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I. INTRODUCTION

II. THEORY

A. The DFT basis-set correction in a nutshell

�e basis-set correction investigated here proposes to use
the RSDFT formalism to capture a part of the short-range cor-
relation e�ects missing from the description of the WFT in a
�nite basis set. Here, we brie�y explain the working equations
and notations needed for this work, and the interested reader
can �nd the detailed formal derivation of the theory in? .

B. The very basics

Consider an incomplete basis-set B for which we assume
to have accurate approximations of both the FCI density nΨBFCI
and energy EBFCI. According to equation (15) of? , one can
approximate the exact ground state energy E0 as

E0 ≈ EBFCI + ĒB [nΨBFCI
] (1)

where ĒB [n] is the complementary density functional de�ned
in equation (8) of? , which aims at correcting the basis-set
error introduced by the incompleteness of B.

Such a functional is not universal as it depends on the basis
set B used. �e exact form of this functional is of course not
known and we approximate it in two-steps. First, we de�ne a
real-space representation of the coulomb interaction truncated
in B, which is then ��ed with a long-range interaction thanks
to a range-separation parameter µ(r) varying in space (see
�). �en, we choose a speci�c class of short-range density
functionals, namely the short-range correlation functionals
with multi-determinantal reference introduced by Toulouse
et al? , that we evaluate with the range-separation parameter
µ(r) varying in space at the FCI density nΨBFCI

(see �).

C. Definition of a real-space representation of the
coulomb operator truncated in a basis-set B

One of the consequences of the use of an incomplete basis-
setB is that the wave function does not present a cusp near the
electron coalescence point, which means that all derivatives of
the wave function are continuous. As the exact electronic cusp
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originates from the divergence of the coulomb interaction at
the electron coalescence point, a cusp-free wave function
could also come from a non-divergent electron-electron inter-
action. �erefore, the use of a �nite basis-set B can be thought
as a cu�ing of the divergence of the coulomb interaction at
the electron coalescence point.
�e present paragraph brie�y describes how to obtain an

e�ective interaction WΨB (X1, X2) which:

• is non-divergent at the electron coalescence point as
long as an incomplete basis set B is used

• tends to the regular 1/r12 interaction in the limit of a
complete basis set B.

1. General definition of an e�ective interaction for the
basis set B

Consider the coulomb operator projected in the basis-set B

ŴBee =
1
2 ∑

ijkl ∈ B
Vkl

ij â†
k â†

l âj âi, (2)

where the indices run over all orthonormal spin-orbitals
in B and Vkl

ij are the usual coulomb two-electron integrals.
Consider now the expectation value of ŴBee over a general
wave function ΨB belonging to the N−electron Hilbert space
spanned by the basis set B. A�er a few mathematical work
(see appendix A of? for a detailed derivation), such an expec-
tation value can be rewri�en as an integral over IR6:〈

ΨB
∣∣∣ ŴBee ∣∣∣ΨB〉 =

1
2

∫∫
dX1 dX2 fΨB (X1, X2), (3)

where the function fΨB (X1, X2) is de�ned as:

fΨB (X1, X2) = ∑
ijklmn ∈ B

Vkl
ij Γmn

kl [ΨB ]

φn(X2)φm(X1)φi(X1)φj(X2),
(4)

Γpq
mn[ΨB ] is the two-body density matrix of ΨB

Γpq
mn[ΨB ] =

〈
ΨB
∣∣∣ â†

p â†
q ân âm

∣∣∣ΨB〉, (5)

and X collects the space and spin variables,

X = (r, σ) r ∈ IR3, σ = ±1
2∫

dX = ∑
σ=± 1

2

∫
IR3

dr.
(6)
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�en, consider the expectation value of the exact coulomb
operator over ΨB

〈
ΨB
∣∣∣ Ŵee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2

1
r12

n(2)
ΨB (X1, X2) . (7)

where n(2)
ΨB (X1, X2) is the two-body density associated to ΨB .

Because ΨB belongs to B, such an expectation value coincides
with the expectation value of ŴBee〈

ΨB
∣∣∣ ŴBee ∣∣∣ΨB〉 =

〈
ΨB
∣∣∣ Ŵee

∣∣∣ΨB〉, (8)

which can be rewri�en as:
∫∫

dX1 dX2 WΨB (X1, X2) n(2)
ΨB (X1, X2)

=
∫∫

dX1 dX2
1

‖r1 − r2‖
n(2)

ΨB (X1, X2).
(9)

where we introduced WΨB (X1, X2)

WΨB (X1, X2) =
fΨB (X1, X2)

n(2)
ΨB (X1, X2)

, (10)

which is the e�ective interaction in the basis set B.
As already discussed in? , such an e�ective interaction is

symmetric, a priori non translational nor rotational invariant
if the basis set B does not have such symmetries and is neces-
sary �nite at the electron coalescence point for an incomplete
basis set B. Also, as demonstrated in the appendix B of? ,
WΨB (X1, X2) tends to the regular coulomb interaction 1/r12
for all points in IR6 in the limit of a complete basis set B.

2. Definition of a valence e�ective interaction

As the average inter electronic distances are very di�erent
between the valence electrons and the core electrons, it can
be advantageous to de�ne an e�ective interaction taking into
account only for the valence electrons which are the most
important in most of the chemical processes.
According to (10) and (11), the e�ective interaction is de-

�ned by the expectation value of the coulomb operator over
a wave function ΨB . �erefore, to de�ne an e�ective inter-
action accounting only for the valence electrons, one simply
needs to de�ne the following function f valΨB (X1, X2) satisfying〈

ΨB
∣∣∣ ŴBvalee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2 f valΨB (X1, X2), (11)

where ŴBvalee is the valence coulomb operator de�ned as

ŴBvalee =
1
2 ∑

ijkl ∈ Bval
Vkl

ij â†
k â†

l âj âi, (12)

Bval is a given set of molecular orbitals associated to the va-
lence space which will be de�ned later on, and the function
f valΨB (X1, X2)

f valΨB (X1, X2) = ∑
ijklmn ∈ Bval

Vkl
ij Γmn

kl [ΨB ]

φn(X2)φm(X1)φi(X1)φj(X2),
(13)

III. RESULTS

A. The case of C2 and the comparison with the F12
methods.
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TABLE I. Dissociation energy (De) in kcal/mol of the F2 molecule computed using FCIQMC, CIPSI, FCIQMC+F12, CIPSI+LDAHF and
CIPSI+LDAHF-val (valence only interaction and density) in the Dunnng cc-pVXZ (VXZ) basis sets. a Results from Ref? taking into account the
ZPE correction.

CIPSI CIPSI+LDAHF CIPSI+LDAHF-val CIPSI+PBEHF CIPSI+PBEHF-val
V2Z 27.5 30.8 31.1 32.1 32.4
V3Z 35.4 37.0 37.5 37.5 37.8
V4Z 37.5 38.7 38.8 38.7 38.8
V5Z 38.0 38.7 38.8 38.7 38.8

Estimated exact
38.2a

TABLE II. Dissociation energy (De) in kcal/mol of the C2, O2, N2 and F2 molecules computed with various methods and basis sets.

Dunning’s basis set
Molecule Method cc-pVDZ cc-pVTZ cc-pVQZ cc-pV5Z Exp.
C2 FCIQMC 130.0(1) 139.9(3) 143.3(2) 146.9(5)a

FCIQMC+F12 142.3 145.3
exFCI 132.0 140.3 143.6 144.3
exFCI+LDA 141.9 142.8 145.8 146.2
exFCI+LDA(FC) 142.9 145.5 146.2 146.1
exFCI+PBE 146.1 143.9 145.9 145.12
exFCI+PBE (FC) 147.7 146.3 146.4 146.0
exFCI+PBE-on-top 142.7 142.7 145.3 144.9
exFCI+PBE-on-top(FC) 143.3 144.7 145.7 145.6

N2 exFCI 200.9 217.1 223.5 225.7 228.5b

exFCI+LDA 216.3 223.1 227.9 227.9
exFCI+LDA(FC) 218.2 225.8 228.8 228.4
exFCI+PBE 225.3 225.6 228.2 227.9
exFCI+PBE (FC) 228.6 228.1 228.9 228.6
exFCI+PBE-on-top 222.3 224.6 227.7 227.7
exFCI+PBE-on-top(FC) 224.8 226.7 228.3 228.3

O2 exFCI 105.3 114.6 118.0 119.1 120.2b

exFCI+LDA 111.8 117.2 120.0 119.9
exFCI+LDA(FC) 112.5 118.5 120.2 120.2
exFCI+PBE 115.9 118.4 120.1 119.9
exFCI+PBE (FC) 117.5 119.5 120.4 120.3
exFCI+PBE-on-top 115.0 118.4 120.2
exFCI+PBE-on-top(FC) 116.1 119.4 120.5

F2 exFCI 27.5 35.4 37.5 38.0 38.2b

exFCI+LDA 30.8 37.0 38.7 38.7
exFCI+LDA(FC) 31.1 37.5 38.8 38.8
exFCI+PBE 33.3 37.8 38.8 38.7
exFCI+PBE (FC) 33.9 38.2 39.0 38.8
exFCI+PBE-on-top 32.1 37.5 38.7 38.7
exFCI+PBE-on-top(FC) 32.4 37.8 38.8 38.8

a Results from Ref. ? .
b Results from Ref. ? .
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