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We investigate the basis-set convergence of coupled cluster electronic correlation energies using
a recently proposed finite basis-set correction technique. The correction is applied to atomic and
molecular systems and is based on a diagrammatically decomposed coupled cluster singles and
doubles correlation energy. Only the second-order energy and the particle-particle ladder term
are corrected for their basis-set incompleteness error. We present absolute correlation energies
for the H2O and F2 molecules. Furthermore atomization energies for a test set containing 49
molecules are investigated and the performance of the employed basis-set correction technique is
compared to explicitly correlated methods. Our findings indicate that it is possible to achieve basis-
set reductions that are comparable to state-of-the-art F12 theories. The employed technique can
readily be transfered to other many-electron wavefunction methods without the need for three- and
four-electron integrals.

Quantum chemical many-electron theories that employ
anti-symmetrized one-particle functions (Slater determi-
nants) as a basis for the many-electron wavefunction ex-
hibit a frustratingly slow convergence of central quanti-
ties like the ground state energy to the complete basis-set
limit. A large fraction of the computational cost involved
in many-electron theory calculations of atoms, molecules
and solids originates from the need to include large num-
bers of one-electron basis functions necessary to achieve
the desired level of precision. Many techniques have been
developed to accelerate the convergence to the complete
basis-set limit including explicitly correlated methods,
transcorrelated methods or simple yet less efficient basis-
set extrapolation techniques [1–7].

It has been known since the early days of electronic
structure theory that the slow convergence of the wave-
function expansion in Slater determinants is due to short-
ranged interelectronic correlation. As the electrons coa-
lesce, a derivative discontinuity or ‘cusp’ must arise, so
that a divergence in the kinetic energy operator cancels
an opposite one in the potential [8–11]. Explicitly corre-
lated methods account for the cusp condition in an a pri-
ori manner and are commonly referred to as F12 theories,
where F12 stands for a two-electron correlation factor
that enables a compact expansion of the wavefunction at
short interelectronic distances [1, 12, 13]. F12 theories in-
troduce, however, the need for additional many-electron
integrals such as three- and sometimes even four-electron
integrals. Due to their large computational overhead,
explicitly correlated methods are generally only benefi-
cial for more complex parent methods. Furthermore they
cause substantial additional effort in their computer code
implementation. Nonetheless, thanks to their improved
basis-set convergence and reliability, they have become
an indispensable tool for quantum chemical calculations
of large systems [1, 3, 14–20].

∗ andreas.grueneis@tuwien.ac.at

In this work we apply a recently proposed basis-set
extrapolation technique for coupled cluster singles and
doubles (CCSD) theory to atoms and molecules. The
employed technique is based on a diagrammatic decom-
position of the coupled cluster correlation energy and was
first introduced to study the uniform electron gas [21].
An analysis of the decomposed correlation energy for
large basis sets has shown that the slow convergence of
the CCSD energy originates from the second-order cor-
relation energy and the so-called particle-particle ladder
term. Both contributions have been found to converge
at the same rate to the complete basis-set (CBS) limit.
Based on this observation, we have devised a basis-set
correction that is based on re-scaling the partice-particle
ladder (ppl) correlation energy contribution by a factor
that is estimated from the corresponding basis-set incom-
pleteness error of the MP2 correlation energy, which can
be obtained in a computationally significantly cheaper
manner. Previously this scheme has successfully been ap-
plied to estimate the CCSD correlation energy of simple
semiconducting and insulating solids [21]. Here, we show
that this method achieves a convergence rate that is com-
parable to state-of-the-art explicit correlation methods
for total valence electron correlation energies of molecules
and atomization energies for a large test set containg 49
molecules.
Theory. – Here, we employ a recently proposed method

to correct for the basis-set incompleteness error of CCSD
correlation energies. The central premise of this method
is that the CCSD correlation energy,

ECCSD
c = W ab

ij T
ab
ij , (1)

can be decomposed into different diagrammatic contri-
butions such that [21]

ECCSD
c = Edriver +Eppl +Ephl + Ehhl + Ephr + ...︸ ︷︷ ︸

=Erest

, (2)

where Edriver corresponds to the MP2 correlation energy
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TABLE I. Index notation for different orbital subspaces of the
complete one-electron basis. The orbitals refer to the Hartree-
Fock spatial orbital basis set over which the wavefunction
amplitudes are defined.

Occ. orbitals Virt. orbitals Complement

i, j, k, l,m, n Yes No No

a, b, c, d No Yes No

C No Yes Yes

P,Q Yes Yes Yes

Edriver = W ab
ij 〈ab|ij〉 (3)

and the particle-particle ladder term is defined as

Eppl = W ab
ij 〈ab|cd〉T cdij . (4)

T cdij is computed from the CCSD singles (tai ) and dou-

bles (tabij ) amplitudes such that T abij = tabij + tai t
b
j . t

a
i and

tabij are obtained by solving the corresponding amplitude

equations[22, 23]. W ab
ij is given by

W ab
ij =

2 〈ij|ab〉 − 〈ji|ab〉
εi + εj − εa − εb

. (5)

The employed indices are explained and summarized in
Table I. Einstein summation convention applies to re-
peated indices throughout this work.

We note that the employed decomposition of the CCSD
correlation energy is achieved by replacing the doubles
amplitudes in Eq. (1) with the corresponding right hand
side of the amplitude equations using converged CCSD
amplitudes. For the sake of brevity, we define Erest

such that it contains all remaining contributions to the
CCSD correlation energy including terms such as the
particle-hole ladder, hole-hole ladder and the particle-
hole ring. We stress that the labelling of the contribu-
tions to the correlation energy on the right hand side of
Eq. (2) is inspired by the corresponding terms in the am-
plitude equations and does not imply that the ppl term

includes particle-particle ladder contributions to the cor-
relation energy only. The latter holds only in the case of

tabij = t(1)
ab

ij where t(1)
ab

ij = 〈ab|ij〉
εi+εj−εa−εb . We note that a

similar labeling of the terms in the amplitude equations is
used by Shepherd et al. in Ref. [24]. We refer the reader
to Ref. [21] for a more detailed analysis of the different
diagrammatic contributions to the CCSD correlation en-
ergy in periodic systems.

The MP2 correlation energy, Edriver, converges as 1/L3

using a correlation consistent atom-centered Gaussian
basis set, where L refers to the cardinal number of the
employed basis set. We will argue in the following that
the first two terms on the right hand side of Eq. (2)
exhibit the same convergence rate when approaching
the complete basis set limit, constituting the dominant
source of the basis set incompleteness error of the CCSD
correlation energy. To better understand the convergence
behaviour of Eppl, we approximate the first-order ampli-
tudes using the following expression that follows from
F12 theory

t(1)
ab

ij ≈
〈
ab

∣∣∣∣(−1)
tij
γ
e−γr12

∣∣∣∣ ij〉 . (6)

tij are geminal amplitudes determined by the universal
cusp conditions [8]. The expression above implies that
the first-order doubles amplitudes can be approximated
using an expression that is similar to the corresponding
electron repulsion integral, where the Coulomb kernel has
been replaced by the Slater-type correlation factor that
depends on a parameter γ. Approximating the CCSD
doubles amplitudes tabij on the right hand side of Eq. (4)
by Eq. (6) and disregarding the contribution of single am-
plitudes, we can approximate the particle-particle ladder
contribution to the correlation energy by

Eppl ≈W ab
ij 〈ab|cd〉

〈
cd

∣∣∣∣(−1)
tij
γ
e−γr12

∣∣∣∣ ij〉 (7)

We now replace the summation over the virtual or-
bital indices c and d in Eq. (7) by the closure relation
|c〉〈c| = |P 〉〈P | − |k〉〈k|, yielding the following approxi-
mate expression for Eppl

Eppl ≈W ab
ij (−1)

tij
γ

〈ab ∣∣∣∣e−γr12r12

∣∣∣∣ ij〉+ 〈ab|kl〉
〈
kl|e−γr12 |ij

〉
− 〈ab|Pl〉

〈
Pl|e−γr12 |ij

〉︸ ︷︷ ︸
=−〈ab|Cl〉〈Cl|e−γr12 |ij〉

−〈ab|kQ〉
〈
kQ|e−γr12 |ij

〉
(8)

We stress that the particle-particle ladder contribution

to the correlation energy is positive (for tabij ≈ t(1)
ab

ij ),
whereas the last three terms in the brackets on the right
hand side of Eq. (8) yield a negative contribution. Ac-
cording to this, the leading contribution to the correla-

tion energy must be the first term in the brackets on the
right hand side of the above expression. This term con-
verges at the same rate to the complete basis set limit

as Edriver. In particular the e−γr12

r12
kernel exhibits a

singularity at r12 = 0 that causes an asymptotic basis
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FIG. 1. Basis set error for the different channels in the He
atom (∆Edriver(X), ∆Eppl(X) and ∆Erest(X)) using the aug-
cc-pVXZ basis sets. The reference energy is taken from aug-
cc-pV6Z value.

set convergence rate which is identical to MP2 theory
(1/L3). In short, we have shown above that Eppl de-
fined by Eq. (4) will converge to the CBS limit at the
same rate as Edriver if the following approximations hold

tabij ≈ t(1)
ab

ij ≈
〈
ab
∣∣∣(−1)

tij
γ e
−γr12

∣∣∣ ij〉.

We now put the analysis carried out above to a numeri-
cal test for the He atom. Figure 1 depicts the convergence
of the basis set error of the decomposed correlation en-
ergy contributions. The errors are retrieved as a function
of the cardinal number of the employed aug-cc-pVXZ ba-
sis set. Basis set errors for the corresponding channels are
defined by

∆E(X) = E(CBS)− E(X).

We refer to energies obtained in a given basis set X by
Edriver(X), Eppl(X) and Erest(X). For the results shown
in Figure 1, we estimate the CBS values using an aug-cc-
pV6Z basis. We note that ∆Edriver(X) and ∆Eppl(X)
are parallel on a logarithmic scale, whereas ∆Erest(X)
exhibits a faster convergence rate compared to the other
terms. These results illustrate that the analysis for the
uniform electron gas outlined in Ref. [21] and the approx-
imation discussed above also hold for the He atom.

Based on the analysis above and in agreement with
Ref. [21], it is reasonable to propose a finite basis set error
correction to the CCSD correlation energy that requires
the CBS limit estimate of the second-order correlation
energy Edriver(CBS) only. We define the approximation
to the CBS limit estimate of the CCSD correlation en-
ergy, CCSD-PPL, as

ECCSD−PPL
c = ECCSD

c (X) + ∆Edriver(X) + ∆Eppl(X),
(9)

where we employ the following approximation to the
particle-particle ladder correlation energy contribution

∆Eppl(X) =
Edriver(CBS)

Edriver(X)
Eppl(X)− Eppl(X) (10)

The CBS limit of the second-order correlation energy
Edriver(CBS) is approximated using a [Q5] extrapolation
throughout this work.

Computational details. – We have modified the cou-
pled cluster code in the open-source quantum chemistry
package PSI4 [25] such that the Eppl(X) contribution to
the CCSD correlation energy is computed separately at
the end of each CCSD calculation using fully converged
CCSD amplitudes. The required modifications to the ex-
isiting CCSD code are minor and we expect that other
computer code implementations of coupled cluster theory
can also be modified in such a simple manner.

In the present work we have computed atomization
energies for a molecular test set and compared to CBS
limit estimates from Ref. [3]. The employed equilibrium
geometries and reference energies have been taken from
Ref. [3].

Results. – We first seek to assess the efficiency of
CCSD-PPL for absolute valence electron correlation en-
ergies of the closed shell molecules H2O and F2. Ta-
ble II summarizes the calculated valence electron cor-
relation energies for aug-cc-pVXZ basis sets with X =
D,T,Q and results from literature obtained using F12
approaches from Refs. [3, 26] that account explicitly for
the cusp condition. The valence electron correlation en-
ergies shown in Table II demonstrate that CCSD-PPL
converges to the CBS limit with respect to the employed
basis set at a similar rate as state-of-the-art F12 theories.
Compared to CCSD theory, CCSD-PPL allows for a re-
duction by approximately two cardinal numbers in the
employed basis set size while capturing a similar fraction
of the correlation energy.

As a further test, we have employed CCSD-PPL to
compute atomization energies of a molecular test set
containing 49 molecules. Figure 2 depicts the CBS er-
ror in the valence electron correlation energy contribu-
tions to the computed CCSD and CCSD-PPL atom-
ization energies using an aug-cc-pVDZ (AVDZ), aug-cc-
pVTZ (AVTZ) and aug-cc-pVQZ (AVQZ) basis set. We
observe a monotonically decreasing error for increasing
basis set size. A corresponding statistical analysis is
summarized in Table III. We find that CCSD-PPL us-
ing AVDZ achieves on average the same level of precision
as CCSD using AVQZ as denoted by the agreement of
the mean absolute (MAD) and root mean squared (RMS)
deviations. The same holds for the maximum (MAX) de-
viation to the CBS limit estimates, demonstrating that
CCSD-PPL improves the basis set convergence in a ro-
bust manner for a wide range of systems. A compari-
son of CCSD-PPL to CCSD-F12a reveals that on aver-
age CCSD-F12a achieves a slightly better agreement with
CBS limit values for AVDZ and AVTZ. For the AVQZ ba-
sis set, CCSD-PPL is closer to the CBS limit estimates
than CCSD-F12a. However, we also note that CCSD-
F12b yields atomization energies that are on average in
an even better agreement with the CBS limit than CCSD-
F12a and CCSD-PPL when employing AVTZ and AVQZ
basis sets.
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TABLE II. Valence electron correlation energies for H2O and F2 in mH. The CCSD CBS limit values are -297.9 mH and
-601.17 mH, respectively [3].

H2O F2

AVDZ AVTZ AVQZ AVDZ AVTZ AVQZ

CCSD -227.11 -273.05 -288.21 -435.39 -538.91 -575.10

CCSD-PPL -291.44 -298.22 -299.50 -580.92 -598.32 -602.67

CCSD-F12a [3] -293.22 -298.50 -299.37 -590.81 -599.65 -602.89

CCSD-F12 [26] -289.86 -295.40 -297.23 -584.83 -594.98 -599.01
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FIG. 2. Basis set incompleteness errors of computed valence electron correlation energy contributions to the atomization
energies for a set of 49 molecules. The CCSD/CBS limit reference values have been taken from Ref. [3]. Errors are shown for
CCSD and CCSD-PPL theory using aug-cc-pVDZ (DZ), aug-cc-pVTZ (TZ) and aug-cc-pVQZ (QZ) basis sets.

TABLE III. Statistical analysis of errors depicted in Fig. 2.

MAD RMS MAX

CCSD/AVQZ 7.740 8.816 19.192

CCSD-PPL/AVDZ 5.886 7.291 19.008

CCSD-PPL/AVTZ 1.735 2.296 7.425

CCSD-PPL/AVQZ 1.015 1.264 2.728

CCSD-F12a/AVDZ[3] 5.972 7.031 18.202

CCSD-F12a/AVTZ[3] 1.534 1.859 4.102

CCSD-F12a/AVQZ[3] 1.910 2.167 4.654

CCSD-F12b/AVDZ[3] 8.390 10.230 27.434

CCSD-F12b/AVTZ[3] 1.717 2.144 6.138

CCSD-F12b/AVQZ[3] 0.554 0.701 1.714

Concluding Remarks. – We have applied a recently
introduced finite basis-set correction method for cou-
pled cluster singles and doubles theory (CCSD-PPL) to
atoms and molecules. The method is based on a decom-
posed correlation energy and corrects for the basis-set in-

completeness error in the second-order and the particle-
particle ladder term of the CCSD energy only. Com-
pared to CCSD, CCSD-PPL allows for a reduction of
atom centered correlation consistent Gaussian basis sets
by approximately two cardinal numbers, while capturing
a similar fraction of the CBS limit correlation energy.
We have applied CCSD-PPL to a test set containing 49
molecules, demonstrating a similar level of precision on
approach to the CBS limit values for atomization energies
as state-of-the-art F12 theories. We stress that it is possi-
ble to transfer the outlined method to other widely-used
many-electron theories that allow for a decomposition of
the electronic correlation energy such as full configura-
tion interaction and related theories. Finally, we note
that the employed decomposition of the electronic corre-
lation energy will potentially also be useful for the further
development and improvement of correlation factors used
in F12 theories.
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