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Benchmark all-electron ab initio quantum Monte Carlo calculations
for small molecules

Norbert Nemec,a! Michael D. Towler, and R. J. Needs
TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Ave., Cambridge CB3 0HE,
United Kingdom

!Received 13 August 2009; accepted 15 December 2009; published online 21 January 2010"

We study the efficiency, precision and accuracy of all-electron variational and diffusion quantum
Monte Carlo calculations using Slater basis sets. Starting from wave functions generated by
Hartree–Fock and density functional theory, we describe an algorithm to enforce the
electron-nucleus cusp condition by linear projection. For the 55 molecules in the G2 set, the
diffusion quantum Monte Carlo calculations recovers an average of 95% of the correlation energy
and reproduces bond energies to a mean absolute deviation of 3.2 kcal/mol. Comparing the
individual total energies with essentially exact values, we investigate the error cancellation in
atomization and chemical reaction path energies, giving additional insight into the sizes of nodal
surface errors. © 2010 American Institute of Physics. #doi:10.1063/1.3288054$

I. INTRODUCTION

Ab initio variational Monte Carlo !VMC" and diffusion
Monte Carlo !DMC" methods have been used successfully
for systems containing hundreds and sometimes thousands of
electrons.1 Such calculations typically retrieve 95% or more
of the correlation energy within the fixed-node approxima-
tion based on a single determinant. Testing the accuracy of
VMC and DMC results against experiment and other theo-
retical methods plays an important role in the development
of computer codes such as the CASINO package.1

As a method that directly competes for accuracy and
efficiency with deterministic quantum chemical methods,
benchmark results are of great interest. Total electronic ener-
gies of atoms lend themselves to direct comparison as highly
accurate reference values are available. DMC calculations
can recover 99% or more of the correlation energy for first
row atoms using multideterminant and backflow wave
functions.2 Another well-known set of benchmark data
are the atomization energies of the G2 set of molecules.3

These energies have been reproduced in DMC to high
accuracy using pseudopotentials.4 Calculations of a selec-
tion of small molecules consisting of first-row atoms have
proven all-electron DMC to be nearly as accurate as
CCSD!T"/cc-pVTZ.5

In every case, the dominant deviations were attributed to
the fixed node approximation made in the DMC method.
DMC satisfies the variational principle and therefore the en-
ergies are too high when an approximate nodal surface is
used. Comparing total energies for benchmarking purposes,
DMC typically performs extremely well. For atomization
and chemical reaction energies, however, error cancellation
in the energy differences becomes essential. Unfortunately,
the quality of the nodal surface turns out to depend intri-

cately on the chemical structure of each molecule or atom
and the error cancellation in DMC is less efficient and pre-
dictable than in competing methods.

In this paper we present benchmark results for the afore-
mentioned 55 molecules of the G2 set from all-electron
DMC calculations using wave functions based on Slater-type
orbitals !STOs". These results are directly comparable to
pseudopotential-based calculations. Beyond this, however,
the availability of highly accurate reference data for the total
energies of the same set of molecules6 allows a deeper analy-
sis of the relative nodal surface errors in various chemical
species and permits an intuitive visualization of error cancel-
lation in chemical reaction energies.

II. SLATER-TYPE ORBITALS

STOs were an important tool in quantum mechanics long
before the availability of computational tools in physics and
chemistry.9 Inspired by the analytic solution of the hydrogen
atom, STO basis sets were the first choice for a number of
important approximate studies in the early years of quantum
chemistry. With the arrival of computers, however, it turned
out that Gaussian basis functions !GTOs" !Ref. 10" allow a
far simpler efficient implementation due to the possibility of
factorizing Gaussian functions in Cartesian coordinates and
the simplicity of evaluating multicenter integrals. They be-
came the standard in quantum chemistry to the point that
chemists typically discuss “basis sets,” implicitly referring to
a GTO basis.

While the relative merits of the GTO and STO represen-
tations of orbitals in quantum chemistry are still under
debate,12 attempts have been made to reduce the computa-
tional effort of working with STO basis sets,13–16 leading to
the development of several STO-based electronic structure
codes.17–19 Of these, the only code active development and
available for general use is ADF,19 offering a full state-of-the-
art implementation of Hartree–Fock !HF" and density func-
tional theory !DFT" electronic structure calculations for mol-a"Electronic mail: nn245@cam.ac.uk.
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ecules and, via its sister program BAND for periodic systems.
Quantum Monte Carlo !QMC" methods have very differ-

ent computational requirements from conventional nonsto-
chastic electronic structure methods. Without the need to per-
form analytic integrations, the usual advantages of GTO
become irrelevant. Instead, the bulk of the computational
cost lies in evaluating the trial wave function and its deriva-
tives at arbitrary positions in space. A basis set that achieves
the same precision with a more compact representation
!fewer basis functions" will gain a clear advantage. Further-
more, STO wave functions allow an exact treatment of the
Kato cusp condition at nuclei21 and do not suffer from diver-
gent local energies at large distance from a molecule. For
these reasons, STO basis sets have often been used in QMC.

In the past, the main disadvantage of STO basis sets in
QMC calculations has stemmed from the use of a trial wave
function commonly generated from a preliminary HF or DFT
calculation; almost all suitable mainstream local basis set
electronic structure codes for finite systems—particularly in
the quantum chemistry community—use GTO. To exploit
the advantages of STO for QMC calculations, one could
therefore use either a conversion step5 or optimize the orbit-
als directly within VMC.22 The advent of the ADF code has
allowed the generation of HF or DFT orbitals directly in an
STO basis, which can then be used in QMC calculations.

GTO basis sets have been available in the CASINO pro-
gram for over a decade. We have now implemented the ad-
ditional capability to evaluate orbitals expanded in a STO
basis, allowing the use of trial wave functions generated by
ADF in VMC and DMC calculations.23 In the following, we
present details of the cusp constraint used in the converter
and demonstrate the precision achievable with the combina-
tion of ADF and CASINO.

Each molecular orbital is expanded in the STO basis

!!r" = %
i=1

Nbas

ci"i!r − Ri" , !1"

with Nbas basis functions of the form

"i!r" = Yli
mi!#,$"rli+nie−%ir, !2"

with %i&0 and the Yl
m are the Laplace spherical harmonics.

Abandoning orthogonality in favor of simplicity, the La-
guerre polynomials present in the analytic solutions for the
hydrogen atom are replaced by rn.

The centers Ri of the basis functions usually coincide
with the positions RI of the Nnuc pointlike nuclei I of charge
ZI. In principle, a single value of % would allow the construc-
tion of a complete basis set by including sufficiently high
orders n. In practice, however, using a small number of dif-
ferent % values is a more efficient means of improving the
precision of the basis set. A further improvement in precision
can be made by including high-angular-momentum basis
functions to improve the description of polarization. In
this work, we used four general-purpose basis sets from
the ADF package, in increasing size and precision: single-%
!SZ", double-% !DZ", triple-%-polarized !TZP", and
quadruple-%-fourfold-polarized !QZ4P".

III. CUSP CONSTRAINT

The exact wave function of particles interacting via a
Coulomb interaction fulfills the Kato cusp condition when-
ever two pointlike particles coalesce.21 For pairs of electrons,
this condition gives rise to dynamic correlations that can be
very efficiently represented by a Jastrow factor.26–29 In all-
electron calculations, each single-electron orbital ! should
fulfill the cusp condition

&' d
dr

!!r"(
'
&

r=RI

= − ZI!!RI" , !3"

in the vicinity of each pointlike nucleus I of charge ZI at
position RI, where ) · *' denotes the spherical average around
the nucleus.

In methods such as DFT or HF, having the exact cusp at
the nucleus is less important than the overall quality of the
wave function, so smooth Gaussian functions can be used to
represent the wave function. QMC, on the other hand, is
based on evaluating the local energy which diverges at coa-
lescences if the cusp condition is not exactly fulfilled.7 When
using GTO-based trial wave functions in QMC, the cusp
condition is typically enforced artificially, either by modify-
ing the GTO basis functions30 or by directly constructing a
correction to the single-electron orbitals.7,31

In contrast to smooth GTO basis functions, STO-based
orbitals #Eq. !2"$ are able to fulfill the cusp condition
#Eq. !3"$ exactly, leading to one linear constraint per nucleus
I on the coefficients ci of any molecular orbital !. These
Nnuc constraints can be expressed as a single matrix equation

FIG. 1. Effect of the nuclear cusp constraint on orbitals !!r" !left" and
orbital local energies Eloc=!−1H! !right" for the carbon atom. Three dif-
ferent general-purpose basis sets from the ADF package were used !top to
bottom with increasing size and precision". For atoms, only s orbitals require
cusp correction and are here shown before and after the constraint for com-
parison. Within the single-% basis SZ the wave function is severely distorted
when the coefficient of the single 1s basis function is adjusted; for the
double-% basis DZ, the local energy is still strongly distorted; for the
quadruple-% basis QZ4P, the divergence in the local energy at the nucleus is
cleanly removed, otherwise preserving the orbitals and the local energy.
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%
i

(i
Ici = 0, !4"

where the Nnuc)Nbas elements of the constraint matrix are
given by

(i
I = *Ri,RI

*li,0
#*ni,0

!%i − ZI" − *ni,1
$

− ZI!1 − *Ri,RI
""i!Ri − RI" .

In principle, these linear constraints can be enforced during a
HF computation,32 but this is rarely implemented in elec-
tronic structure codes. Instead a wave function originating
from a code such as ADF can be cusp-corrected by a linear
projection. To restrict the effect of the cusp correction to the
vicinity of the nuclei, we fix all coefficients except those of
the narrowest 1s basis function on each nucleus, and adjust
the coefficients of the Nnuc remaining orbitals to fulfill
Eq. !4". As the cusp conditions on different nuclei are nearly
independent, this linear problem is always well-conditioned
and has a unique solution.

Figure 1 demonstrates the effect of this cusp correction
scheme on the orbitals and local energies. The single-% basis
set clearly does not leave sufficient freedom for the correc-
tion and the single 1s basis function is severely distorted. For
larger basis sets, however, the singularity in the local energy
is cleanly removed with negligible distortion of the orbitals
away from the cusp.

IV. ATOMIC TOTAL ENERGIES

We computed the HF energies of the first- and second-
row atoms with ADF !see Fig. 2" to compare the quality of
available basis sets. We found the ADF/QZ4P basis-set error
to be below 0.1 kcal/mol for the first row atoms and below 1
kcal/mol for the second row atoms. The corresponding DMC
energies are expected to be less sensitive to errors in the
orbital basis than HF energies. For comparison, GTO-based
HF energies were computed with the CRYSTAL program,33

using a 6-311G basis set, also displayed in Fig. 2.
To evaluate the combined approach of using ADF and

CASINO, the total energies of the first- and second-row atoms
including correlation effects are compared to exact reference
values in Fig. 3, as well as with earlier QMC data using
wave functions defined on a radial grid.2 A VMC calculation
using the Slater-determinant wave function reproduced the

HF energy, confirming that enforcing the cusp constraint pre-
serves the overall quality of the wave function.

For each atom, we optimized a Jastrow factor26 consist-
ing of electron-electron, electron-nucleus and electron-
electron-nucleus terms. The Jastrow factor was expressed as
a power expansion in the interparticle distances with the pa-
rameters: C=3, Nu=N(=12, Nf

en=2, and Nf
ee=3 !see Eqs. 19,

20, and 21 of Ref. 29". For the VMC optimization, we mini-
mized the mean absolute deviation !MAD" of the energy
from the mean energy over a set of 50 000 /Nelec configura-
tions, performing five consecutive optimization iterations.
This conservative choice of parameters allowed a reliable,
automated optimization procedure. The resulting Slater–
Jastrow !SJ" wave functions recover 60%–85% of the corre-
lation energy.

DMC calculations using the optimized SJ wave func-
tions recovered 90%–95% of the correlation energy for Be
and heavier atoms. !Time step errors22 were eliminated by
linear extrapolation." H and He do not have a nodal surface,
so DMC produces the exact energy. The HF nodal surface for
Li is extremely good, and DMC recovers more than 99.5%
of the correlation energy in this case. The total energies of
the first row atoms show excellent agreement with previous
QMC results.2 This indicates that the remaining error is due
to the fixed-node approximation and presents the limit of the
single determinant SJ method which can only be bettered by
improving the nodal surface, e.g., by using backflow34 or
multideterminant wave functions.35

V. THE G2 SET OF MOLECULES

Further benchmarking was performed for the bond ener-
gies of the 55 molecules of the G2 set.3 The bond energy
Ebond is the difference between the molecular and atomized
total energies, not including the zero point motion of the
nuclei6 or any further corrections.25

FIG. 2. Comparison of atomic unrestricted HF !UHF" energies. The refer-
ence energy !Ref. 6" is based on a cc-pV5Z-h GTO basis set and assumed to
be exact within the published precision of 0.1 kcal/mol.

FIG. 3. Atomic total energies computed within HF !ADF/QZ4P" and QMC
compared to the exact results !Ref. 11". The VMC run with the HF wave
function reproduces the HF energy to within statistical error bars !demon-
strating the negligible effect of the cusp correction on the energy for an
accurate basis set". Optimized SJ wave functions recover roughly 60%–85%
of the correlation energy within VMC and 90%–95% within DMC. The
results agree very well with an earlier study based on numerical atomic
orbitals !NAO" on a radial grid !Ref. 2".
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First of all we used the G2 set to analyze the quality of
the various basis sets by comparing the molecular HF ener-
gies !see Fig. 4". Based on this data and the atomic data, we
chose the QZ4P basis set for all further work as it systemati-
cally gives the smallest basis set error.

To enable a direct comparison of results, the HF calcu-
lations !Fig. 4" were performed using the same molecular
geometries as the previous GTO calculations reported in Ref.
7. For all other computations we used the more precise ge-
ometries from Ref. 25, where available, and for the remain-
ing molecules we used those from Ref. 6, which were pro-
vided by the authors.20 The geometry of SiH2 in the triplet
state was obtained from Ref. 38.

For each molecule, we optimized a Jastrow factor with
the same set of terms and parameters as used for the atoms.
On average, we recovered 82% of the correlation energy
within VMC.

The SJ wave functions thus obtained were then used as

the trial wave functions for DMC. For each system, two runs
at time steps dt=0.01 and dt=0.001 were performed, allow-
ing a linear extrapolation dt→0. We used a total of 40 CPU
hours per electron !Intel XEON, 3 GHz" for each molecule,
reaching a statistical precision of about 25 +hartree /
electron.

For comparison, the bond energies computed using dif-
ferent methods are shown in Fig. 5. The MAD of our STO-
based bond energies from the experimental reference values
is 3.2 kcal/mol. This is slightly larger than the deviation of
2.9 kcal/mol found in the pseudopotential-based DMC study
of Grossman;4 however, those values excluded the relativis-
tic and spin-orbit corrections which shift individual reference
values by up to 2 kcal/mol and would increase the MAD to
3.1 kcal/mol. Indeed, the MAD between Grossman’s pseudo-
potential results and our all-electron results is just 2.0 kcal/
mol, showing the strong correlation between the errors in the
two sets of results. Our GTO-based all-electron DMC calcu-

FIG. 4. Comparison of basis set errors in the HF energies for various STO basis sets. The QZ4P basis is used as a reference. Judging by Fig. 2, the remaining
error is less than 1 kcal/mol for each second-row atom. The GTO 6–311G basis is roughly equivalent in precision to the STO TZP basis set which typically
contains about 45% more basis functions. Geometries and GTO reference data were the same as those used in Ref. 7 #see supplementary material !Ref. 20"$.
The dashed line separates the molecules containing only first-row atoms from those also containing second-row atoms.

FIG. 5. Comparison of various calculated bond energies from ab initio computations. The deviation ,Ebond=Ebond−Eref
bond from the experimental reference

energy given in Ref. 24 !including zero-point motion, relativistic and spin-orbit corrections" is shown. Our GTO-based DMC calculations were performed with
deliberately less effort than the STO-based ones. Grossman !Ref. 4" chose a DMC approach similar to ours but using pseudopotentials, whereas we have used
an all-electron approach. The excellent values obtained by Feller et al. !Ref. 25" are based on fixed-core coupled cluster computations with a careful choice
of basis set for each molecule including core-valence corrections.
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lations, which were deliberately performed without time step
extrapolation or any kind of fine tuning of the basis sets or
other computational parameters, gave a MAD from the ref-
erence values of 5.1 kcal/mol. This larger MAD shows that
time-step extrapolations and a careful choice of basis sets are
important in obtaining accurate single-determinant SJ DMC
results.

Overall the obvious correlations between the errors of
the three independent DMC-based attempts clearly suggest
that a further systematic improvement can only be achieved
by going beyond the fixed-node DMC approach with single-
determinant SJ trial wave functions. This confirms the find-
ing of Grossman that the fixed-node approximation domi-
nates the remaining error.

VI. ERROR CANCELLATION

The variational principle guarantees that the fixed node
approximation leads to an overestimate of the total energy
for each molecule and atom. The bond energy, being a dif-
ference of total energies, therefore shows significant error
cancellation. Studying the bond energies in Fig. 5 reveals
only very limited systematics about the sign and the magni-
tude of the errors in the bond energies. The picture becomes
much clearer when we directly compare the errors in the total
energies for the molecules and their constituent atoms. We
found that the nodal surface error lies in the range of
1–3 mHa/electron for each atom and molecule in our test set,
except for a very limited set of species for which the nodal

FIG. 6. Visualization of the error cancellation in bond energies. The horizontal bars on the left and right of each reaction correspond to the error in the total
energy of each species ,Etot=Etot

dmc−Etot
ref, where the reference total energies are based on experimental atomization energies, atomic total energies and

theoretical corrections !Ref. 6". Within the statistical precision, these errors are due almost entirely to the fixed node approximation. The vertical extent of each
bar is the error per electron, which is in the range of 1–3 mHa/electron except for H, H2, He, Li, LiH, BeH, and Li2 for which the nodal surface is exact or
nearly so. The horizontal extent is the number of electrons. The difference in the areas on the right and left side of each reaction represents the error in the
bond energy, which is shown in the center.
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surface is exact or nearly so. This allows us to visualize the
error cancellation in a very compact and intuitive manner
!Fig. 6".

We observe a limited number of cases where both mol-
ecule and constituent atoms are described well, leading to an
accurate bond energy !LiH and Li2". In some cases, all spe-
cies involved show similar nodal errors per electron, leading
to strong error cancellation !e.g., CO, CO2, Na2, and Si2". In
many other cases, however, the quality of the wave function
is very different for the various species, which may lead to a
large net error !e.g., NO and SO2", although the errors may
also largely cancel !e.g., LiF and NaCl".

For most molecules containing hydrogen and carbon
!e.g., CH3 and CH4", one can observe that the wave function
of the molecule is described significantly better than that of
the carbon atoms, leading to a systematic overestimation of
the bond energy. !Even though the absence of a nodal surface
error for the hydrogen atom might intuitively suggest the
opposite." A similar effect can also be seen in the visualiza-
tion of chemical reaction energies !Fig. 7". Here, one can
observe that fully hydrogenated molecules are typically de-
scribed better by the fixed node approximation than mol-
ecules containing double or triple bonds.

Finally, one can observe that second row atoms and their
molecules typically show significantly larger nodal surface
errors than first row atoms. The errors in bond energy, how-
ever, are not necessarily larger, indicating that these nodal
surface errors arise mainly from the core electrons and that
they cancel in energy differences.

VII. CONCLUSIONS

To conclude, we have demonstrated the accuracy of STO
trial wave functions generated by the ADF software packages
in VMC and DMC calculations using the CASINO program.

In direct comparison, STO basis sets promise a performance
gain of 45% over GTO basis sets of comparable precision
!see Table I". Using the QZ4P basis set from ADF, the basis
set errors are below 0.1 kcal/mol for first-row atoms and
below 1 kcal/mol for second-row atoms. DMC calculations
for the G2 set of molecules recovered on average 95% of the
correlation energy. Due to partial error cancellation, the at-
omization energies could be reproduced to a MAD from the
experimental values of 3.2 kcal/mol.

The errors in the total energies of individual molecules
and atoms, which originate—apart from statistical errors—
almost entirely from the fixed node approximation, were then
used to analyze and visualize the error cancellation in atomi-
zation and chemical reaction energies. While we find that the
nodal error from the core electrons in the second row atoms
largely cancels out, other error cancellations seem more co-
incidental than systematic.

As our bond energies are of similar quality to those ob-
tained previously in pseudopotential calculations, we may
assume that we have reached the limit in accuracy that is
possible with a nodal surface obtained from single Slater
determinant wave functions. Systematic studies of the nodal
surface of multideterminant wave functions39 indicate that
significant improvements can be achieved with reasonable
effort. Using backflow functions34 or geminal wave
functions40 should also lead to higher accuracy QMC results,
while retaining its excellent performance and scaling behav-
ior.

The molecular geometries and the full set of results are
provided in electronic form, available from supplementary
material.20
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evaluate. For equal size of basis set, GTO without cusp correction performs
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the Gaussian cusp correction !Ref. 7" replaces the orbital close to nuclei by
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Type Basis Nbas

Tcpu/step
!+s"
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TZP 74 391
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QZ4P 212 643

Type Cusp corr. Nbas

GTO None 114 468
gpcc 114 486

Gaussiana 114 512

aReference 7.
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