Supplementary Material

F. R. Petruzielo, Julien Toulouse, C. J. Umrigar (Dated: March 20, 2012)

1 Hydrogen Basis Sets

The s contraction for the hydrogen basis sets is given in Table 1. The Gauss-Slater (GS) primitives for the double-zeta (2z) atomic natural orbital GS (ANO-GS) basis for hydrogen are provided in Table 2. The GS primitives for the triple-zeta (3z) ANO-GS basis for hydrogen are provided in Table 3. The Gaussian primitives for the quintuple-zeta (5z) Gaussian basis for hydrogen are provided in Table 4. Each basis was constructed using the methods of Ref. [1].

Table 1: s contraction for hydrogen basis sets. The contraction was constructed using the method of Ref. [1].

Exponent	Coefficient
0.05559917	0.070858475
0.11675826	0.283134279
0.24519235	0.347654627
0.51490394	0.233232914
1.08129828	0.119346810
2.27072639	0.053366645
4.76852541	0.022054957
10.01390336	0.011743843
21.02919706	0.000820785

Table 2: Primitives for 2z ANO-GS basis for hydrogen. The primitives were constructed using the method of Ref. [1].

Function	Exp.
GS-1S	1.946875
GS-2P	1.968750

Table 3: Primitives for 3z ANO-GS basis for hydrogen. The primitives were constructed using the method of Ref. [1].

Function	Exp.
GS-1S	0.925000
GS-1S	1.968750
GS-2P	1.887500
GS-2P	2.553125
GS-3D	2.659375

Function	Exp.
1S	0.0692135
1S	0.1736131
1S	0.4543641
1S	1.3072524
2P	0.2370069
2P	0.6258464
2P	1.6114234
2P	5.1965679
3D	0.5106775
3D	1.3660613
3D	3.2652161
$4\mathrm{F}$	0.6792030
$4\mathrm{F}$	2.0042817

Table 4: Primitives for 5z Gaussian basis for hydrogen. The primitives were constructed using the method of Ref. [1].

2 Setup and Reference Data

The geometries, zero point energies, and experimental atomization energies for the molecules of the G2 set [5] are provided in Table 5.

Table 5: Geometries, zero point energies, and experimental atomization energies for the molecules of the G2 set [5]. Some experimental error bars were not available (N/A).

System	Geometry	ZPE (kcal/mol)	Expt. Atomization Energy (kcal/mol)
LiH	[6]	1.99 [6]	56 ± 0.01 [7]
BeH	[6]	2.92[6]	46.9 ± 0.01 [7]
CH	[6]	4.04 [6]	79.9 ± 0.02 [7]
$CH_2 ({}^{3}B_1)$	[6]	10.55~[6]	$179.6 \pm N/A$ [7]
CH_2 (¹ A ₁)	[6]	10.29~[6]	$170.6 \pm N/A$ [7]
CH_3	[6]	18.55~[6]	289.3 ± 0.2 [7]
CH_4	[6]	27.74 [6]	392.5 ± 0.1 [7]
NH	[6]	4.64 [6]	79 ± 0.4 [7]
$\rm NH_2$	[6]	11.84 [6]	170 ± 0.3 [7]
NH_3	[6]	21.33 [6]	276.7 ± 0.1 [7]
OH	[6]	5.29 [6]	101.4 ± 0.3 [7]
H_2O	[6]	13.26 [6]	219.35 ± 0.01 [7]
$_{ m HF}$	[6]	5.86 [6]	135.2 ± 0.2 [7]
SiH_2 (¹ A ₁)	[8]	7.3 [7]	144.4 ± 0.7 [7]
SiH_2 (³ B ₁)	[9]	7.5 [7]	123.4 ± 0.7 [7]
SiH_3	[8]	13.2 [7]	213.8 ± 1.2 [7]
SiH_4	[8]	19.4 [7]	302.6 ± 0.5 [7]
PH_2	[8]	8.4 [7]	144.7 ± 0.6 [7]
PH_3	[6]	14.44 [6]	228.6 ± 0.4 [7]
H_2S	[6]	9.4 [6]	173.1 ± 0.2 [7]
HCl	[6]	4.24 [6]	102.24 ± 0.5 [7]
Li_2	[10]	0.5 [6]	23.9 ± 0.7 [7]

Table $5 - c$	ontinued		
System	Geometry	ZPE (kcal/mol)	Expt. Atomization Energy (kcal/mol)
LiF	[10]	1.3 [7]	137.6 ± 2 [7]
C_2H_2	[6]	16.5 [6]	386.9 ± 0.2 [7]
C_2H_4	[6]	31.66~[6]	531.9 ± 0.1 [7]
C_2H_6	[6]	46.23~[6]	$666.3 \pm N/A$ [7]
CN	[6]	2.95 [6]	$178.1 \pm 2.4 \ [7]$
HCN	[6]	9.95~[6]	301.7 ± 2 [7]
CO	[6]	3.09~[6]	256.2 ± 0.2 [7]
HCO	[6]	8.09~[6]	270.3 ± 2 [7]
H_2CO	[6]	$16.52 \ [6]$	357.2 ± 0.1 [7]
H_3COH	[8]	31.72~[6]	$480.8 \pm N/A$ [7]
N_2	[6]	3.36~[6]	225.1 ± 0.4 [7]
N_2H_4	[8]	32.68~[6]	$405.4 \pm { m N/A}$ [7]
NO	[6]	$2.71 \ [6]$	$150.06 \pm 0.04 \ [7]$
O_2	[10]	$2.25 \ [6]$	$117.96 \pm 0.02 \ [7]$
H_2O_2	[6]	$16.44 \ [6]$	$252.3 \pm N/A$ [7]
F_2	[10]	$1.3 \ [6]$	$36.9 \pm 0.1 \ [7]$
$\rm CO_2$	[6]	7.24~[6]	381.93 ± 0.01 [7]
Na_2	[8]	0.2 [7]	$16.8 \pm 0.3 \ [7]$
Si_2	[10]	0.73~[6]	$74 \pm { m N/A}$ [7]
P_2	[10]	$1.11 \ [6]$	$116.1 \pm 0.5 \ [7]$
S_2	[10]	1.04~[6]	100.66 ± 0.07 [7]
Cl_2	[6]	0.8 [6]	57.18 ± 0.01 [7]
NaCl	[8]	0.5 [7]	$97.3 \pm 0.5 \ [7]$
SiO	[6]	1.78[6]	189.9 ± 2 [7]
CS	[10]	$1.83 \ [6]$	$169.4 \pm 6 \ [7]$
SO	[6]	1.63~[6]	$123.4 \pm 0.3 \ [7]$
ClO	[10]	1.22~[6]	$63.42 \pm 0.02 \ [7]$
ClF	[6]	$1.12 \ [6]$	$60.4 \pm N/A$ [7]
$\rm Si_2H_6$	[8]	30.5 [7]	$500.1 \pm N/A$ [7]
CH_3Cl	[6]	23.19[6]	$371 \pm N/A$ [7]
H_3CSH	[8]	28.6[7]	$445.1 \pm N/A$ [7]
HOCl	[6]	8.18[6]	156.3 ± 0.5 [7]
SO_2	[10]	4.38 [6]	254 ± 0.2 [7]

3 Raw Data

3.1 Locality Approximation

This section contains the raw data for those systems handled with the locality approximation [11]. The diffusion Monte Carlo (DMC) total energies of the molecules from the G2 set and their atoms for a single determinant Slater-Jastrow (SJ) trial wavefunction composed of Hartree-Fock (HF) orbitals are given in Table 6. The DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of variational Monte Carlo (VMC) optimized orbitals are given in Table 7. The DMC total energies of the molecules from the G2 set and their atoms for a CAS SJ trial wavefunction with an s and p active space are given in Table 8. The DMC total energies of the phosphorus containing molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized orbitals, a CAS SJ trial wavefunction with an s and p active space, and a CAS SJ trial wavefunction with an s, p, and d active space are given in Table 9.

Table 6: DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of HF orbitals. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	2z	3z	5z
Н	-0.500006(1)	-0.500006(1)	-0.500006(1)
Li	-0.1963297(5)	-0.1963297(7)	-0.196329(2)
\mathbf{C}	-5.42251(7)	-5.42233(8)	-5.42236(7)
Ν	-9.79127(7)	-9.79109(5)	-9.79123(6)
Ο	-15.89289(8)	-15.89228(8)	-15.89254(8)
F	-24.18633(8)	-24.18594(7)	-24.18609(7)
Na	-0.1821457(7)	-0.1821441(7)	-0.182145(2)
Si	-3.76661(5)	-3.76662(5)	-3.76654(5)
Р	-6.47660(7)	-6.47648(5)	-6.47645(7)
\mathbf{S}	-10.13125(9)	-10.13103(9)	-10.1311(1)
Cl	-14.97223(6)	-14.97168(6)	-14.97179(6)
CH	-6.05266(7)	-6.05399(9)	-6.05422(8)
CH_2 (¹ A ₁)	-6.7061(1)	-6.70751(9)	-6.70792(9)
CH_3	-7.41421(9)	-7.41476(8)	-7.41490(8)
CH_4	-8.09421(9)	-8.09441(9)	-8.09451(8)
NH	-10.41946(8)	-10.42028(7)	-10.42068(8)
$\rm NH_2$	-11.07601(9)	-11.07774(9)	-11.07834(9)
$\rm NH_3$	-11.7593(1)	-11.76181(8)	-11.76266(9)
OH	-16.56031(9)	-16.56126(9)	-16.56142(9)
H_2O	-17.25949(8)	-17.26123(8)	-17.26175(9)
HF	-24.90895(8)	-24.91024(7)	-24.91083(8)
SiH_2 (¹ A ₁)	-5.00856(7)	-5.00925(7)	-5.00952(7)
SiH_2 (³ B_1)	-4.97656(7)	-4.97723(7)	-4.97709(6)
SiH_3	-5.6280(1)	-5.62910(8)	-5.62906(9)
SiH_4	-6.28261(9)	-6.28418(8)	-6.28428(7)
PH_2	-7.71744(8)	-7.71798(8)	-7.71812(8)
PH_3	-8.35619(7)	-8.35676(7)	-8.35696(7)
H_2S	-11.41932(8)	-11.41962(7)	-11.42012(7)
HCl	-15.64183(8)	-15.64178(8)	-15.64211(8)
Li ₂	-0.43045(2)	-0.43053(3)	-0.43053(2)
C_2H_4	-13.74229(8)	-13.7433(1)	-13.74348(8)
C_2H_6	-14.98415(8)	-14.9851(1)	-14.9850(1)
CO	-21.7192(1)	-21.7232(1)	-21.7238(1)
H_2CO	-22.9038(1)	-22.9080(1)	-22.9082(1)
H ₃ COH	-24.12892(9)	-24.13207(8)	-24.13271(8)
N_2	-19.9296(1)	-19.9333(1)	-19.9338(1)
N_2H_4	-22.26561(9)	-22.27033(9)	-22.27206(8)
NO	-25.9062(1)	-25.9108(1)	-25.9117(1)
O_2	-31.9642(1)	-31.9679(1)	-31.9691(1)
H_2O_2	-33.1973(1)	-33.2013(1)	-33.2025(1)
F ₂	-48.4134(1)	-48.4146(1)	-48.41757(9)
CO_2	-37.8168(1)	-37.8228(1)	-37.8235(1)
Na_2	-0.39102(2)	-0.39106(2)	-0.39104(2)
S_{1_2}	-7.6498(1)	-7.6505(1)	-7.65031(9)
P_2	-13.1256(1)	-13.1273(1)	-13.1275(1)
\mathbf{S}_2	-20.4191(1)	-20.4207(1)	-20.4214(1)

Table $6 - co$	ntinued		
System	2z	3z	5z
Cl_2	-30.0309(1)	-30.0305(1)	-30.03165(9)
SiO	-19.9535(1)	-19.96031(9)	-19.96104(8)
\mathbf{CS}	-15.8151(1)	-15.8169(1)	-15.8185(1)
SO	-26.2105(1)	-26.2159(1)	-26.21669(9)
ClO	-30.9457(1)	-30.9475(1)	-30.9486(1)
ClF	-39.2434(1)	-39.24608(9)	-39.2478(1)
$\rm Si_2H_6$	-11.3836(1)	-11.3857(1)	-11.38579(9)
CH_3Cl	-22.5236(1)	-22.5245(1)	-22.5249(1)
H_3CSH	-18.30598(9)	-18.3071(1)	-18.30752(9)
HOCl	-31.61547(9)	-31.6179(1)	-31.6193(1)
SO_2	-42.2986(1)	-42.3125(1)	-42.3152(1)

Table 7: The DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized orbitals. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	2z	3z	5z
Н	-0.5000005(1)	-0.500006(1)	-0.5000005(1)
Li	-0.1963295(4)	-0.1963292(4)	-0.1963296(3)
С	-5.42288(7)	-5.42292(7)	-5.42296(6)
Ν	-9.79213(6)	-9.79230(6)	-9.79229(6)
Ο	-15.8930(1)	-15.89305(8)	-15.89310(7)
F	-24.18619(5)	-24.18651(7)	-24.18636(8)
Na	-0.1821438(7)	-0.1821446(4)	-0.1821438(4)
Si	-3.76682(5)	-3.76676(4)	-3.76683(4)
Р	-6.47688(9)	-6.47699(5)	-6.47686(5)
S	-10.1317(1)	-10.13184(8)	-10.13189(7)
Cl	-14.97253(6)	-14.97252(6)	-14.97261(6)
CH	-6.05388(8)	-6.05473(7)	-6.05476(9)
CH_2 (¹ A ₁)	-6.70711(9)	-6.70861(8)	-6.70860(7)
CH_3	-7.41489(7)	-7.41544(9)	-7.41549(7)
CH_4	-8.09523(7)	-8.09523(8)	-8.09523(8)
NH	-10.42146(8)	-10.42200(8)	-10.42186(7)
NH_2	-11.07824(9)	-11.07960(8)	-11.07962(8)
NH_3	-11.76205(8)	-11.76368(7)	-11.76378(7)
OH	-16.56188(9)	-16.56243(8)	-16.56264(9)
H_2O	-17.26195(8)	-17.26298(8)	-17.26313(8)
$_{ m HF}$	-24.91098(7)	-24.91170(6)	-24.91175(7)
SiH_2 (¹ A ₁)	-5.00947(5)	-5.01034(5)	-5.01055(4)
SiH_2 (³ B ₁)	-4.97846(4)	-4.97932(3)	-4.97952(3)
SiH_3	-5.62975(6)	-5.63077(6)	-5.63097(5)
SiH_4	-6.28405(6)	-6.28526(5)	-6.28548(5)
PH_2	-7.71870(8)	-7.71952(6)	-7.71994(6)
PH_3	-8.35790(7)	-8.35892(5)	-8.35921(6)
H_2S	-11.42111(8)	-11.42203(7)	-11.42238(7)
HCl	-15.64294(7)	-15.64345(7)	-15.64374(7)
Li_2	-0.43069(2)	-0.43069(5)	-0.43077(4)
C_2H_4	-13.74413(7)	-13.74453(6)	-13.74477(7)

Table $7 - c$	ontinued		
System	2z	3z	5z
C_2H_6	-14.98622(7)	-14.98643(7)	-14.98640(6)
CO	-21.72262(9)	-21.72572(9)	-21.72617(9)
H_2CO	-22.9080(1)	-22.91048(9)	-22.91083(9)
H_3COH	-24.13189(8)	-24.13417(7)	-24.1348(1)
N_2	-19.93256(9)	-19.93600(9)	-19.93638(9)
N_2H_4	-22.26927(9)	-22.27373(7)	-22.27469(8)
NO	-25.9119(1)	-25.91612(9)	-25.91693(9)
O_2	-31.9682(1)	-31.9707(1)	-31.9719(1)
H_2O_2	-33.2030(1)	-33.20627(8)	-33.20778(9)
F_2	-48.4216(1)	-48.42302(9)	-48.42522(8)
$\rm CO_2$	-37.8259(1)	-37.8287(1)	-37.8291(1)
Na_2	-0.39104(1)	-0.39104(4)	-0.39106(2)
Si_2	-7.65138(6)	-7.65274(8)	-7.65279(7)
P_2	-13.12785(9)	-13.1300(1)	-13.13077(9)
S_2	-20.4211(1)	-20.4236(1)	-20.4248(1)
Cl_2	-30.03397(9)	-30.03514(9)	-30.03684(8)
SiO	-19.95896(9)	-19.96336(9)	-19.96385(7)
\mathbf{CS}	-15.81932(9)	-15.82302(9)	-15.82387(8)
\mathbf{SO}	-26.21600(9)	-26.22047(9)	-26.22172(9)
ClO	-30.9600(1)	-30.96312(9)	-30.96463(9)
ClF	-39.24935(9)	-39.25234(7)	-39.25406(8)
$\rm Si_2H_6$	-11.38585(8)	-11.38818(7)	-11.38840(7)
CH_3Cl	-22.5259(1)	-22.5266(1)	-22.5275(1)
H_3CSH	-18.30852(9)	-18.30988(8)	-18.31105(7)
HOCl	-31.62113(9)	-31.62387(9)	-31.62501(8)
SO_2	-42.3125(1)	-42.32256(8)	-42.32431(8)

Table 8: The DMC total energies of the molecules from the G2 set and their atoms for a CAS SJ trial wavefunction with an s and pactive space. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	3z
Н	-0.500006(1)
Li	-0.1963292(4)
\mathbf{C}	-5.42823(6)
Ν	-9.79230(6)
0	-15.89305(8)
\mathbf{F}	-24.18651(7)
Na	-0.1821446(4)
Si	-3.76711(4)
Р	-6.47699(5)
\mathbf{S}	-10.13184(8)
Cl	-14.97252(6)
CH	-6.06239(6)
$CH_2 ({}^{1}A_1)$	-6.71713(6)
CH ₃	-7.41764(6)
CH_4	-8.09730(6)
NH	-10.42390(7)

Table 8 – co	ntinued
System	3z
$\rm NH_2$	-11.08219(7)
$\rm NH_3$	-11.76623(6)
OH	-16.56411(8)
H_2O	-17.26521(7)
$_{ m HF}$	-24.91286(7)
SiH_2 (¹ A ₁)	-5.01238(4)
SiH_2 (³ B ₁)	-4.97970(3)
SiH_3	-5.63114(4)
SiH_4	-6.28571(4)
PH_2	-7.72051(5)
PH_3	-8.36003(5)
H_2S	-11.42305(7)
HCl	-15.64382(5)
Li_2	-0.431584(5)
C_2H_4	-13.75239(8)
C_2H_6	-14.99037(9)
CO	-21.73788(7)
H_2CO	-22.9190(1)
H_3COH	-24.14011(5)
N_2	-19.95032(7)
N_2H_4	-22.27934(5)
NO	-25.92787(8)
O_2	-31.97692(9)
H_2O_2	-33.21410(9)
F_2	-48.43320(8)
$\rm CO_2$	-37.83890(7)
Na_2	-0.39106(2)
Si_2	-7.65485(7)
P_2	-13.13441(8)
S_2	-20.42452(9)
Cl_2	-30.03679(9)
SiO	-19.96885(7)
\mathbf{CS}	-15.83223(6)
SO	-26.22235(9)
ClO	-30.96605(8)
ClF	-39.25596(7)
$\rm Si_2H_6$	-11.38838(7)
CH ₃ Cl	-22.52839(7)
H_3CSH	-18.3128(1)
HOCl	-31.6278(1)
SO_2	-42.33049(6)

T-Moves 3.2

This section contains the raw data for those systems handled with the size-consistent version of T-Moves [12]. The DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of HF orbitals are given in Table 10. The DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized

Table 9: The DMC total energies of the phosphorus containing molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized orbitals, a CAS SJ trial wavefunction with an s and p active space, and a CAS SJ trial wavefunction with an s, p, and d active space. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	1 CSF	$s, p \ CAS$	s, p, d CAS
Н	-0.500006(1)	-0.500006(1)	-0.5000006(1)
Р	-6.47699(5)	-6.47699(5)	-6.47753(5)
PH_2	-7.71952(6)	-7.72051(5)	-7.72183(5)
PH_3	-8.35892(5)	-8.36003(5)	-8.36145(6)
P_2	-13.1300(1)	-13.13441(8)	-13.13814(7)

orbitals are given in Table 11. The DMC total energies of the molecules from the G2 set and their atoms for a CAS SJ trial wavefunction with an s and p active space are given in Table 12.

Table 10: DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of HF orbitals. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	2z	3z	5z
Н	-0.500006(1)	-0.500006(1)	-0.500006(1)
Li	-0.1963297(5)	-0.1963297(7)	-0.196329(2)
Be	-1.00918(5)	-1.00928(4)	-1.00926(5)
С	-5.42211(7)	-5.42206(7)	-5.42194(6)
Ν	-9.79121(5)	-9.79092(6)	-9.79123(6)
Ο	-15.89194(8)	-15.89176(8)	-15.89184(7)
F	-24.18514(7)	-24.18515(7)	-24.18527(7)
Na	-0.1821457(7)	-0.1821441(7)	-0.182145(2)
Cl	-14.97154(6)	-14.97117(6)	-14.97115(7)
LiH	-0.78787(3)	-0.78800(2)	-0.78799(1)
BeH	-1.58814(6)	-1.58861(4)	-1.58849(5)
$CH_2 ({}^{3}B_1)$	-6.72719(9)	-6.72762(7)	-6.72777(8)
${ m LiF}$	-24.60333(8)	-24.60401(8)	-24.60477(7)
C_2H_2	-12.4878(1)	-12.48906(9)	-12.48920(7)
CN	-15.48083(8)	-15.4833(1)	-15.48371(8)
HCN	-16.20259(8)	-16.20468(8)	-16.20494(9)
HCO	-22.24632(9)	-22.25065(8)	-22.25173(9)
NaCl	-15.31021(6)	-15.31104(8)	-15.31135(7)

Table 11: The DMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized orbitals. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	2z	3z	5z
Н	-0.500005(1)	-0.500006(1)	-0.5000005(1)
Li	-0.1963295(4)	-0.1963292(4)	-0.1963296(3)
Be	-1.00921(5)	-1.00916(5)	-1.00924(4)
\mathbf{C}	-5.42244(6)	-5.42258(5)	-5.42245(5)
Ν	-9.79214(6)	89.79210(6)	-9.79218(6)
0	-15.89241(9)	-15.89249(7)	-15.89272(7)
F	-24.18526(5)	-24.18535(7)	-24.18548(7)
Na	-0.1821438(7)	-0.1821446(4)	-0.1821438(4)
Cl	-14.97209(6)	-14.97204(6)	-14.97212(5)
LiH	-0.78804(1)	-0.78804(1)	-0.788051(9)
BeH	-1.58833(4)	-1.58887(3)	-1.58883(3)

Table 11	– continued		
System	2z	3z	5z
NaCl	-15.31167(5)	-15.31196(6)	-15.31202(7)

Table 12: The DMC total energies of the molecules from the G2 set and their atoms for a CAS SJ trial wavefunction with an s and p active space. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	3z
Н	-0.500006(1)
Li	-0.1963292(4)
Be	-1.010186(5)
\mathbf{C}	-5.42775(5)
Ν	-9.79230(6)
Ο	-15.89305(8)
\mathbf{F}	-24.18651(7)
Na	-0.1821446(4)
Cl	-14.97252(6)
${ m LiH}$	-0.788238(6)
BeH	-1.59014(2)
$CH_2 ({}^{3}B_1)$	-6.73142(8)
LiF	-24.61011(7)
C_2H_2	-12.50101(5)
CN	-15.50866(7)
HCN	-16.22003(6)
HCO	-22.26378(7)
NaCl	-15.31334(6)

4 Variational Monte Carlo

This section contains the VMC data for the G2 set. The VMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of HF orbitals are given in Table 13. The VMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized orbitals are given in Table 14. The VMC total energies of the molecules for a CAS SJ trial wavefunction with an s and p active space are given in Table 15.

Table 13: VMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of HF orbitals. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	2z	3z	5z
Н	-0.500002(3)	-0.500002(3)	-0.500003(3)
${ m Li}$	-0.1963192(5)	-0.1963192(5)	-0.196312(3)
Be	-1.00835(8)	-1.00843(8)	-1.0082(1)
С	-5.41531(5)	-5.41496(5)	-5.41513(2)
Ν	-9.78553(5)	-9.78506(5)	-9.78529(5)
Ο	-15.88268(8)	-15.88277(8)	-15.88312(8)

Table 13 – continued			
System	2z	3z	5z
F	-24.17448(9)	-24.17461(9)	-24.17472(9)
Na	-0.1821236(9)	-0.1821239(9)	-0.181993(6)
Si	-3.76315(2)	-3.76295(2)	-3.76298(2)
Р	-6.47276(4)	-6.47260(4)	-6.47259(4)
\mathbf{S}	-10.12444(5)	-10.12390(6)	-10.12434(6)
Cl	-14.96368(5)	-14.96340(5)	-14.96353(5)
${ m LiH}$	-0.78727(5)	-0.78777(4)	-0.78784(3)
BeH	-1.58359(3)	-1.58575(2)	-1.58566(2)
CH	-6.04119(8)	-6.04419(7)	-6.04483(7)
$CH_2 ({}^{3}B_1)$	-6.71774(7)	-6.71864(7)	-6.71906(7)
CH_2 (¹ A ₁)	-6.69381(8)	-6.69681(7)	-6.69787(7)
CH ₃	-7.40344(8)	-7.40419(8)	-7.40457(7)
CH_4	-8.08247(9)	-8.08310(8)	-8.08338(8)
NH	-10.40752(9)	-10.40999(9)	-10.41050(9)
NH_2	-11.0613(1)	-11.0651(1)	-11.06646(9)
$\overline{NH_3}$	-11.74334(9)	-11.74816(8)	-11.74998(8)
OH	-16.5468(1)	-16.5490(1)	-16.5495(1)
H_2O	-17.24389(8)	-17.24777(7)	-17.24877(7)
$\tilde{\mathrm{HF}}$	-24.89475(8)	-24.89747(7)	-24.89835(7)
SiH_2 (¹ A ₁)	-4.99763(9)	-4.99915(8)	-5.00002(8)
$\operatorname{SiH}_2({}^3\mathrm{B}_1)$	-4.96462(9)	-4.96581(8)	-4.96669(8)
SiH ₃	-5.6151(1)	-5.61682(9)	-5.61788(9)
SiH_4	-6.27140(7)	-6.27356(7)	-6.27459(6)
PH_2	-7.70464(7)	-7.70603(7)	-7.70671(6)
PH_3	-8.34136(9)	-8.34312(8)	-8.34374(8)
H_2S	-11.40510(6)	-11.40659(6)	-11.40795(6)
HCl	-15.63025(8)	-15.63067(8)	-15.63146(8)
Li_2	-0.42921(6)	-0.42957(8)	-0.42973(8)
${ m LiF}$	-24.59015(9)	-24.5933(1)	-24.5941(1)
C_2H_2	-12.46639(9)	-12.46942(8)	-12.46978(8)
C_2H_4	-13.71321(7)	-13.71452(9)	-13.71543(7)
C_2H_6	-14.95497(8)	-14.95623(7)	-14.95686(7)
CN	-15.4528(1)	-15.4574(1)	-15.4578(1)
HCN	-16.1773(1)	-16.1815(1)	-16.1819(1)
CO	-21.6859(1)	-21.6938(1)	-21.6948(1)
HCO	-22.2121(1)	-22.2195(1)	-22.2209(1)
H_2CO	-22.86719(7)	-22.87324(7)	-22.87426(7)
H_3COH	-24.0890(1)	-24.0942(1)	-24.0957(1)
N_2	-19.8952(1)	-19.9019(1)	-19.9026(1)
N_2H_4	-22.22205(8)	-22.23083(8)	-22.23405(7)
NO	-25.8669(1)	-25.8745(1)	-25.8759(1)
O_2	-31.92106(9)	-31.9270(1)	-31.9288(1)
H_2O_2	-33.14808(9)	-33.15601(9)	-33.15818(9)
F_2	-48.3613(1)	-48.3642(1)	-48.3685(1)
$\rm CO_2$	-37.7654(1)	-37.7788(1)	-37.7800(1)
Na_2	-0.39054(5)	-0.39066(4)	-0.39062(4)
Si_2	-7.63400(8)	-7.63601(7)	-7.63606(8)
P_2	-13.10120(9)	-13.10558(9)	-13.10629(9)
S_2	-20.3917(1)	-20.3959(1)	-20.3968(1)

Table $13 - c$	ontinued		
System	2z	3z	5z
Cl_2	-29.99928(8)	-29.99951(8)	-30.00062(8)
NaCl	-15.30170(8)	-15.30289(8)	-15.30341(8)
SiO	-19.9247(1)	-19.9345(1)	-19.93647(9)
\mathbf{CS}	-15.7859(1)	-15.79042(9)	-15.79377(9)
SO	-26.1736(1)	-26.1814(1)	-26.18343(9)
ClO	-30.9076(1)	-30.9113(1)	-30.9130(1)
ClF	-39.2039(1)	-39.2073(1)	-39.2092(1)
$\rm Si_2H_6$	-11.35963(8)	-11.36288(7)	-11.36485(7)
CH_3Cl	-22.4938(1)	-22.4950(1)	-22.4961(1)
H_3CSH	-18.27368(9)	-18.27634(5)	-18.27741(9)
HOCl	-31.57616(8)	-31.58107(7)	-31.58258(7)
SO_2	-42.23410(8)	-42.2544(1)	-42.2591(1)

Table 14: The VMC total energies of the molecules from the G2 set and their atoms for a single determinant SJ trial wavefunction composed of VMC optimized orbitals. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	2z	3z	5z
Н	-0.500006(3)	-0.500004(3)	-0.5000005(3)
Li	-0.196321(1)	-0.196324(1)	-0.196325(3)
Be	-1.0084(1)	-1.00850(7)	-1.00837(8)
\mathbf{C}	-5.41616(5)	-5.41625(5)	-5.41625(5)
Ν	-9.78640(6)	-9.78660(5)	-9.78647(5)
0	-15.8832(1)	-15.88375(7)	-15.88404(8)
F	-24.17474(9)	-24.17534(9)	-24.17541(8)
Na	-0.1821236(9)	-0.182139(2)	-0.182141(3)
Si	-3.76433(2)	-3.76455(2)	-3.76457(2)
Р	-6.4740(1)	-6.47435(3)	-6.47433(3)
\mathbf{S}	-10.12575(4)	-10.12612(5)	-10.12647(5)
Cl	-14.96474(5)	-14.96515(5)	-14.96539(5)
LiH	-0.78780(2)	-0.78791(2)	-0.78795(2)
BeH	-1.58597(3)	-1.58761(2)	-1.58748(2)
CH	-6.04447(7)	-6.04668(7)	-6.04693(6)
$CH_2 ({}^{3}B_1)$	-6.72118(7)	-6.72238(6)	-6.72264(6)
CH_2 (¹ A ₁)	-6.69673(8)	-6.70002(7)	-6.70032(7)
CH_3	-7.40543(8)	-7.40662(7)	-7.40686(7)
CH_4	-8.08593(8)	-8.08620(8)	-8.08606(8)
NH	-10.41134(9)	-10.41286(8)	-10.41307(8)
$\rm NH_2$	-11.0659(1)	-11.06868(9)	-11.06898(9)
NH_3	-11.74792(8)	-11.75212(8)	-11.75240(7)
OH	-16.5496(1)	-16.5510(1)	-16.5511(1)
H_2O	-17.24801(8)	-17.25070(7)	-17.25124(7)
$_{ m HF}$	-24.89807(8)	-24.89954(7)	-24.89999(7)
SiH_2 (¹ A ₁)	-5.00102(8)	-5.00415(7)	-5.00467(6)
SiH_2 (³ B ₁)	-4.97215(7)	-4.97453(6)	-4.97506(6)
SiH_3	-5.62188(9)	-5.62493(7)	-5.62549(7)
SiH_4	-6.27681(6)	-6.27942(5)	-6.27988(5)
PH_2	-7.70860(7)	-7.71172(6)	-7.71254(5)

Table 14 – continued			
System	2z	3z	5z
PH_3	-8.34631(8)	-8.34997(7)	-8.35084(7)
H_2S	-11.40914(6)	-11.41219(5)	-11.41365(5)
HCl	-15.63249(8)	-15.63411(8)	-15.63494(7)
Li_2	-0.43001(5)	-0.4300(1)	-0.43013(6)
LiF	-24.59338(9)	-24.5945(1)	-24.5946(1)
C_2H_2	-12.47251(8)	-12.47386(8)	-12.47424(8)
C_2H_4	-13.72072(7)	-13.72361(6)	-13.72434(6)
C_2H_6	-14.96347(7)	-14.96475(6)	-14.96536(6)
CN	-15.4670(1)	-15.4713(1)	-15.47249(9)
HCN	-16.1850(1)	-16.18778(9)	-16.18830(9)
CO	-21.6953(1)	-21.7026(1)	-21.7035(1)
HCO	-22.2243(1)	-22.23171(9)	-22.23330(9)
H_2CO	-22.87806(7)	-22.88477(6)	-22.88603(6)
H_3COH	-24.09967(9)	-24.10596(9)	-24.10826(9)
N_2	-19.9025(1)	-19.9103(1)	-19.91182(9)
N_2H_4	-22.23354(7)	-22.24360(7)	-22.24677(7)
NO	-25.8773(1)	-25.8862(1)	-25.8888(1)
O_2	-31.92806(7)	-31.9350(1)	-31.9392(1)
H_2O_2	-33.16077(9)	-33.16910(8)	-33.17382(8)
F_2	-48.3752(1)	-48.3822(1)	-48.3866(1)
$\rm CO_2$	-37.7880(1)	-37.7942(1)	-37.7949(1)
Na_2	-0.39087(3)	-0.39082(4)	-0.39101(3)
Si_2	-7.63878(5)	-7.64202(7)	-7.64348(7)
P_2	-13.10695(9)	-13.11214(8)	-13.11542(8)
S_2	-20.3953(1)	-20.4019(1)	-20.4059(1)
Cl_2	-30.0053(1)	-30.0087(1)	-30.01375(9)
NaCl	-15.30374(8)	-15.30468(7)	-15.30503(7)
SiO	-19.9338(1)	-19.94292(9)	-19.94447(9)
\mathbf{CS}	-15.79466(9)	-15.80294(9)	-15.80576(8)
SO	-26.1840(1)	-26.19383(9)	-26.19689(9)
ClO	-30.9264(1)	-30.9332(1)	-30.9377(1)
ClF	-39.2141(1)	-39.22140(9)	-39.22499(9)
$\rm Si_2H_6$	-11.36964(6)	-11.37477(6)	-11.37609(5)
CH_3Cl	-22.50049(9)	-22.50391(9)	-22.50675(9)
H_3CSH	-18.28229(9)	-18.28658(8)	-18.28989(8)
HOCl	-31.58679(7)	-31.59298(7)	-31.59752(7)
SO_2	-42.2567(1)	-42.2762(1)	-42.2831(1)

Table 15: The VMC total energies of the molecules from the G2 set and their atoms for a CAS SJ trial wavefunction with an s and p active space. Energies are in Hartrees. Error bar, which is shown in parentheses, is for the last digit.

System	3z
Н	-0.500004(3)
Li	-0.196324(1)
Be	-1.010191(8)
\mathbf{C}	-5.42342(4)
Ν	-9.78660(5)

System $3z$ O-15.88375(7)F-24.17534(9)Na-0.182139(2)Si-3.76508(2)P-6.47435(3)S-10.12612(5)Cl-14.96515(5)LiH-0.78818(1)BeH-1.58944(1)CH-6.05669(6)CH2 ($^{3}B_{1}$)-6.72640(6)CH2 ($^{3}B_{1}$)-6.72640(6)CH2 ($^{1}A_{1}$)-6.71131(6)CH4-8.09104(7)NH-10.41641(8)NH2-11.07366(8)NH3-11.75758(7)OH-16.5540(1)H2O-17.25510(7)HF-24.90171(7)SiH2 ($^{1}A_{1}$)-5.00884(4)SiH2 ($^{3}B_{1}$)-4.97634(4)SiH3-5.62691(5)SiH4-6.28131(5)PH2-7.71436(5)PH2-7.71436(5)PH2-7.71436(5)PH3-8.35357(6)H2S-11.41515(5)HCI-15.63556(8)Li2-0.43156(1)LiF-24.6016(1)C_2H6-14.97618(8)CN-15.49602(8)HCN-16.20797(8)CO-21.72140(9)HCO-22.24735(8)H_2CO-22.90135(6)H_3COH-24.11924(8)N2-19.93310(8)N2H4-22.25696(6)NO-25.9055(1)O2-31.9489(1)H_2O2-33.18541(3)F2-48.4023(1)CO2-37.8128(1)N2-37.8128(1	Table $15 - c$	continued
$\begin{array}{ccccccc} O & -15.88375(7) \\ F & -24.17534(9) \\ Na & -0.182139(2) \\ Si & -3.76508(2) \\ P & -6.47435(3) \\ S & -10.12612(5) \\ Cl & -14.96515(5) \\ LiH & -0.78818(1) \\ BeH & -1.58944(1) \\ CH & -6.05669(6) \\ CH_2 (^3B_1) & -6.72640(6) \\ CH_2 (^1A_1) & -6.71131(6) \\ CH_3 & -7.41137(6) \\ CH_4 & -8.09104(7) \\ NH & -10.41641(8) \\ NH_2 & -11.07366(8) \\ NH_3 & -11.75758(7) \\ OH & -16.5540(1) \\ H_2O & -17.25510(7) \\ HF & -24.90171(7) \\ SiH_2 (^1A_1) & -5.00884(4) \\ SiH_2 (^3B_1) & -4.97634(4) \\ SiH_3 & -5.62691(5) \\ SiH_4 & -6.28131(5) \\ PH_2 & -7.71436(5) \\ PH_3 & -8.35357(6) \\ H_2S & -11.41515(5) \\ HCl & -15.63556(8) \\ Li_2 & -0.43156(1) \\ LiF & -24.6016(1) \\ C_2H_2 & -12.49172(6) \\ C_2H_4 & -13.74004(5) \\ C_2H_6 & -14.97618(8) \\ CN & -15.49602(8) \\ HCN & -16.20797(8) \\ CO & -22.24735(8) \\ H_2CO & -22.90135(6) \\ H_3COH & -24.11924(8) \\ N_2 & -19.93310(8) \\ N_2H_4 & -22.25696(6) \\ NO & -25.9055(1) \\ O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ \end{array}$	System	3z
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0	-15.88375(7)
Na $-0.182139(2)$ Si $-3.76508(2)$ P $-6.47435(3)$ S $-10.12612(5)$ Cl $-14.96515(5)$ LiH $-0.78818(1)$ BeH $-1.58944(1)$ CH $-6.05669(6)$ CH2 (³ B1) $-6.72640(6)$ CH2 (¹ A1) $-6.71131(6)$ CH3 $-7.41137(6)$ CH4 $-8.09104(7)$ NH $-10.41641(8)$ NH2 $-11.07366(8)$ NH3 $-11.75758(7)$ OH $-16.5540(1)$ H ₂ O $-17.25510(7)$ HF $-24.90171(7)$ SiH2 (¹ A1) $-5.00884(4)$ SiH2 (³ B1) $-4.97634(4)$ SiH3 $-5.62691(5)$ SiH4 $-6.28131(5)$ PH2 $-7.71436(5)$ PH3 $-8.35357(6)$ H ₂ S $-11.41515(5)$ HCl $-15.63556(8)$ Li2 $-0.43156(1)$ LiF $-24.6016(1)$ C ₂ H ₄ $-13.74004(5)$ C ₂ H ₆ $-14.97618(8)$ CN $-15.49602(8)$ HCN $-16.20797(8)$ CO $-21.72140(9)$ HCO $-22.24735(8)$ H ₂ CO $-22.90135(6)$ H ₃ COH $-24.11924(8)$ N ₂ $-19.93310(8)$ N ₂ H ₄ $-22.25696(6)$ NO $-25.9055(1)$ O ₂ $-31.9489(1)$ H ₂ O ₂ $-33.18541(3)$ F ₂ $-48.4023(1)$ CO ₂ $-37.8128(1)$	F	-24.17534(9)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Na	-0.182139(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si	-3.76508(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	P	-6.47435(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C C	10.19619(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CI	-10.12012(3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		-14.90313(3)
BeH $-1.58944(1)$ CH $-6.05669(6)$ CH2 ($^{3}B_{1}$) $-6.72640(6)$ CH2 ($^{1}A_{1}$) $-6.71131(6)$ CH3 $-7.41137(6)$ CH4 $-8.09104(7)$ NH $-10.41641(8)$ NH2 $-11.07366(8)$ NH3 $-11.75758(7)$ OH $-16.5540(1)$ H2O $-17.25510(7)$ HF $-24.90171(7)$ SiH2 ($^{1}A_{1}$) $-5.00884(4)$ SiH2 ($^{3}B_{1}$) $-4.97634(4)$ SiH3 $-5.62691(5)$ SiH4 $-6.28131(5)$ PH2 $-7.71436(5)$ PH3 $-8.35357(6)$ H2S $-11.41515(5)$ HCl $-15.63556(8)$ Li2 $-0.43156(1)$ LiF $-24.6016(1)$ C2H4 $-13.74004(5)$ C2H4 $-13.74004(5)$ C2H6 $-14.97618(8)$ CN $-15.49602(8)$ HCN $-16.20797(8)$ CO $-22.24735(8)$ H2CO $-22.90135(6)$ H3COH $-24.11924(8)$ N2 $-19.93310(8)$ N2H4 $-22.25696(6)$ NO $-25.9055(1)$ O2 $-33.18541(3)$ F2 $-48.4023(1)$ CO2 $-37.8128(1)$	LiH	-0.78818(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	BeH	-1.58944(1)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	CH	-6.05669(6)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$CH_2 ({}^{3}B_1)$	-6.72640(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CH_2 (¹ A ₁)	-6.71131(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CH_3	-7.41137(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	CH_4	-8.09104(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	NH	-10.41641(8)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\rm NH_2$	-11.07366(8)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	NH ₂	-1175758(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	OH OH	-165540(1)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H _a O	-17.25510(7)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1120 ИГ	-11.20010(7) -24.00171(7)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	\mathbf{C} : \mathbf{T} $(1 \mathbf{A})$	-24.90171(7)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$SI\Pi_2$ (⁻ A ₁)	-5.00884(4)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S_1H_2 ($^{\circ}B_1$)	-4.97634(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S1H ₃	-5.62691(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SiH_4	-6.28131(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	PH_2	-7.71436(5)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	PH_3	-8.35357(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_2S	-11.41515(5)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	HCl	-15.63556(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Li_2	-0.43156(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	LiF	-24.6016(1)
$\begin{array}{cccc} C_2H_4 & -13.74004(5) \\ C_2H_6 & -14.97618(8) \\ CN & -15.49602(8) \\ HCN & -16.20797(8) \\ CO & -21.72140(9) \\ HCO & -22.24735(8) \\ H_2CO & -22.90135(6) \\ H_3COH & -24.11924(8) \\ N_2 & -19.93310(8) \\ N_2H_4 & -22.25696(6) \\ NO & -25.9055(1) \\ O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ N_2 & -29002(4) \\ \end{array}$	$C_{2}H_{2}$	-12.49172(6)
$\begin{array}{rcrcrc} C_2H_6 & -14.97618(8) \\ CN & -15.49602(8) \\ HCN & -16.20797(8) \\ CO & -21.72140(9) \\ HCO & -22.24735(8) \\ H_2CO & -22.90135(6) \\ H_3COH & -24.11924(8) \\ N_2 & -19.93310(8) \\ N_2H_4 & -22.25696(6) \\ NO & -25.9055(1) \\ O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ N & -20202(1) \\ \end{array}$	$\tilde{C_2H_4}$	-13.74004(5)
$\begin{array}{rcl} CN & -15.49602(8) \\ HCN & -16.20797(8) \\ CO & -21.72140(9) \\ HCO & -22.24735(8) \\ H_2CO & -22.90135(6) \\ H_3COH & -24.11924(8) \\ N_2 & -19.93310(8) \\ N_2H_4 & -22.25696(6) \\ NO & -25.9055(1) \\ O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ N & -20.2020(1) \\ \end{array}$	CoHe	-14.97618(8)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	CN	-1549602(8)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	HCN	-16.20797(8)
$\begin{array}{rcl} \text{HCO} & -21.12140(9) \\ \text{HCO} & -22.24735(8) \\ \text{H}_2\text{CO} & -22.90135(6) \\ \text{H}_3\text{COH} & -24.11924(8) \\ \text{N}_2 & -19.93310(8) \\ \text{N}_2\text{H}_4 & -22.25696(6) \\ \text{NO} & -25.9055(1) \\ \text{O}_2 & -31.9489(1) \\ \text{H}_2\text{O}_2 & -33.18541(3) \\ \text{F}_2 & -48.4023(1) \\ \text{CO}_2 & -37.8128(1) \\ \text{N}_2 & -39020(1) \\ \text{N}_2 & -3$	CO	-10.20191(0) 21.72140(0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$		-21.72140(9)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		-22.24755(0)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_2CO	-22.90130(0)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	H ₃ COH	-24.11924(8)
$\begin{array}{rrrr} N_2H_4 & -22.25696(6) \\ NO & -25.9055(1) \\ O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ \end{array}$	N_2	-19.93310(8)
$\begin{array}{rrrr} NO & -25.9055(1) \\ O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ N_1 & 0.00000(1) \end{array}$	N_2H_4	-22.25696(6)
$\begin{array}{ccc} O_2 & -31.9489(1) \\ H_2O_2 & -33.18541(3) \\ F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ \end{array}$	NO	-25.9055(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O_2	-31.9489(1)
$\begin{array}{ccc} F_2 & -48.4023(1) \\ CO_2 & -37.8128(1) \\ V & 0.00000(1) \end{array}$	H_2O_2	-33.18541(3)
CO_2 -37.8128(1)	F_2	-48.4023(1)
N 0 00000(1)	CO_2	-37.8128(1)
$Na_2 = -0.39099(1)$	Na ₂	-0.39099(1)
Si ₂ -7.64737(6)	Si_2	-7.64737(6)
P_2 -13.12193(8)	$\tilde{P_2}$	-13.12193(8)

Table $15 - \text{continued}$	
System	3z
S_2	-20.4049(1)
Cl_2	-30.0128(1)
NaCl	-15.30706(7)
SiO	-19.95375(9)
\mathbf{CS}	-15.81754(3)
SO	-26.19852(9)
ClO	-30.93970(9)
ClF	-39.22866(9)
$\rm Si_2H_6$	-11.37852(6)
CH_3Cl	-22.50929(9)
H_3CSH	-18.29484(7)
HOCl	-31.60189(7)
SO_2	-42.29272(9)

The deviation of the VMC atomization energies from experiment for a single determinant SJ trial wavefunction composed of HF orbitals is shown in Figure 1. The MAD from experiment for the 2z, 3z, and 5zbases are 12.0 kcal/mol, 9.4 kcal/mol, and 8.9 kcal/mol, respectively. The deviation of the VMC atomiza-

Figure 1: Deviation of the VMC atomization energies from experiment for a single determinant SJ trial wavefunction composed of HF orbitals. The MAD from experiment for the 2z, 3z, and 5z bases are 12.0 kcal/mol, 9.4 kcal/mol, and 8.9 kcal/mol, respectively.

tion energies from experiment for a single determinant SJ trial wavefunction composed of VMC optimized orbitals is shown in Figure 2. The MAD from experiment for the 2z, 3z, and 5z bases are 8.4 kcal/mol, 6.1 kcal/mol, and 5.2 kcal/mol, respectively. The deviation of the VMC atomization energies from experiment for the s and p valence CAS SJ trial wavefunctions is shown in Figure 3. The 5z single determinant results are included to demonstrate the benefit of using a CAS SJ trial wavefunction. This modest basis and CSF expansion results in a MAD from experiment of 2.9 kcal/mol.

Figure 2: Deviation of the VMC atomization energies from experiment for a single determinant SJ trial wavefunction composed of VMC optimized orbitals. The MAD from experiment for the 2z, 3z, and 5z bases are 8.4 kcal/mol, 6.1 kcal/mol, and 5.2 kcal/mol, respectively.

Figure 3: Deviation of the VMC atomization energies from experiment for a single determinant SJ trial wavefunction composed of VMC optimized orbitals and a CAS SJ trial wavefunction. The MAD from experiment for the single determinant SJ trial wavefunction is 5.2 kcal/mol. The MAD from experiment for the CAS SJ trial wavefunction is 2.9 kcal/mol.

References

- F R Petruzielo, Julien Toulouse, and C J Umrigar. Basis set construction for molecular electronic structure theory: Natural orbital and Gauss-Slater basis for smooth pseudopotentials. J. Chem. Phys., 134(6):064104, 2011.
- [2] M. Burkatzki, C. Filippi, and M. Dolg. Energy-consistent pseudopotentials for quantum Monte Carlo calculations. J. Chem. Phys., 126:234105, 2007.
- [3] http://www.burkatzki.com/pseudos/index.2.html.
- [4] Michael W. Schmidt, Jerry A. Boatz, Kim K. Baldridge, Steven T. Elbert, Mark S. Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun Su, Theresa L. Windus, Michel Dupuis, and John A. Montgomery. General atomic and molecular electronic structure system. J. Comp. Chem., 14(11):1347–1363, 1993.
- [5] Larry A. Curtiss, Krishnan Raghavachari, Gary W. Trucks, and John A. Pople. Gaussian-2 theory for molecular energies of first- and second-row compounds. J. Chem. Phys., 94(11):7221, 1991.
- [6] David Feller, Kirk A Peterson, and David A Dixon. A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. J. Chem. Phys., 129(20):204105, 2008.
- [7] David Feller and Kirk A. Peterson. Re-examination of atomization energies for the Gaussian-2 set of molecules. J. Chem. Phys., 110(17):8384, 1999.
- [8] Darragh P. O'Neill and Peter M. W. Gill. Benchmark correlation energies for small molecules. *Mol. Phys.*, 103(6-8):763-766, 2005.
- [9] Apostolos Kalemos, Thom H. Dunning Jr, and Aristides Mavridis. SiH 2, a critical study. Mol. Phys., (23-24):2597–2606, 2004.
- [10] R. D. Johnson, editor. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. NIST, Gaithersburg, MD, 2010.
- [11] Lubos Mitas, Eric L. Shirley, and David M. Ceperley. Nonlocal pseudopotentials and diffusion Monte Carlo. J. Chem. Phys., 95(5):3467, 1991.
- [12] Michele Casula, Saverio Moroni, Sandro Sorella, and Claudia Filippi. Size-consistent variational approaches to nonlocal pseudopotentials: Standard and lattice regularized diffusion Monte Carlo methods revisited. J. Chem. Phys., 132(15):154113, 2010.