.9 146.4 146.3
ex (FC)FCI+PBE -val 145.2 145.9 146.4 146.3
ex FCI 131.0 141.5 145.1 146.1
ex FCI+LDA 141.4 146.7 147.8 147.6
ex FCI+LDA-val 141.8 146.6 147.7 147.6
ex FCI+PBE 145.1 147.0 147.7 147.5
ex FCI+PBE -val 145.7 147.0 147.6 147.5

Dunning’s basis set
Molecule Method cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Ref

N2 ex (FC)FCI 201.1 217.1 223.5 225.7 228.5

(FC)CCSD(T) 199.9 216.3 −−−−− −−−−−
ex (FC)CCSD(T)+LDA 214.7 221.9 −−−−− −−−−−
ex (FC)CCSD(T)+PBE 223.4 224.3 −−−−− −−−−−
ex (FC)CCSD(T)+LDA-val 216.3 224.8 −−−−− −−−−−
ex (FC)CCSD(T)+PBE-val 225.9 226.7 −−−−− −−−−−
ex (FC)FCI+LDA 216.4 223.1 227.9 228.1
ex (FC)FCI+PBE 225.4 225.6 228.2 227.9
ex (FC)FCI+LDA-val 217.9 225.9 228.0 228.6
ex (FC)FCI+PBE-val 227.7 227.8 228.3 228.5

cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z

ex (FC)FCI 201.7 217.9 223.7 225.7
ex (FC)FCI+LDA 217.5 226.2 228.4 228.5
ex (FC)FCI+LDA-val 218.5 226.3 228.4 228.0
ex (FC)FCI+PBE 225.8 227.6 228.4 228.3
ex (FC)FCI+PBE-val 227.5 227.7 228.4 228.0
ex FCI 202.2 218.5 224.4 −−−−−
ex FCI+LDA 218.0 226.8 229.1 −−−−−
ex FCI+LDA-val 219.1 226.9 229.0 −−−−−
ex FCI+PBE 226.4 228.2 229.1 −−−−−
ex FCI+PBE -val 228.0 228.2 229.1 −−−−−

a Results from Ref. ? .
b Results from Ref. ? .
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TABLE II. Dissociation energy (De) in kcal/mol of the C2, O2, N2 and F2 molecules computed with various methods and basis sets.

Molecule Method cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Exp.
O2 exFCI 105.3 114.6 118.0 119.1 120.2b

exFCI+LDA 111.8 117.2 120.0 119.9
exFCI+LDA-val 112.4 118.5 120.2 120.3
exFCI+PBE 115.9 118.4 120.1 119.9
exFCI+PBE -val 117.2 119.4 120.4 120.3
exFCI+PBE-on-top 115.0 118.4 120.2
exFCI+PBE-on-top-val 116.1 119.4 120.5

F2 exFCI 27.5 35.4 37.5 38.0 38.2b

exFCI+LDA 30.8 37.0 38.7 38.7
exFCI+LDA-val 31.1 37.5 38.8 38.8
exFCI+PBE 33.3 37.8 38.8 38.7
exFCI+PBE -val 33.7 38.2 39.0 38.8
exFCI+PBE-on-top 32.1 37.5 38.7 38.7
exFCI+PBE-on-top-val 32.4 37.8 38.8 38.8

a Results from Ref. ? .
b Results from Ref. ? .
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