\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace,wrapfig} \usepackage{mathpazo,libertine} \usepackage{natbib} \bibliographystyle{achemso} \AtBeginDocument{\nocite{achemso-control}} \newcommand{\alert}[1]{\textcolor{red}{#1}} \definecolor{darkgreen}{HTML}{009900} \usepackage[normalem]{ulem} \newcommand{\titou}[1]{\textcolor{red}{#1}} \newcommand{\juju}[1]{\textcolor{purple}{#1}} \newcommand{\manu}[1]{\textcolor{darkgreen}{#1}} \newcommand{\toto}[1]{\textcolor{brown}{#1}} \newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}} \newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}} \newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}} \newcommand{\trashAS}[1]{\textcolor{brown}{\sout{#1}}} \newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}} \newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}} \newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}} \newcommand{\AS}[1]{\toto{(\underline{\bf TOTO}: #1)}} \usepackage{hyperref} \hypersetup{ colorlinks=true, linkcolor=blue, filecolor=blue, urlcolor=blue, citecolor=blue } \newcommand{\mc}{\multicolumn} \newcommand{\fnm}{\footnotemark} \newcommand{\fnt}{\footnotetext} \newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}} \newcommand{\SI}{\textcolor{blue}{supporting information}} \newcommand{\QP}{\textsc{quantum package}} % second quantized operators \newcommand{\ai}[1]{\hat{a}_{#1}} \newcommand{\aic}[1]{\hat{a}^{\dagger}_{#1}} % units \newcommand{\IneV}[1]{#1 eV} \newcommand{\InAU}[1]{#1 a.u.} \newcommand{\InAA}[1]{#1 \AA} \newcommand{\kcal}{kcal/mol} % methods \newcommand{\D}{\text{D}} \newcommand{\T}{\text{T}} \newcommand{\Q}{\text{Q}} \newcommand{\X}{\text{X}} \newcommand{\UEG}{\text{UEG}} \newcommand{\HF}{\text{HF}} \newcommand{\ROHF}{\text{ROHF}} \newcommand{\LDA}{\text{LDA}} \newcommand{\PBE}{\text{PBE}} \newcommand{\FCI}{\text{FCI}} \newcommand{\CBS}{\text{CBS}} \newcommand{\exFCI}{\text{exFCI}} \newcommand{\CCSDT}{\text{CCSD(T)}} \newcommand{\lr}{\text{lr}} \newcommand{\sr}{\text{sr}} \newcommand{\Ne}{N} \newcommand{\NeUp}{\Ne^{\uparrow}} \newcommand{\NeDw}{\Ne^{\downarrow}} \newcommand{\Nb}{N_{\Bas}} \newcommand{\Ng}{N_\text{grid}} \newcommand{\nocca}{n_{\text{occ}^{\alpha}}} \newcommand{\noccb}{n_{\text{occ}^{\beta}}} \newcommand{\n}[2]{n_{#1}^{#2}} \newcommand{\Ec}{E_\text{c}} \newcommand{\E}[2]{E_{#1}^{#2}} \newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}} \newcommand{\bEc}[1]{\Bar{E}_\text{c,md}^{#1}} \newcommand{\e}[2]{\varepsilon_{#1}^{#2}} \newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}} \newcommand{\bec}[1]{\Bar{e}^{#1}} \newcommand{\wf}[2]{\Psi_{#1}^{#2}} \newcommand{\W}[2]{W_{#1}^{#2}} \newcommand{\w}[2]{w_{#1}^{#2}} \newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}} \newcommand{\rsmu}[2]{\mu_{#1}^{#2}} \newcommand{\V}[2]{V_{#1}^{#2}} \newcommand{\SO}[2]{\phi_{#1}(\br{#2})} \newcommand{\modY}{Y} \newcommand{\modZ}{Z} % basis sets \newcommand{\Bas}{\mathcal{B}} \newcommand{\BasFC}{\mathcal{A}} \newcommand{\FC}{\text{FC}} \newcommand{\occ}{\text{occ}} \newcommand{\virt}{\text{virt}} \newcommand{\val}{\text{val}} \newcommand{\Cor}{\mathcal{C}} % operators \newcommand{\hT}{\Hat{T}} \newcommand{\hWee}[1]{\Hat{W}_\text{ee}^{#1}} \newcommand{\updw}{\uparrow\downarrow} \newcommand{\f}[2]{f_{#1}^{#2}} \newcommand{\Gam}[2]{\Gamma_{#1}^{#2}} % coordinates \newcommand{\br}[1]{\mathbf{r}_{#1}} \newcommand{\dbr}[1]{d\br{#1}} \newcommand{\ra}{\rightarrow} % frozen core \newcommand{\WFC}[2]{\widetilde{W}_{#1}^{#2}} \newcommand{\fFC}[2]{\widetilde{f}_{#1}^{#2}} \newcommand{\rsmuFC}[2]{\widetilde{\mu}_{#1}^{#2}} \newcommand{\nFC}[2]{\widetilde{n}_{#1}^{#2}} \newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France} \newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Sorbonne Universit\'e, CNRS, Paris, France} \newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France} \begin{document} \title{A Density-Based Basis-Set Correction For Wave Function Theory} \author{Pierre-Fran\c{c}ois Loos} \email{loos@irsamc.ups-tlse.fr} \affiliation{\LCPQ} \author{Bath\'elemy Pradines} \affiliation{\LCT} \affiliation{\ISCD} \author{Anthony Scemama} \affiliation{\LCPQ} \author{Julien Toulouse} \email{toulouse@lct.jussieu.fr} \affiliation{\LCT} \author{Emmanuel Giner} \email{emmanuel.giner@lct.jussieu.fr} \affiliation{\LCT} \begin{abstract} \begin{wrapfigure}[12]{o}[-1.2cm]{0.4\linewidth} \centering \includegraphics[width=\linewidth]{TOC} \end{wrapfigure} We report a universal density-based basis-set incompleteness correction that can be applied to any wave function method. The present correction, which appropriately vanishes in the complete basis set (CBS) limit, relies on short-range correlation density functionals (with multi-determinant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis-set incompleteness error. Contrary to conventional RS-DFT schemes which require an \textit{ad hoc} range-separation \textit{parameter} $\mu$, the key ingredient here is a range-separation \textit{function} $\mu(\bf{r})$ that automatically adapts to the spatial non-homogeneity of the basis-set incompleteness error. As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T) atomization and correlation energies near the CBS limit for the G2 set of molecules with compact Gaussian basis sets. \end{abstract} \maketitle