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Fixed node diffusion Monte Carlo~FN-DMC! atomization energies are calculated for a benchmark
set of 55 molecules. Using single determinant trial wave functions, comparison with experiment
yields an average absolute deviation of 2.9 kcal/mol, placing this simplest form of FN-DMC roughly
at the same level of accuracy as the CCSD~T!/aug-cc-pVQZ method. However, unlike perturbative
wave function expansion approaches, FN-DMC is applicable to systems containing thousands of
valence electrons. For the P2 molecule, a number of possible sources of error are explored in detail.
Results show that the main error is due to the fixed-node approximation and that this can be
improved significantly with multireference trial wave functions.@DOI: 10.1063/1.1487829#

I. INTRODUCTION

Benchmark sets of molecules have proven to be a useful
tool for gauging the accuracy and predictive abilities of a
given computational method. A set of 31 molecules was
originally grouped together to fit the semiempirical
Gaussian-1~G1! ~Ref. 1! theory. This set, combined with 24
additional molecules containing second-row elements,2 rep-
resents a broad range of chemical environments. The com-
bined 55-molecule set, which we refer to here as the ‘‘G1
set,’’ is often used to test new theoretical methods. Computed
G1 atomization energies for this set of molecules have a
mean absolute deviationeMAD from experiment of 1.6 kcal/
mol and a maximum deviation of 7.4 kcal/mol. These two
numbers have become a standard benchmark for electronic
structure approaches, including further G-n theories3,4 as
well as other state-of-the-art approaches such as the coupled
cluster approximation with single, double, and perturbation-
ally included triple excitations~CCSD~T!! ~benchmark cal-
culations, e.g., Refs. 5, 6!, and density functional theory
~DFT! methods~benchmark calculations, e.g., Refs. 7, 8!.

Recently, the quantum Monte Carlo~QMC! approaches
have been shown to provide highly accurate results when
applied to a wide range of chemical systems~e.g., atoms,
molecules, solids, nuclei, etc.! to calculate a wide range of
properties~e.g., binding energies, reaction pathway energet-
ics, optical gaps, momentum densities, etc.! ~See, for ex-
ample, Ref. 9 and references therein!. A number of factors
make QMC, which relies on a stochastic solution of the
many-body Schro¨dinger equation, a highly attractive alterna-
tive to the more traditional mean-field and wave function
expansion based techniques. Similar to the mean-field meth-
ods such as DFT, the computation time required in QMC
scales asN3 whereN is the number of particles in the sys-
tem. Yet, more closely related to post-Hartree–Fock wave
function expansion methods, QMC solves the full
3N-dimensional Schro¨dinger equation directly, allowing for
explicit evaluation of electron correlation. Typically, within
the diffusion Monte Carlo~DMC! variant the method recov-
ers ;95% of the total valence correlation energy. Further-
more, very recent algorithmic developments have shown that

QMC can be implemented to scalelinearly as the number of
particles, with effectively no loss of accuracy, by applying a
unitary transform to localize the single-particle orbitals.10

The combination of high accuracy and the ability to study
systems with thousands of valence electrons makes QMC a
very promising approach.

Despite the successes of QMC, comparisons with experi-
ment have not been made systematically for a large data set,
and the accuracy of QMC approaches has yet to be measured
against a well-defined benchmark such as the G1 set. Re-
cently, Manten and Lu¨chow have approached the subject of
general accuracy for a small set of molecules and molecular
reactions using all-electron fixed-node DMC,11 and found ac-
curacies for reaction energetics comparable to CCSD~T!/cc-
pVTZ. Indeed, such studies are necessary and long overdue
to answer many questions regarding the overall consistency
and predictive capability of the approach. For example, when
QMC is referred to as ‘‘highly accurate,’’ what exactly is
meant? How big is the fixed-node error, on average? It is of
great practical importance to answer these types of questions
for a standard benchmark set of molecules such that one may
better gauge the accuracy of QMC as well as develop further
understanding of its limitations and methods for improve-
ment.

In this work, results are presented for atomization ener-
gies calculated by single determinant, pseudopotential, fixed-
node diffusion Monte Carlo~FN-DMC! for the 55 molecules
in the G1 set. The average absolute deviation is 2.9 kcal/mol
with a maximum deviation from experiment of 14 kcal/mol.
These results support claims that QMC provides near
‘‘chemical’’ accuracy; however, it is also apparent that con-
sistent accuracy ofless than 1–2 kcal/mol is challenging
within FN-DMC. Possible sources of error include: atomic
orbital basis set, determinantal basis set, geometry, pseudo-
potentials, and zero-point energy. For the P2 molecule, a de-
tailed investigation of some of these potential sources of er-
ror has been carried out. Results show that one of the main
sources of error is in the fixed node approximation which can
be improved by including multiple determinants in the QMC
trial wave function.
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II. METHOD

In our QMC approach,9,12–15 we use the variational
Monte Carlo method to find an optimized correlated many-
body trial function. This trial function is a product of Slater
determinants and a correlation factor.16 In the Slater determi-
nant part, we employ natural orbitals~NO! rather than
Hartree–Fock or density functional orbitals.13 To eliminate
most of the remaining variational bias we use the diffusion
Monte Carlo method, which is based on the property that the
operatore2tH, whereH is the Hamiltonian, projects out the
ground state of any trial function with the same symmetry
and nonzero overlap. All QMC results presented here are
from the diffusion Monte Carlo approach.

Atomic cores are treated with Stevens–Basch–Krauss
~SBK! effective core potentials17 for all atoms except hydro-
gen, unless otherwise noted. The natural orbitals are derived
from small multiconfiguration self-consistent field~MCSCF!
calculations that include 15–30 virtual and all occupied va-
lence orbitals in the active space.

FN-DMC calculations for all 55 molecules were carried
out using a single determinant trial wave function except
when noted. For multideterminant FN-DMC calculations,
weights from MCSCF were used. In each case a single par-
ticle basis of quality similar to 6-31111G(2d,2p) was em-
ployed. More specifically, 3~4! uncontracteds and p func-
tions, including 1 diffuse function, were used for
first~second!-row elements. For all elements 2 uncontractedd
functions were used. For the atomic part, contractions were
generated from least squares fits of 6–12 Gaussians to the
exact Hartree–Fock solution for the given pseudoatom.

Geometries were taken from the original G1 set,1 i.e.,
optimized within MP2/6-31G(d). In order to make accurate
comparisons with experiment, FN-DMC calculations were
carried out for a long enough time to obtain stochastic error
bars of ,1 kcal/mol ~typically 0.2–0.4 kcal/mol!. Careful
time-step studies were performed for several cases and con-
servative time steps were used for the entire set~i.e., DMC
acceptance ratios were always greater than 99%!.

All Hartree–Fock and MCSCF calculations in this work
were performed using theGAMESS quantum chemistry
package.18 All LDA and GGA calculations were performed
using theGAUSSIAN 98 program.19

III. RESULTS FOR THE G1 SET

The experimental data reported here are taken from a
combination of NIST-JANAF tables20 and Huber and
Herberg,21 in the same manner as Ref. 6. Experimentally
measured atomization energies for the G1 set range from 17
kcal/mol (Na2) to 709 kcal/mol (C2H2). Most experimental
errors are small~i.e., ,0.5 kcal/mol!, although several are
somewhat larger@e.g., CS has an experimental error of 6
kcal/mol ~Ref. 20!#. To compare with theory, zero point en-
ergies are taken from experiment when available and from
the calculations of Ref. 6 otherwise. For several species ex-
perimental errors are unavailable.

Calculated FN-DMC atomization energies for the 55 G1
molecules are shown in Table I. For each molecule, both the
experimental and calculated binding energies are listed. Error

bars are shown for experiment and theory~calculational error
bars originate from the statistical sampling inherent in the
DMC energy evaluation!.

The largest error between FN-DMC and experiment oc-

TABLE I. Atomization energies~kcal/mol! for the 55 molecules in the G1
set~Refs. 1, 2!. Diffusion Monte Carlo~DMC! calculations and experimen-
tal ~Expt.! results are listed. For DMC, statistical error bars are given in
parentheses. Experimental errors are listed in parentheses~a dash indicates
no error was available!.

Molecule DMC Expt.

LiH 55.3~2! 56.00~1!
BeH 43.0~2! 46.90~1!
CH 79.5~2! 79.90~2!
CH2 (3B1) 181.9~4! 179.6~4!

CH2 (1A1) 169.7~4! 170.6~4!
CH3 290.9~2! 289.3~2!
CH4 395.0~2! 392.5~1!
NH 78.2~4! 79.0~4!
NH2 169.2~4! 170.0~3!
NH3 276.5~2! 276.7~1!
OH 101.2~3! 101.4~3!
H2O 219.4~2! 219.35~1!
HF 135.9~2! 135.2~2!
SiH2 (1A1) 145.5~2! 144.4~2!

SiH2 (3B1) 125.8~2! 123.4~2!
SiH3 215.1~2! 214~1!
SiH4 305.8~2! 302.6~5!
PH2 143.7~2! 144.7~6!
PH3 224.8~2! 228.6~4!
H2S 172.1~4! 173.1~2!
HCl 103.4~4! 102.2~5!
Li2 23.5~2! 23.9~7!
LiF 145.1~4! 138~2!
C2H2 390.0~4! 386.9~2!
C2H4 533.5~4! 531.9~1!
C2H6 669.3~4! 666.3~-!
CN 170.5~4! 178~2!
HCN 302.0~8! 301~2!
CO 253.2~3! 256.2~2!
HCO 269.8~4! 270~2!
H2CO 357.5~5! 357.2~1!
H3COH 483.8~5! 480.8~-!
N2 221.0~8! 225.1~4!
N2H4 406.8~9! 405.4~-!
NO 142.9~4! 150.06~4!
O2 111.7~5! 117.96~2!
H2O2 246.6~3! 252.3~-!
F2 32.0~8! 36.9~1!
CO2 379.5~4! 381.93~1!
Na2 17.3~2! 16.8~3!
Si2 73.3~2! 74.0~-!
P2 107.9~2! 116.1~5!
S2 98.3~3! 100.66~7!
Cl2 54.3~2! 57.18~1!
NaCl 98.8~3! 97.3~5!
SiO 186.7~2! 190~2!
CS 165.4~5! 169~6!
SO 117.6~6! 123.4~3!
ClO 55.4~4! 63.42~2!
ClF 53.7~6! 59.1~1!
Si2H6 505.8~4! 500.1~-!
CH3Cl 371.6~8! 371.0~-!
H3CSH 446.0~4! 445.1~-!
HOCl 152.8~4! 156.3~5!
SO2 240.0~8! 254.0~2!
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curs for the SO2 molecule, where the discrepancy is 14 kcal/
mol. This makes SO2 a somewhat special case as the next
largest error in the set is only;8 kcal/mol. The sensitivity of
the atomization energy of SO2 to the single particle basis has
been studied carefully for the CCSD~T! approach.6,22,23 In
particular, it was found that SO2 showed very slow conver-
gence with respect to standard correlation consistent basis
sets @e.g., CCSD~T!/aug-cc-pVQZ is 10 kcal/mol under-
bound#, and that the addition of tightd and f functions on
sulfur improved the convergence considerably. For the FN-
DMC method employed here, additional tightd and f func-
tions on sulfur in the generation of the trial function did not
improve the energy. Because this molecule is somewhat
larger and its error is so much greater than any other case,
additional studies and ways for improving the FN-DMC re-
sult for SO2 are relegated to a separate study.

After SO2, the molecules with the biggest discrepancy
from experiment are P2 , ClO, CN, LiF, and NO, with errors
28.2, 28.0, 27.6, 17.5, and27.1 kcal/mol, respectively.
Averaging over all molecules in the set yields a fairly good
agreement between FN-DMC and experiment, with a mean
absolute deviation of 2.9 kcal/mol~excluding SO2 lowers
this number to 2.5!.

It is interesting to compare the FN-DMC results against
other quantum chemical approaches. Previous studies have
compared a number of DFT methods for the G1 test set,
including local density approximation~LDA ! and a variety
of generalized gradient approximations~GGA!.7,8 As ex-
pected, LDA overbinds for every molecule in the set~except
LiF!, with eMAD;40 kcal/mol. The GGAs offer significant
improvements over LDA, with the best functionals~B3LYP
and B3PW91! giving eMAD;2.5 kcal/mol. It was shown that
the key ingredient to achieving this result was in the
3-parameter B3 exchange function,24 which uses a semi-
empirical fit to incorporate a fraction of the exact Hartree–
Fock exchange. It was also noted that whileeMAD for a larger
93-molecule test set using the same B3 functional was only 1
kcal/mol higher than for the original 55-molecule test set, the
maximumdeviation was doubled to 20 kcal/mol. This signifi-
cantly larger range of error is evidence that accuracy trends
in DFT methods are not always systematic and must be
checked; a given functional working well for one problem
does not necessarily imply it will work as well for another.

CCSD~T! has proven to be one of the most accurateab
initio electronic structure technique when applied with large
basis sets to small molecules. Recent CCSD~T! calculations
for atomization energies of the 55 G1 molecules provide a
wealth of valuable information regarding the accuracy of
CCSD~T!.5,6 It was found that CCSD~T!/aug-cc-pVQZ has
eMAD52.8 kcal/mol which is very similar to the FN-DMC
results presented here. Using the CCSD~T! complete basis
set limit, by extrapolating a series of correlation consistent
basis sets, reduceseMAD by half to 1.3 kcal/mol. It would be
interesting to attempt to formulate and apply such extrapola-
tion techniques to FN-DMC, for example, using determinan-
tal ~rather than single particle! basis expansions.

Part of the advantage of having data for a benchmark set
of molecules is the ability to look for trends within the set.
There are several possible reasons for the errors in the

present FN-DMC results~see discussion in next section!, so
it may be difficult to identify a single quantity or property
that points to a trend. Indeed, as shown in Table II, a com-
parison of the 27 worst case molecules with the 28 best case
ones does not seem to yield any visible trends for a number
of properties; if anything, the trends appear to be counterin-
tuitive. For example, one might expect closed-shell systems
with large gaps to be, on average, better represented by a
single Slater determinant. The results here show that while
both subsets are mostly closed-shell in character, the better-
performing half of the G1 set has more open-shell molecules,
and the average gap over the closed shell cases is actually
smaller than the same average over the worse half of the set.
One might also guess that the weights of excited state deter-
minants from MCSCF calculations may tend to be larger for
the poorer performers~meaning that the true wave function
is better represented with a multireference description!.
However, we find that the average weights are very similar,
with only a very slight, essentially insignificant, difference
~0.080 vs 0.075! between the two subsets.

It is also interesting to note that the average error among
the worst 27 cases is negative at22.7 kcal/mol, while the
same average for the best 28 molecules is nearly zero at
10.2 kcal/mol. This difference may be indicative of the fol-
lowing general tendency. If FN-DMC fails to describe the
atom and molecule with the same degree of accuracy, it is far
more likely that the larger error will be made on the mol-
ecule.

IV. IMPROVEMENT OF THE P2 MOLECULE

As mentioned, all of the FN-DMC results listed in Table
I are obtained from trial wave functions using a single slater
determinant built from natural orbitals. In order to probe the
main source of discrepancy from experiment, one can exam-
ine how changes to this trial wavefunction impact the FN-
DMC result. For such a study, we choose one of the worst
case molecules, P2 , since its relatively small size allows for
a number of thorough tests to be carried out.

A. Pseudopotentials

One possible source of error is due to the use of pseudo-
potentials. It is difficult to compare our pseudopotential
DMC results with all-electron DMC calculations since the
core electrons introduce additional nodal error which would
be hard to separate from the effect of the pseudopotential.

TABLE II. FN-DMC error, FN-DMCeMAD , Hartree–Fock HOMO-LUMO
gap, and two largest CSF weights from MCSCF calculations averaged over
the 27 worst and 28 best FN-DMC energies in the G1 set. A breakdown of
the kinds of spin multiplicities is also given, where S5singlet, D
5doublet, and T5triplet.

27 Worst 28 Best

eavg ~kcal/mol! 22.7 10.2
eMAD ~kcal/mol! 5.0 0.9
Spin multiplicities 20S, 4D, 3T 17S, 7D, 4T
HOMO-LUMO gap ~eV! 14.4 11.6
Ground state CSF weight 0.959 0.964
Second largest CSF weight 0.080 0.075
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Although in this work the SBK~Ref. 17! pseudopotentials
are employed, a number of other types of pseudopotentials
are available. In addition to the method of construction, there
are different theories on which the psuedopotential can be
based. For example, SBK pseudopotentials are based on
Hartree-Fock, but others can be made from LDA, GGA or
other correlated theories.

When comparing different pseudopotentials for use in
DMC calculations, if one remains consistent between
pseudopotential and trial wave function there is little impact
of the pseudopotential on the DMC result. For example, we
compared two DMC calculations using Hartree–Fock trial
functions with two different Hartree–Fock pseudopotentials,
SBK and Hay–Wadt.25 The DMC atomization energies for
these cases were the same to within statistical error bars. On
the other hand, if one were to construct a trial function gen-
erated by one method using a pseudopotential generated by a
different method, there may be differences among the result-
ing DMC atomization energies. These differences are illus-
trated in Table III which lists DMC atomization energies
based on single determinant trial functions generated using
two different methods~LDA and GGA! and three different
pseudopotentials~Hartree–Fock, LDA, and GGA! for each
method.

Note that for LDA trial functions, the largest FN-DMC
atomization energy is obtained with the LDA pseudopoten-
tial ~i.e., the method used to construct the pseudopotential is
the same as that used to build the trial function!. However,
for GGA trial functions, the largest atomization energy is not
obtained with the GGA pseudopotential, but rather with the
pseudopotential generated within LDA. In fact both the
Hartree–Fock and LDA pseudopotentials give larger FN-
DMC atomization energies than the GGA pseudopotential,
for LDA or GGA trial functions. Table III indicates that, at
least for this case, the FN-DMC atomization energy is more
strongly dependent on the pseudopotential than on the
method used to construct the trial wave function. This result
is tested further below by comparing different trial functions
all with the same pseudopotential.

Based on these results, it is likely that the FN-DMC
error is partially due to an error in the pseudopotential. While
it is difficult to quantify this error~making a comparison
between pseudopotential and all-electron FN-DMC is some-
what ambiguous!, we can nevertheless estimate that the error
in FN-DMC due to the pseudopotential is roughly on the
order of the differences observed in Table III, around 2 kcal/
mol.

B. Geometry

The impact of how the P2 bond distance is optimized is
another important test in our attempt to improve the energy.
Forces are still challenging to evaluate within QMC, al-
though there has been recent progress.26,27 In the case of the
P2 dimer, only a single bond distance needs to be optimized
which can be done easily with a series of total energy calcu-
lations. Figure 1 shows FN-DMC energies for the P2 mol-
ecule at varying bond distances. Note that the optimal FN-
DMC bond distance is 0.035 Å shorter than the
MP2/6-31G(d) value. The difference in energy between
these two structures is;0.5 kcal/mol. This small difference
indicates that the sensitivity of atomization energy to geom-
etry is fairly minimal in this case and is not a large source of
the error from experiment.

Since the geometry correction is an order of magnitude
less than the missing binding energy, we focus on the quality
of the nodal structure which is likely to have a far greater
impact. The FN-DMC nodes are determined entirely by the
nodes of the Slater determinant~s! which are constructed
with single-body orbitals. There are a number of ways in
which one can easily at least attempt to improve upon these
nodes. First, the accuracy of the single-body orbitals may be
improved by increasing the atomic orbital basis sets. Second,
the orbitals themselves can be taken from any number of
theories~i.e., Hartree–Fock, LDA, GGA, NO, etc.!, some of
which may lead to better nodes than others. Third, the deter-
minantal basis can be expanded to include more than a single
determinant.

C. Single-particle orbitals

For pseudopotential calculations, it is generally assumed
that the fixed-node error is not effected much by the quality
of the atomic orbital basis, as long as the basis is suf-
ficient ~i.e., 6-311G* quality or better!. For P2 , 3 atomic
orbital basis sets were tested: 17s17p2d/4s4p2d,
27s27p3d/6s6p3d, and 32s32p8d/8s8p4d. Contractions
for these basis sets were least squares fit to the orbitals of the

TABLE III. DMC atomization energies~kcal/mol, with zero-point correc-
tions! for the P2 molecule calculated with two trial wave functions using
three different pseudopotentials~PP!.

Trial function Hartree–Fock PP LDA PP BPW91 PP

LDA 108.9~2! 110.7~2! 107.9~3!
BPW91 108.9~2! 110.4~2! 107.8~3!

FIG. 1. FN-DMC energy of the P2 molecule as a function of the bond
distance. The solid line represents a quadratic fit to the QMC data. The
x-axis has been shifted by the MP2/631G(d) bond distance.
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exact Hartree–Fock solution for the P pseudoatom. Uncon-
tracted basis functions were chosen to optimize the energy of
the Hartree–Fock dimer. For each case FN-DMC total ener-
gies were computed with statistical error bars less than
0.0001 a.u. All 3 basis sets give the same total energy within
error bars, indicating the relative insensitivity of the nodes to
the atomic orbital basis in this case. It may be interesting to
carry out this same kind of test systematically for other mol-
ecules in the set, although that is beyond the scope of the
present work. Further, these atomic orbital basis set tests
were performed with single determinant trial functions; it is
possible that the effect of the atomic orbital basis becomes
more important as the trial function is expanded to include
multiple determinants.

A number of different single-particle orbitals have been
used in the past to construct the Slater determinant part of
QMC trial wave functions. In some cases, it was found that
NO offer a slight improvement in the nodes over Hartree–
Fock orbitals.13 Other times, DFT orbitals may be more ap-
propriate. It is difficult to predicta priori which orbitals are
better suited to a given system. In many cases, the resulting
differences tend to be rather small. Table IV lists the total
energy of the P2 molecule using a single Slater determinant
built from five different kinds of orbitals: Hartree–Fock, NO,
LDA, BPW91, and B3LYP. The same Hartree–Fock SBK
pseudopotential was used in each case. Note that using the
NO gives a small ~;0.7 kcal/mol! improvement over
Hartree–Fock, and the LDA and GGA orbitals are slightly
better~;1.0 kcal/mol! than NO. While it is interesting that in
this case the DFT orbitals are best, they only account for 1 of
the 8 kcal/mol FN-DMC error found with NO. Of course,
other single-body orbitals could be used, however it appears
that, like geometry, the choice of single-body orbitals is a
small contribution to the discrepancy with experiment.

D. Multiple determinants

Another way to change and possibly improve the nodal
surface of the trial QMC wave function is to use more than a
single Slater determinant. Just as an expansion of the deter-
minantal basis increases the variational freedom in the wave
function and therefore lowers the total energy in post-
Hartree–Fock calculations, multideterminantal trial wave
functions can lead to better nodes which lower the FN-DMC
total energy.28 In general, however, a given determinantal
expansion that improves the variational energy does not al-
ways lead to a similar improvement in the nodal surface. In
fact, recent work has shown that MCSCF-based trial func-
tions may not improve the FN-DMC energy29 and in some

cases can even worsen the fixed node error.30 It has also been
suggested recently that multideterminantal trial functions
based on pair natural orbital CI wave functions may improve
the nodal surface more efficiently than MCSCF-based trial
functions.31

Table V shows the total FN-DMC energies for P2 using
several different multireference trial functions. In each case,
determinants were taken from a MCSCF calculation in
which all occupied electrons were singly and doubly excited
into a given number of virtual states. The number of result-
ing determinants corresponds to a threshold of 0.01 for the
weight of the configuration state functions~CSF! to keep.
Weights of these determinants in the FN-DMC calculations
are taken to be the same as the MCSCF weights. Of course,
these weights may not be ideal since they are taken from a
minimization of the total energy which may not always cor-
respond to improving the nodal surface. Nonetheless, MC-
SCF weights provide a good starting point and can help
guide us in selecting the determinants.

Note that the energies are improved using a multirefer-
ence trial function based on MCSCF orbitals and weights.
Using a single determinant of MCSCF orbitals gives the
same FN-DMC energy as Hartree–Fock orbitals, slightly
higher than the NO single determinant energy~see Table IV!.
Taking excitations into just the first three virtual states low-
ers the FN-DMC energy by 2.1 kcal/mol compared with a
single determinant.

In going from 3 to 8 virtual states in the MCSCF calcu-
lation, the FN-DMC energy is improved yet again rather sub-
stantially. With a 167-determinant wave function, the FN-
DMC energy is 4.3 kcal/mol lower in energy than a single
determinant. The additional improvement may be due to the
fact that the 167-determinant expansion includes excitations
into d-like orbitals not present in the smaller 54-determinant
run. This explanation is in good agreement with previous
work which found that significant improvement in the nodal
structure of several atoms32 and the N2 molecule33 relied on
the inclusion of determinants with excitations intod states.

The largest determinantal expansion listed is for 269 de-
terminants from a MCSCF calculation that included excita-
tions into 16 virtual states. The energy for this case is only
slightly improved @0.3~1! kcal/mol# compared to the 167-
determinant case. This makes our best multideterminant FN-
DMC energy roughly 4.1~1! kcal/mol lower than the single-
determinant NO result listed in Table I.

Further excitations into more virtual states in the MC-

TABLE IV. Total single determinant FN-DMC energy~a.u.! of the P2 mol-
ecule for different types of orbitals used to fill the Slater determinant.

Orbitals Total energy

Hartree–Fock orbitals 213.0628~1!
Natural orbitals 213.0636~1!
LDA orbitals 213.0652~1!
BPW91 orbitals 213.0652~1!
B3LYP orbitals 213.0651~1!

TABLE V. Total FN-DMC energy~a.u.! of the P2 molecule with differing
number of determinants in the trial wave function. The number of virtual
states in the MCSCF calculation is also listed. For each case, all configura-
tion state functions with weight greater than 0.01 were included.

No. of determinants No. virtual states Total energy

1 1 213.0628~1!
54 3 213.0660~1!

167 8 213.0696~1!
269 16 213.0701~1!
245 25 213.0691~1!
223 40 213.0698~1!
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SCF calculations do not lead to further improvements in the
FN-DMC energy. This may be partly due to the fact that we
use here the same cutoff~0.01! for the CSF weights in all
cases. As the number of virtual states increases, the total
number of determinants increases and the weights of each
determinant decrease.~This is also the reason why the num-
ber of determinants decreases for the last two rows of Table
V.! Such an explanation cannot be complete, however, since
the energy is improved in going from 25 to 40 virtual states
~245 to 223 determinants!.

We have so far only examined the improvement in total
energy of the P2 molecule. Of course, to compute the atomi-
zation energy one must also know the energy of the P atom.
Therefore, it is reasonable that if multireference determinants
are used for the molecule one should recompute the atomi-
zation energy using a similar multideterminant wave func-
tion for the atom. A 66-determinant trial function for the P
atom was generated from a MCSCF calculation with excita-
tions into 24 virtual states. The energy was indeed lower than
the single determinant FN-DMC energy, but only by 0.3~1!
kcal/mol. The best correction above, then, is 3.5 kcal/mol
when referring to the atomization energy.

In our quest to improve the FN-DMC atomization of the
P2 molecule, we have found;2.0 kcal/mol ~pseudopoten-
tial!, 0.5 kcal/mol~geometry!, 1.0 kcal/mol~single-body or-
bitals!, and 3.5 kcal/mol~determinantal basis!. Previous
work6 found roughly 0.8 kcal/mol in core-valence correlation
~not included here due to our use of pseudopotentials! and a
0.2 kcal/mol correction due to scalar relativistic effects. A
sum of these individual effects would result in a 8.0 kcal/mol
improvement in the atomization energy of P2 , bringing the
error with experiment to20.2 kcal/mol. Although it is not
entirely clear that one can sum these errors~i.e., that the
correction terms listed above are unrelated! it is nonetheless
evident that a substantial improvement can be made in this
case.

Another, somewhat complicated source of error is the
localization error11 which is intimately connected with the
fixed-node error. It was shown that the localization error
scales as the error in the trial function squared.11 Thus, with
a good enough trial function, it is typically assumed that this
error is minimal~i.e., significantly smaller than the statistical
error bars!. However, in the current set of data we are ex-
ploring small energies with very small error bars.

It is likely that the 4.1 kcal/mol improvement found by
expanding the determinantal basis is an improvement inboth
the nodal error and the localization error. To separate the two
is, unfortunately, exceedingly difficult, particularly since im-
proving the nodes also improves the localization error. Fig-
ure 2 shows the total energy of the P2 molecule as a function
of the number of determinants for two trial functions: one
with the full Jastrow as used throughout this work, and one
without any Jastrow term. For a given number of determi-
nants, the nodal surface is the same in both cases. For one
determinant, the difference between the two curves is en-
tirely due to the localization error. However, as the number
of determinants is increased, the nodal error is improved
which in turn improves the locality error and separating the
two is not possible. For the purpose of this discussion, when

referring to the fixed-node error we mean more precisely a
combination of fixed-node and localization errors.

V. CONCLUSIONS

The accuracy of the pseudopotential FN-DMC approach
has been assessed for the 55 G1 molecules. For these calcu-
lations, the method was treated in as ‘‘black box’’ a way as
possible. For example, all calculations were run systemati-
cally with the same basis sets and type of orbital for a single
determinant trial function. With such an approach, a mean
absolute deviation of 2.9 kcal/mol was achieved. The main
source of error for the P2 molecule was found in the fixed-
node approximation, a second important error was in the use
of the SBK pseudopotential, and smaller errors were due to
geometry and choice of single-body orbitals. The nodes were
shown to be substantially improved by using multiple deter-
minants in the trial function. These results indicate thateMAD

could be significantly reduced~i.e., by a factor of 2! if mul-
tireference trial wave functions were employed for the whole
set.

Many more careful studies are needed to understand the
best means of improving the fixed-node error. It is our hope
that the benchmark results provided in this work will aid in
some of these studies. For example, the 5 or 10 worst case
molecules could provide a useful laboratory for tests and
improvements. Furthermore, the results presented here put
pseudopotential single determinant FN-DMC on the map as
a benchmark, with its absolute mean deviation now a number
that can be directly compared with other methods.
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FIG. 2. FN-DMC energy of the P2 molecule as a function of the number of
determinants in the trial function. Results both with and without a Jastrow
function are shown. Statistical error bars are smaller than the symbols
shown.
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