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While the title question is a clear “yes” from purely theoretical arguments, the case is less clear for
practical calculations with finite (one-particle) basis sets. To shed further light on this issue, the con-
vergence to the basis set limit of CCSD (coupled cluster theory with all single and double excitations)
and of different approximate implementations of CCSD-F12 (explicitly correlated CCSD) has been
investigated in detail for the W4-17 thermochemical benchmark. Near the CBS ([1-particle] com-
plete basis set) limit, CCSD and CCSD(F12∗) agree to within their respective uncertainties (about
±0.04 kcal/mol) due to residual basis set incompleteness error, but a nontrivial difference remains
between CCSD-F12b and CCSD(F12∗), which is roughly proportional to the degree of static corre-
lation. The observed basis set convergence behavior results from the superposition of a rapidly con-
verging, attractive, CCSD[F12]–CCSD-F12b difference (consisting mostly of third-order terms) and
a more slowly converging, repulsive, fourth-order difference between CCSD(F12∗) and CCSD[F12].
For accurate thermochemistry, we recommend CCSD(F12∗) over CCSD-F12b if at all possible. There
are some indications that the nZaPa family of basis sets exhibits somewhat smoother convergence than
the correlation consistent family. Published by AIP Publishing. https://doi.org/10.1063/1.5048665

INTRODUCTION

Explicitly correlated (R12 and F12) electron correlation
methods (see, e.g., Refs. 1–4 for reviews) greatly acceler-
ate basis set convergence of wavefunction ab initio methods.
Experience from thermochemistry (e.g., Refs. 5–7), nonco-
valent interactions (e.g., Refs. 8–12), and vibrational fre-
quencies13,14 shows that explicitly correlated methods gain
two,15 or for larger basis sets even three, angular momen-
tum increments on their conventional correlated counterparts.
Because the cost of coupled cluster methods scales steeply
with the number of basis functions—which scales approxi-
mately as ∝L3 with angular momentum L—this can mean a
cost difference of an order of magnitude.

In current practice, Slater-type geminals,16 better known
as F12 geminals, have become the de facto standard for explic-
itly correlated methods. (For a recent comparison of alternative
geminal forms, see Ref. 17.)

CCSD(T), coupled cluster theory18 with all singles and
doubles19 plus a quasiperturbative correction for triple exci-
tations,20,21 is widely considered the “gold standard” of ab
initio quantum chemistry. The triples component does not ben-
efit from F12 functions (despite attempts22–24 to compensate
by scaling; for attempts to incorporate F12 into triples, see
Refs. 25 and 26), and hence we found7,12 that it is preferable

a)Author to whom correspondence should be addressed: gershom@
weizmann.ac.il

to obtain the triples contribution from conventional CCSD(T)
calculations. At any rate, the (T) component is typically an
order of magnitude smaller than the CCSD valence correlation,
and higher order correlation effects, another order of magni-
tude smaller still (see the supplementary material of Refs. 27
and 28 for tabulation for 140 and 200 molecules, respectively).
Furthermore, (T) converges faster with the basis set29–32 than
CCSD, which leaves basis set convergence in the latter as
the one “accuracy bottleneck,” where F12 has the most to
offer.

Recently, however, claims have been proffered that CCSD
and common explicitly correlated methods like CCSD-F12b
do not converge to the same basis set limit. Such claims
were made by Cremer and co-workers33 for the formic acid
dimer, and by Feller34 for total atomization energies of small
molecules. While the formic acid discrepancy was ultimately
ascribed to other sources,35 it bears emphasizing that CCSD-
F12b36,37 and its more rigorous companion CCSD(F12∗),38

also known as CCSD-F12c in MOLPRO-speak, are approxi-
mations to the full CCSD-F12 method. From a purely formal
viewpoint, the presence of the strong orthogonality projector
guarantees that all F12 terms should eventually vanish as the
one-electron basis becomes complete, and hence CCSD and
all variants of CCSD-F12 should converge to the same com-
plete basis set (CBS) limit. This does not guarantee, however,
that this would be the case for finite basis sets small enough to
be practically usable.

During our work on the W4-17 benchmark,28 where the
reference values were obtained by basis set extrapolation from
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conventional calculations, we also carried out explicitly corre-
lated calculations using large basis sets for certain molecules.
For many systems, we found excellent agreement between
approaches, but for some others—notably those with signif-
icant nondynamical correlation39—we found discrepancies
between CCSD and CCSD-F12b that appeared to persist even
with large basis sets. Moreover, for those systems we found
discrepancies between different approximate F12 methods that
persisted even with large basis sets.

We then embarked on a comprehensive investigation.

COMPUTATIONAL METHODS
Choice of benchmark

We chose the W4-17 benchmark28 of 200 small first-
and second-row molecules, which is an expanded update
of the earlier W4-11 benchmark,27 which in turn repre-
sents an expansion of the W4-08 benchmark40 used for
parametrizing the B2GP-PLYP double hybrid density func-
tional.40 The W4-17 dataset is chemically diverse in that
it spans a broad variety of bonding situations (covalent,
ionic, strained, “hypervalent,” etc.) as well as a broad range
of electronic correlation from predominantly dynamical to
pathological static correlation. The reference geometries were
taken from the supplementary material of Ref. 28 and
used without further modification. The W4-08 subset (96
molecules) will also be referred to in a few places in this
paper.

To avoid clouding the issue, we focus exclusively on
valence correlation in this paper. The basis set convergence
of subvalence correlation for the W4-17 benchmark has
very recently been studied in great detail;41 it was found
there that even conventional CCSD(T) extrapolated from aug-
cc-pwCV{T,Q}Z basis sets42 can reproduce this contribu-
tion to within 0.03 kcal/mol root mean square (RMS) and
CCSD(T)/aug-cc-pwCV{Q,5}Z to about 0.01 kcal/mol RMS.
The use of core-valence F12 basis sets43 for the CCSD com-
ponent was also discussed in Ref. 41 (The comparatively
fast convergence of this term owes much to the near-perfect
cancellation of the core-core correlation energy, and the still
substantial cancellation of the core-valence correlation energy,
between the molecule and its proatoms.) Hence, this is not the
accuracy-limiting factor in thermochemical studies: as pointed
out repeatedly (e.g., Refs. 7 and 44), that honor belongs to the
valence correlation energy.

Choice of basis sets

For the explicitly correlated calculations, we considered
three basis sets: the cc-pVTZ-F12 and cc-pVQZ-F12 basis set
of Peterson and co-workers,45 and the aug-cc-pwCV5Z basis
set.42 In a previous study,24 we were able to show that this lat-
ter basis set yields results very close to reference data obtained
with very large spdfgh uncontracted basis sets46 (REF-h, in the
notation of Ref. 24). In addition, we considered the cc-pV5Z-
F12 basis set7,24 for a subset of molecules; as our available
central processing unit (CPU) time resources forced us to
choose between either a complete set of aug-cc-pwCV5Z data

(and partial cc-pV5Z-F12 results) or a complete cc-pV5Z-F12
data set and partial aug-cc-pwCV5Z, we decided to prioritize
aug-cc-pwCV5Z, which is the larger and more complete of the
two basis sets.

For the conventional calculations, we considered two fam-
ilies of basis sets. One is the correlation-consistent family
aug-cc-pV(n+d)Z, n = T, Q, 5, 6, 7, taken from Ref. 47 and
references therein. The “+d” indicates that a tight d function
is added48 to second-row atoms to assist with the descrip-
tion of the 3d orbital, which in high oxidation states of
these elements sinks low enough to become a back-donation
acceptor.49 As is our custom, we do not place diffuse func-
tions on hydrogen, both in order to save CPU time and to
enhance numerical stability. These basis sets are denoted
by the shorthand haVnZ [heavy atom-augmented (correla-
tion consistent) valence n-tuple zeta] basis set throughout the
paper.

The second family of basis sets are the nZaPa (uniformly
convergent n-tuple zeta augmented polarized) of Petersson
and co-workers,32,50,51 which were designed for smooth uni-
form convergence of both SCF and valence correlation ener-
gies. (Unlike the correlation consistent family,52 but akin to
the Weigend-Ahlrichs basis sets,53 the number of primitives
in nZaPa varies from left to right in a row of the Periodic
Table to ensure that the basis set incompleteness error stays
approximately constant.) After some initial experimentation,
we applied the same approximation for hydrogen as in haVnZ,
namely, that we are using the un-augmented basis sets on H.
This is indicated by the notation nZaPha.

Electronic structure codes

Unless otherwise indicated, all conventional calcula-
tions were carried out using Gaussian 09 Rev.E0154 and
Gaussian 16 Rev.B01,55 while all explicitly correlated cal-
culations were carried out using TURBOMOLE 6.6 and
7.2.1.56 For open-shell species, the Watts-Gauss-Bartlett ver-
sion of ROCCSD was used throughout; i.e., orbitals were
semicanonicalized before transformation (unlike in MOL-
PRO,57 where semicanonicalization happens after integral
transformation—see the Appendix to Ref. 58 for a brief
explanation of the differences for open-shell cases). The
optionsint(nobasistransform,acc2e=13)iop(3/
59=7,8/11=1) were used in the Gaussian calculations.

For the F12 calculations, the RI-MP2 auxiliary basis sets
of Refs. 59 and 60, and the JKFit basis sets of Ref. 61,
together with the CABS (complementary auxiliary basis sets)
of Refs. 62 and 63 have been employed in the cc-pVnZ-
F12 calculations, while the aug-cc-pwCV5Z/MP2FIT basis
set was used for both RI-MP2 and CABS in the aug-cc-
pwCV5Z calculations.60 As in our previous thermochemical
papers, the geminal exponent β was set to 1.4 a0

−1 through-
out. (In response to an early preprint of this work, the question
arose whether the large differences for VTZ-F12 and VQZ-
F12 were an artifact of our choice of geminal exponent,
rather than the MP2-F12 optimized “recommended” values
of 1.0 for those basis sets. As shown in Figs. S.1 and S.2
in Ref. 84, recalculation does not qualitatively change our
conclusion, and in fact the box plot ranges become larger at
β = 1.0 a0

−1.)



154109-3 Kesharwani et al. J. Chem. Phys. 149, 154109 (2018)

TABLE I. Schwenke coefficients and equivalent Petersson shifts for different basis set pairs.

Schwenke coefficients AL Equivalent Petersson shifts a

Basis sets {6,7} {5,6} {4,5} {3,4} {6,7} {5,6} {4,5} {3,4}

L�3 pure Generic 1.701 1.374 1.049 0.730 0.00 0.00 0.00 0.00
(L+3/2)�3 pure Generic 2.194 1.865 1.537 1.211 1.50 1.50 1.50 1.50
Martina MP2/AVnZ 1.852 1.503 1.127 0.46 0.40 0.24
Petersson32 opt. MP2/nZaPa 1.865 1.519 1.185 0.886 0.50 0.45 0.42 0.49
Hill et al.46 MP2/AVnZ N/A 1.478 1.186 0.933 N/A 0.32 0.42 0.64
Martinb CCSD/AVnZ 1.602 1.283 0.932 �0.30 �0.28 �0.36
Martinb CCSD/nZaPa 1.605 1.232 0.917 �0.29 �0.44 �0.41
Varandas66,67 CCSD/AVnZ N/A 1.295 0.912 0.665 N/A �0.24 �0.43 �0.21
Schwenke30 CCSD/AVnZ N/A 1.266 0.930 0.700 N/A �0.33 �0.37 �0.09

aReference 64 fitted to MP2-F12/REF-h46 data obtained using MOLPRO 2015.57 Auxiliary basis sets from Ref. 46.
bReference 64 fitted to CCSD-F12 data for 12 closed-shell species in supplementary material of Ref. 13 at ref. geoms. ibid. Original
aug-cc-pV7Z basis sets taken from Ref. 47 and references therein; updates courtesy of Dr. David Feller (PNNL).

For the larger basis sets, coupled cluster convergence
problems were encountered in some instances: in most cases,
these could be remedied by tightening the SCF convergence
criterion and setting $scftol=1.0E-16 (which tightens
several associated parameters in the ccsdf12 module of
Turbomole) or even $scftol=1.0E-18.

Basis set extrapolation

For the nZaPa basis sets at the MP2 level, we used the
extrapolation recommended by Ranasinghe and Petersson,32

expressed here in the form of Schwenke,30

E∞ = E(L) + AL[E(L) − E(L − 1)]. (1)

Here the Schwenke coefficient AL is specific to the basis
set pair and level of electronic structure theory. For the other
levels of theory, we use a reparametrization of the same for-
mula (Table I). As shown in Ref. 64, this expression can
be related quite simply to the more familiar extrapolation
formulas,

EL = E∞ +
B

Lα
if α =

log
(
1 + 1

AL

)
log

(
L

L−1

) , (2)

EL = E∞ +
D

(L + a)3
if a =

1(
1 + 1

AL

)1/3
− 1

+ 1 − L, (3)

and conversely,

AL =
1(

L+a
L−1+a

)α
− 1

. (4)

Petersson and co-workers observed repeatedly32,51,65 that
the CCSD–MP2 difference, at least for the nZaPa basis
sets, asymptotically converges approximately as (L+3/2)−3.
Thus, CCSD-MP2 differences at the basis set limit can be
obtained in two ways: using this formula and as differ-
ences of extrapolated CCSD and MP2 CBS limit. Compar-
ison offers one estimate of the residual uncertainty in these
quantities.

Another estimate of the uncertainty derives from Eq. (1):
the uncertainty in the extrapolation parameter times the RMS
atomization energy difference between the two largest basis

sets. As shown in Table I, Schwenke coefficients between dif-
ferent basis set families such as nZaPa and haVnZ, or between
different calibrations, are actually remarkably consistent. We
believe that an uncertainty of±0.1 in AL is actually a somewhat
conservative estimate; for the {6,7}ZaPha and haV{6,7}Z+d
basis set pairs, this would translate into a RMS uncertainty of
about 0.06 kcal/mol at the MP2 level and 0.04 kcal/mol at the
CCSD level. For the CCSD-MP2 difference, this would be an
even smaller 0.02 kcal/mol, but we would approximately dou-
ble that amount on account of the greater uncertainty in the
Schwenke parameter AL. If we had limited ourselves to the
{5,6} basis set pairs, all uncertainties would be approximately
double those we have currently. For the discussion at hand,
it means that the additional computational effort of the {6,7}
basis set pairs is justified.

RESULTS AND DISCUSSION
Quality and convergence of the conventional
reference data
MP2 convergence behavior
using different approaches

We were able to obtain MP2/haV{6,7}Z+d data for 188
out of the 200 species, and MP2/{6,7}ZaPha as well as MP2-
F12/awCV5Z data for the complete set of 200. The root
mean square difference (RMSD) between MP2-F12/awCV5Z
and MP2/haV{6,7}Z+d is 0.095 kcal/mol, but the RMSD
between MP2-F12/awCV5Z and MP2/{6,7}ZaPha is only
0.064 kcal/mol. For the W4-08 subset of molecules, both
RMSDs are comparable: 0.067 and 0.065 kcal/mol, respec-
tively. The main sources of the difference appear to be a
number of chlorine compounds such as CCl4 and C2Cl6, for
which the haVnZ+d basis sets appear to exhibit oscillatory
convergence.

As can be seen in Fig. 1, this is reflected in surpris-
ingly large errors for some of these systems even with basis
sets as large as haV{5,6}Z+d. Also by way of illustration,
the RMSD between MP2/{5,6}ZaPha and MP2/{6,7}ZaPha
is 0.13 kcal/mol but increases to 0.17 kcal/mol between
MP2/haV{5,6}Z+d and MP2/haV{6,7}Z+d. We have previ-
ously7 discussed the overcontraction issues of the haVnZ+d
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FIG. 1. Box plot of deviations from
MP2/{6,7}ZaP(h)a reference values
(kcal/mol) for the valence MP2 corre-
lation components of the W4-17 atom-
ization energy benchmark. The outer
fences encompass the middle 95% of the
distribution, the inner fences 80%, and
the box 50%. Vertical lines span from
population minimum to maximum.

basis sets for second-row atoms. As further evidence, for the
{5,6} basis set pair, the RMSD between extrapolated MP2
values with nZaPha and haVnZ+d basis sets is 0.20 kcal/mol,
which drops to 0.07 kcal/mol for the {6,7} pair.

In Ref. 7, we observed that increasing the radial flexibil-
ity of the aug-cc-pV(5+d)Z and aug-cc-pV(6+d)Z basis sets,
e.g., by adding core-valence basis functions of the lower angu-
lar momenta, greatly remediated the oscillatory convergence
observed especially for chlorine compounds. We have taken
the “maximalist” of the different approaches discussed there
and added spd core-valence functions from the corresponding
aug-cc-pCVnZ basis set—this combination we have denoted
haVnZ+C(spd). (As the core-valence d functions already cover
the tight d required for 3d orbital back-bonding at the SCF
level, the “+d” addition was not required.) As can be seen in
Fig. 1, this does bring some succor, but not as much as a large
basis set MP2-F12 calculation.

CCSD-MP2 differences considered

We were able to obtain CCSD/{6,7}ZaPha values for
192 out of 200 molecules, and CCSD(F12∗)/awCV5Z values
for all species except C6H6. Comparison of individual differ-
ences between MP2 and MP2-F12 for molecules that ought not
present convergence issues with the {6,7} pair, such as alka-
nes, suggests that the hydrogen basis set in MP2-F12/awCV5Z
may still be insufficiently saturated, although adequate satu-
ration does appear to have been achieved for nonhydrogen
species. We do not, however, expect the CCSD–MP2 differ-
ence to be appreciably affected by this, as these small discrep-
ancies (about 0.01 kcal/mol per hydrogen, cf. Ref. 24) can
reasonably be expected to cancel between CCSD and MP2.
For instance, for propane, the MP2-F12/awCV5Z correlation
contribution of 224.42 kcal/mol is more than 0.1 kcal/mol
below the MP2/haV{6,7}Z and MP2/{6,7}ZaPha values of
224.56 kcal/mol and 224.53 kcal/mol, respectively. Yet for
the CCSD(F12∗)–MP2-F12 difference with the awCV5Z basis
set, we obtain −15.61 kcal, which is considerably closer to
the conventional {6,7}ZaPha values of −15.66 kcal/mol com-
puted as CCSD/CBS−MP2/CBS, and −15.62 kcal/mol using
Petersson’s (L+3/2)−3 formula applied to the CCSD−MP2 dif-
ferences of the {6,7} pair. The corresponding conventional

values for the haV{6,7}Z pair are−15.68 and−15.66 kcal/mol,
respectively.

Hence, we have compared the CCSD–MP2 differences
between {6,7}ZaPha and haV{6,7}Z+d, and found the two
sets of data to differ by just 0.034 kcal/mol RMSD. In addi-
tion, {5,6}ZaPha and {6,7}ZaPha differ by just 0.06 kcal/mol
RMSD, and a similar small RMSD of 0.07 kcal/mol is seen
between haV{5,6}Z+d and haV{6,7}Z+d. This bolsters our
confidence in the quality of the CCSD−MP2 differences with
the {6,7} basis set pairs.

Can we legitimately omit the diffuse functions on H in
{6,7}ZaPha? Particularly for the Al and Si compounds, plac-
ing no diffuse functions on H while attaching them to the
metal and metalloid, respectively, seems dubious, and even
for B this choice can be called into question. For the W4-08
subset, we performed calculations using {6,7}ZaPa in which
diffuse functions were not omitted on hydrogen. MP2/{6,7}
differences between the {6,7}ZaPha and {6,7}ZaPa basis set
pairs were found to be 0.01 kcal/mol or less for the HBC-
NOFPSCl compounds but reached 0.05 kcal/mol for Si2H6,
0.04 kcal/mol for SiH4, and 0.03 kcal/mol for AlH3. The
only Al or Si hydride in W4-17 that is not an element of the
W4-08 subset is SiH3F, for which we found a difference of
0.03 kcal/mol upon recalculation. We have hence selected, as
our reference level, {6,7}ZaPa for SiH3F and the W4-08 sub-
set, and {6,7}ZaPha for the remainder. This also circumvents
the oscillatory convergence issues we noted for the haVnZ+d
sequence.

The CCSD−MP2 values were obtained by taking the
differences between extrapolated CCSD and MP2 limits. In
principle, we could also consider the CCSD−MP2 differences
directly, and extrapolate them according to the (L+3/2)−3 for-
mula observed empirically by Petersson and co-workers.65,68

For the {6,7} pair, the RMSD from the difference-of-limits
values is 0.05 kcal/mol for the nZaPha basis sets.

We also investigated the use of “interference correc-
tions,”69 but the results were erratic, and we have not retained
them for our analysis.

Based on the RMS differences between the {6,7}ZaPha
and haV{6,7}Z+d data, as well as between extrapolation
of differences and differences of extrapolations, we would
estimate the remaining uncertainty of our chosen reference
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TABLE II. RMSD (kcal/mol) for the W4-17 TAE benchmark from our best CCSD/{6,7}ZaP(h)a–
MP2/{6,7}ZaP(h)a limits for different CCSD-F12 approximations. The aug-cc-pwCV5Z basis set with β = 1.4
was used throughout the F12 calculations.

CCSD(F12∗)–MP2-F12 CCSD-F12b–MP2-F12 CCSD[F12]–MP2-F12 CCSD-F12a–MP2-F12

RMSD 0.035 0.087 0.137 0.470
MSD 0.008 0.071 0.116 0.424
StDeva 0.034 0.050 0.073 0.202

aCalculated as (RMSD2–MSD2)1/2.

level, i.e., [CCSD−MP2]/{6,7}ZaPha, to be on the order of
0.03–0.04 kcal/mol.

Agreement with approximate CCSD-F12 data near
the basis set limit

We are now in a position to compare our best CCSD−MP2
values with the CCSD-F12–MP2-F12 differences obtained
using various approximate CCSD-F12 methods. The aug-cc-
pwCV5Z basis set was employed throughout.

First, we can see in Table II and Fig. 2 that CCSD(F12∗)
has an RMSD of only 0.035 kcal/mol, comparable to the
uncertainty in the reference values.

CCSD(F12∗) is itself an approximation to the more rig-
orous (and much more costly) CCSD(F12) method.70 It has
been shown before38 that the difference between them is very
small, but it does bear verifying this for the present W4-17
atomization energy benchmark. For the cc-pVTZ-F12 basis
set, the difference between CCSD(F12∗) and CCSD(F12)
atomization energies is just 0.01 kcal/mol RMS, reaching a
maximum of 0.035 kcal/mol for HClO4. These differences
(Fig. 3) become negligible altogether when expanding the
basis set to cc-pVQZ-F12: RMS 0.002 kcal/mol, with a max-
imum of 0.008 kcal/mol for C2Cl6. For the W4-08 subset,
we finally considered the cc-pV5Z-F12 dataset and found
differences of less than 0.001 kcal/mol RMS that should be
considered thermochemically equivalent within the numerical
noise of the calculation. We conclude that for cc-pVQZ-F12
or larger basis sets, CCSD(F12∗) is functionally equivalent to
CCSD(F12).

FIG. 2. Box plot of deviations from our best estimates for CCSD-MP2 com-
ponents of W4-17 atomization energies (kcal/mol) using the awCV5Z basis
set and different approximations to CCSD-F12.

While we cannot definitely rule out that post-CCSD(F12)
corrections might be nontrivial for some molecules, verify-
ing this is not technically feasible at present, both because
of code limitations and because the changes would be below
the resolution level of our reference data. [A few examples
have been investigated in Ref. 71 using the cc-pVTZ-F12 basis
set. It was found that while the individual contributions from
terms beyond CCSD(F12) can be sizable, they cancel very
systematically.]

By contrast, for CCSD-F12b we see an RMSD that is
about 2.5 times as large and cannot easily be blamed on uncer-
tainty in the reference values anymore. (In fact, 0.08 kcal/mol
is about the RMSD of W4 theory for its training set.) This
result is consistent with that of earlier, less rigorous, bench-
mark studies on smaller samples and using smaller basis
sets.38,72 CCSD-F12b does represent a dramatic improvement
over the still more approximate CCSD-F12a method, which
has an error of 0.43 kcal/mol RMS even with such large basis
sets.

Köhn and Tew71 carried out a detailed multiple perturba-
tion theory analysis of approximations to CCSD-F12 in terms
of five coupling strengths: single (σ) and double (λ) excitation
amplitudes into the virtual orbitals, single (τ) and double (µ)
excitations into the auxiliary basis set, and finally ν, which
corresponds to mixed double excitations (one electron into
virtual, the other into auxiliary space). The key points of the
analysis are summarized in Table III: for mathematical details,
we refer to Ref. 71 itself, specifically Tables I, II, and VII and
the surrounding discussion.

The multiple perturbation expansion is winnowed by
restricting the total order in µ and ν to at most two. Retaining
then all remaining terms through third order corresponds to

FIG. 3. Box plot of basis set convergence of CCSD(F12)–CCSD(F12∗)
differences (kcal/mol) for the W4-17 dataset.
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TABLE III. Terms included in CCSD(F12) and approximations thereto. For further details, see Tables I and II in
Ref. 71 and the surrounding discussion.

MP2-F12 +
Parent expressiona Label Order (F12) (F12∗) [F12] F12b F12a (2)F12 ∆CCSD〈
0���GR̃ + R̃†G + R̃†FR̃���0

〉
Eunc.

MP2 µ2 X X X X X X X〈
0���R̃
†F(0)T2

���0
〉

R.1 λν X X X X X〈
0���R̃
†[G, T2]���0

〉
R.2 λµ2 X X X X X

R.3 λν2 X X X〈
0���R̃
†[G, T1]���0

〉
R.4 σµ2 X X X X X

R.5 σν2 X X X〈
0���R̃
†[[G, T1], T2]���0

〉
R.6 σλν2 X

1
2

〈
0���R̃
†[[G, T1], T1]���0

〉
R.7 σ2µ2 X X X

R.8 σ2ν2 X

1
6

〈
0���R̃
†[[[G, T1], T1], T1]���0

〉
R.9 σ3ν2 X〈

0���Λ1

[
G, R̃

] ���0
〉

L1.1 σµ2 X X X X X X

L1.2 σν2 X X X〈
0���Λ1

[
F(1), R̃

] ���0
〉

L1.3 στν X X X〈
0���Λ1

[
[G, T1], R̃

] ���0
〉

L1.4 σ2µ2 4 4

L1.5 σ2ν2 X〈
0���Λ2F(0)R̃���0

〉
L2.1 λν X X X X X〈

0���Λ2

[
G, R̃

] ���0
〉

L2.2 λµ2 X X X X X X

L2.3 λν2 X X X〈
0���Λ2

[
[G, T2], R̃

] ���0
〉

L2.4 λ2µ2 4 4

L2.5 λ2ν2 X〈
0���Λ2

[
[G, T1], R̃

] ���0
〉

L2.6 σλµ2 X X X X

L2.7 σλν2 X〈
0���Λ2

[ [
F(1), T1

]
, R̃

] ���0
〉

L2.8 στλν X

1
2

〈
0���Λ2

[
[[G, T1], T1], R̃

] ���0
〉

L2.9 σ2λµ2 4 4

L2.10 σ2λν2 X

aG, T1, and T2 have their usual respective meanings of the two-electron repulsion operator, the single substitution operator, and
the double substitution operator, respectively. The matrix elements of R̃ are those of the geminal function, while Λ1 and Λ2 are
de-excitation operators associated with the Lagrange multipliers for the singles and doubles coupled-cluster residual equation.
F(0) is the Fock operator are only non-zero if the Brillouin or the generalized Brillouin theorem are not fulfilled F(1). For further
details, see Ref. 71.

the CCSD[F12] method,71 which was not recommended for
practical use (by its authors) but turns out to be useful in our
analysis. The CCSD(F12∗) method is obtained (see Table VII
of Ref. 71) by adding a group of fourth-order terms quadratic
in µ, namely, of orders σ2µ2, σλµ2, and λ2µ2, plus a single
fifth-order term of order σ2λµ2. By contrast, beyond second
order, CCSD-F12b36,37 and Valeev’s CCSD(2)F12 method73

only contain the third-order contributions of orders σµ2 and
λµ2, plus fourth-order contributions scaling as σ2µ2 and σλµ2.
Finally, CCSD-F12a discards all CCSD-F12b contributions
higher than second order to the energy equation, but not in the
amplitude equations.

In the present work, we found CCSD[F12] to have
an RMSD slightly higher than CCSD-F12b, 0.11 kcal/mol.
Some additional light is shed by the mean signed difference

(MSD), as well as by the standard deviation about it (StDev).
While CCSD(F12∗) pleasingly has an RMSD close to zero
(indicating an absence of systematic bias), CCSD-F12b,
CCSD[F12], and CCSD-F12a have progressively larger sys-
tematic biases. In fact, the StDev values of CCSD-F12b and
CCSD[F12] are somewhat comparable, while that for CCSD-
F12a is about three times as large. The statistical behaviors
of the various approximations are depicted as a box plot in
Fig. 2.

Basis set convergence of differences between
various F12 methods

Figure 4 illustrates the basis set convergence of the CCSD-
F12b–CCSD-F12a difference. Said difference corresponds, in
Table VII of Ref. 71, to the terms R.2(λ.µ2) + R.4(σ µ2) + R.7
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FIG. 4. Box plot of the CCSD-F12b–CCSD-F12a difference (kcal/mol) for
the W4-17 dataset and different basis sets.

(σ2µ2), where the orders in perturbation theory are indicated
in parentheses as powers of the coupling strengths.

For cc-pVTZ-F12, which is the smallest basis set one
would normally consider for thermochemical production
applications, the median difference is close to 1 kcal/mol, and
for 2.5% of our test species it actually exceeds 2.5 kcal/mol.
For cc-pVQZ-F12, which is the largest basis set used in typical
CCSD-F12x applications, the median F12b–F12a difference is
still close to 0.7 kcal/mol, and values in excess of 1.5 kcal/mol
can still be found. These numbers can be cut in half with
awCV5Z, but this is hardly an acceptable error level for such
large (by F12 standards) basis sets. We conclude that CCSD-
F12a cannot be recommended at all for production work,
although for small basis sets the results may seem superior
to CCSD-F12b due to an error compensation38 between the
missing terms (which are antibonding) and basis set incom-
pleteness error (see also Ref. 12, for example, and Refs. 3
and 4 for further discussion).

It turns out to be enlightening to decompose the
CCSD(F12∗)–CCSD-F12b difference into two compo-
nents: CCSD(F12∗)–CCSD[F12] and CCSD[F12]–CCSD-
F12b. Energetically speaking (see Figs. 3 and 4 in Ref. 71),
the most important third-order contributions are (following the
notation in Table VII of Ref. 71) the ladder terms R.2(λ.µ2)
and L2.2(λ.µ2), followed by the ring terms R.3(λ.ν2) and
L2.3(λ.ν2). (In this notation, R, L1, and L2 refer to the
energy, singles amplitudes, and doubles amplitudes equations,
respectively.) R.2 and L2.2 are already present in CCSD-
F12b (in fact, L2.2 even in CCSD-F12a!), while CCSD[F12]
adds in R.3(λ.ν2) and L2.3(λ.ν2), besides the smaller terms
R.5 (σν2), L1.2 (σν2), and L1.3 (στν). The fourth-order
terms R.7 (σ2µ2) and L2.6 (σλµ2) from CCSD-F12b are
omitted.

As can be seen in Fig. 5, the CCSD[F12]–CCSD-F12b
difference (a) is universally attractive; (b) decays very rapidly
with the basis set. As the F12 corrections should in principle
vanish in the complete basis set limit, basis set extrapolation
should yield results close to zero. Such extrapolation from
V{T, Q}Z-F12 using the formula of Hill et al.46 shows a very
narrow box with a median close to zero (Fig. 5, far right):
while there are clearly some outliers, the extrapolated values
on the whole are somewhere between V5Z-F12 and awCV5Z
in quality. This suggests that the convergence behavior is pretty

FIG. 5. Box plot of the CCSD[F12]–CCSD-F12b difference (kcal/mol) for
the W4-17 dataset and different basis sets.

regular even with fairly modest basis sets. (There are solid
theoretical grounds to believe that each ring term converges
rapidly. For atoms, the partial wave expansion of terms with
a single contraction over the CABS space was shown to be
rapidly converging by Noga and Kutzelnigg (Appendix C of
Ref. 74). This is the reason why they are neglected in the
Standard Approximation.)

While it might be remotely possible that, for large basis
sets, the seven terms in the CCSD[F12]–CCSD-F12b differ-
ence might simply benefit from an unusually felicitous form
of mutual error cancellation, Occam’s razor explanation for
the rapid tapering off of their sum with increasing basis set
would seem to be that the individual terms converge fairly
rapidly.

Basis set convergence of the CCSD(F12∗)–CCSD[F12]
difference is depicted in Fig. 6. As can be seen there, these
contributions are universally repulsive and do taper off with
the basis set: median values are about halved with each
successive basis set, from about 0.4 kcal/mol for cc-pVTZ-
F12 to 0.2 kcal/mol for cc-pVQZ-F12 to 0.1 kcal/mol for
awCV5Z. Crucially, however—even for basis sets as large
as awCV5Z—they remain nontrivial (0.1 kcal/mol median),
exceeding 0.2 kcal/mol for about 10% of the sample and
0.3 kcal/mol for about 2.5%. What is more, the distribution is
strongly skewed/asymmetric. Furthermore, extrapolation does
not help for this term: the error distribution of V{T, Q}Z-
F12 looks no better than that of VQZ-F12 itself, and likewise

FIG. 6. Box plot of the CCSD(F12∗)–CCSD[F12] difference (kcal/mol) for
the W4-17 dataset and different basis sets.
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FIG. 7. Box plot of the CCSD(F12∗)–CCSD-F12b difference (kcal/mol) for
the W4-17 dataset and different basis sets.

for V{Q,5}Z-F12 using the extrapolation from Table 2 in
Ref. 11.

In the notation of Ref. 71, the difference corresponds to the
following fourth-order terms: R.7 (σ2µ2) in the energy expres-
sion, L1.4 (σ2µ2) in the singles amplitudes equation, and L2.4
(λ2µ2) + L2.6 (σλµ2) + L2.9 (σ2λµ2) in the doubles amplitude
equation. Out of these, R.7 and L2.6 correspond to restoring
the two F12b terms deleted in CCSD[F12] (which can hence be
assumed to be small), which leaves L1.4, L2.4, and L2.6. For
a much smaller sample of molecules and just the cc-pVDZ-
F12 and cc-pVTZ-F12 basis sets, Fig. 3 in Ref. 71 shows a
plot of the contribution of the various terms to the correlation
energy (normalized by the number of valence electrons): L2.4
is by far the most important, followed by L1.4 two orders
of magnitude lower and L2.6 another order of magnitude
below.

Detailed inspection of the molecules for which
the CCSD(F12∗)–CCSD[F12] difference is large reveals
an intriguing pattern: among small species, notorious
multireference cases like C2(1∑+

g), BN(1∑+), O3, FO2, ClOO,
immediately jump out. If we normalize the difference by the
number of valence electrons, then all the values in excess
of 10 cal/(mol/e−) are seen for molecules with significant
static correlation, such as N2O4, HO3, FO2, F2O2, P4, S4,
ClOO, NO2, N2O, O3, BN(1∑+), C2(1∑+

g), B2(3∑–
g), P2, and

ClO.
L2.4 is a first-order geminal correction to a disconnected

quadruples (T̂2
2 /2) term, as is L1.4 to the disconnected doubles

FIG. 8. Box plot of CCSD(F12∗)–MP2-F12 difference (kcal/mol) for the W4-
17 dataset and different basis sets.

T̂2
1 /2. It stands to reason that in situations where some doubles

amplitudes T2 are large, L2.4 will become important, and to
a lesser extent, so will L1.4 if some singles amplitudes T1 are
large. (If some of both are large, the T1T2-geminals coupling
term L2.6 could become significant.) Such scenarios occur,
of course, when there is significant static correlation in the
molecule.

Coming back to the CCSD(F12∗)–CCSD-F12b differ-
ence, the superposition of two terms with opposite sign and
different (fast vs. relatively slow) convergence rates leads to
the convergence behavior seen in Fig. 7.

The reader may wonder how these various terms evolve
as a molecule grows, e.g., along the n-alkane sequence
CH3(CH2)nCH3 (n = 0, 1, 2, 3) or the sequence ethylene, trans-
butadiene, and 1,3,5-hexatriene. As seen in Table IV for the
cc-pVTZ-F12 and cc-pVQZ-F12 basis sets, the [F12]–F12b
and (F12∗)–[F12] differences grow almost perfectly linearly
along the sequences, as expected for strictly size extensive
methods like coupled-cluster theory. In turn, size extensivity
means that all conclusions from this paper carry over to arbi-
trarily large systems, as long as strong long-range correlations
do not play a role (in which case single-reference CCSD breaks
down anyway).

Finally, let us address the basis set convergence of the most
rigorous approximation to CCSD−MP2, i.e., CCSD(F12∗)–
MP2-F12. This is depicted in Fig. 8. As can be seen there, one
needs at least a cc-pVQZ-F12 basis set for a satisfactory error
distribution.

TABLE IV. Chain length dependence of differences (kcal/mol) between different CCSD(F12) approximations.

VTZ-F12 VQZ-F12
[F12]-F12b (F12∗)–[F12] (F12∗)-F12b [F12]-F12b (F12∗)–[F12] (F12∗)-F12b

n-pentane 1.597 �0.581 1.016 0.441 �0.300 0.140
n-butane 1.293 �0.467 0.826 0.356 �0.242 0.114
Propane 0.988 �0.353 0.634 0.270 �0.183 0.087
Ethane 0.682 �0.239 0.443 0.184 �0.124 0.060
Methane 0.372 �0.127 0.245 0.096 �0.066 0.030
Hexatriene 1.653 �0.706 0.947 0.455 �0.368 0.088
Butadiene 1.123 �0.475 0.648 0.308 �0.247 0.060
Ethylene 0.593 �0.244 0.349 0.160 �0.127 0.033
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Relationship to static correlation diagnostics

It would, of course, be helpful to have an a priori
prediction for whether the (F12∗)–F12b difference is non-
trivial. Thus, establishing a link with static correlation char-
acter would serve a pragmatic as well as an interpretative
purpose.

Figure 9 depicts the Pearson correlation coefficients R
between various static correlation diagnostics and the differ-
ences between various F12 approximations. In this table, the
cc-pVQZ-F12 basis set was used for the F12 results, as the
(F12∗)-[F12] term, in particular, was deemed too small with
the awCV5Z basis set to yield useful conclusions.

It should be kept in mind that the various diagnos-
tics do not all measure the same thing. Hollett and Gill39

(see also Scuseria and Tsuchimochi75) distinguish between
“type A static correlation” (absolute near-degeneracy, with
dissociating H2 as the paradigmatic example) and “type B
static correlation” (relative near-degeneracy, with Be-like ions
(Z) (Z−4)+ as a textbook case). The von Neumann correlation
entropy Scorr, for instance (a.k.a., “entanglement entropy”),
is strongly linked to type A static correlation, while prag-
matic diagnostics like the percentage of connected triples in
the total atomization energy, %TAE[(T)],58 or the percent-
age of post-CCSD(T) correction are primarily concerned with
thermochemical importance. (Note that these latter diagnos-
tics remain identically zero for the Be-like ions, as CCSD is
an exact solution for the two-electron problem.) The density
functional theory (DFT)-based A25[PBE] diagnostic,76 which
is based on the slope of the DFT atomization energy as a func-
tion of the HF-like exchange percentage, likewise is more
pragmatic in character, although it has been argued76 that it
primarily samples type B static correlation.

Very recently, Matito and co-workers77 proposed two
new diagnostics for the importance of nondynamical and
dynamical correlation that are based on the natural orbital

occupations. While IND and ID are not intensive but extensive
(their values for a dimer at infinite separation are exactly the
sums of the respective monomer values), the quantity IND/(IND

+ ID) can be considered as an intensive quantity (like the pop-
ular T1 diagnostic,78 which is the Euclidian norm of the single
substitution vector divided by the square root of the number
of correlated electrons).

While none of the correlations in Table III are good
enough to permit quantitative estimation by linear regres-
sion, we can identify a few correlations of 0.8 or better.
In particular, the “pragmatic” thermochemical diagnostics
%TAE[(T)] and A25[PBE] have correlation coefficients of
about −0.8 with the (F12∗)–F12b difference. [%TAE[T4+T5],
unless needed anyway as part of a W4, HEAT,79 or Feller-
Peterson-Dixon (FPD)80 calculation, is simply too costly
to serve as an a priori estimate.] Matito’s diagnostic and
the correlation entropy81 Scorr, on the other hand, have
equally good positive correlations with the [F12]–F12b dif-
ference. (We note that for the W4-17 dataset, we find
R = 0.994 between Matito’s IND and Scorr, indicating that they
largely tell the same story.) If, on the other hand, we nor-
malize the (F12∗)–F12b difference by the number of valence
electrons, we get a negative correlation R = −0.83 with the T1

diagnostic.
It should be clarified that the minus sign in front of

the larger negative correlations reflects negative (antibonding)
contributions to the atomization energy. For total energies, the
signs would be reversed.

The D1
82 and especially D2 diagnostics83 also bear men-

tioning. While T1 corresponds to a vector norm divided by the
square root of the number of valence electrons, D1 corresponds
to a matrix norm, i.e., the square root of the largest eigen-
value of T1·T1

†. Similarly, D2 is obtained as the root of the
largest eigenvalue of the double excitations amplitude matrix
multiplied by its transpose, T2·T2

†. Because of the mathemat-
ical properties of matrix norms, D1 and D2 are much more

FIG. 9. Pearson correlation coefficients R between F12x differences and various nondynamical correlation diagnostics. In the red-white-blue color “heatmap,”
red refers to large positive R, blue to large negative R, and white to near-zero R.
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likely to reflect the part of the molecule with the most severe
static correlation. (This becomes apparent from considering
the didactic example of BN· · · n-octane at long separation. The
large T1 diagnostic of BN will be “diluted” by the small one
of the alkane, while D1 and D2 are identical to those of BN
monomer.) It would seem to be reasonable that a diagnostic
for important double excitation amplitudes would be at least a
semiquantitative predictor for CCSD(F12∗)–CCSD-F12b dif-
ferences, considering that they appear to be driven by the L2.4
double excitations coupling term.

We also note in the full correlation matrix between the
diagnostics (see Table S1 in Ref. 84) that D2 correlates con-
siderably better with the energetic diagnostics like %TAE[(T)]
than does T1 or D1.

PERSPECTIVE AND CONCLUSIONS

Following an extensive survey for a large thermochemical
benchmark, we are in a position to conclude the following:

(a) Near the one-particle basis set limit, the difference
between CCSD(F12∗) and conventional CCSD/CBS is
comparable to the uncertainty in the latter (less than 0.04
kcal/mol RMS).

(b) The difference between CCSD(F12∗) and CCSD(F12)
becomes thermochemically negligible (0.002 kcal/mol
RMS) already with the cc-pVQZ-F12 basis set.

(c) We hence have no indication that CCSD-F12 terms
beyond CCSD(F12) would play a significant thermo-
chemical role with large basis sets.

(d) By contrast, a thermochemically significant difference
between CCSD(F12∗) and the more widely used CCSD-
F12b approximation remains even with basis sets as
large as aug-cc-pwCV5Z.

(e) Said difference is largest in molecules with significant
degrees of static correlation and negligible in molecules
dominated by dynamical correlation.

(f) The (mostly third-order) terms that make up the differ-
ence between CCSD-F12b and CCSD[F12] converge
rapidly with the basis set and are universally bond-
ing. They can also be greatly reduced through basis set
extrapolation.

(g) The fourth-order terms that make up the difference
between CCSD(F12∗) and CCSD[F12] converge more
slowly and are universally antibonding. These terms
cannot be well reduced through basis set extrapolation,
at least not in practical basis set regimes.

(h) The sometimes nonmonotonic basis set convergence of
the CCSD(F12∗)–CCSD-F12b difference results from
the different rates of convergence of these last two
opposing terms.

(i) The CCSD-F12a approximation continues to have unac-
ceptably large errors even near the basis set limit.

(j) There is some evidence that, for n = {5, 6, 7}, the
nZaPa family of basis sets exhibits somewhat smoother
basis set convergence than the aug-cc-pV(n+d)Z
sequence.

(k) If at all possible, CCSD(F12∗) is to be preferred over
CCSD-F12b. For codes that only have a closed-shell
implementation of CCSD(F12∗), such as MOLPRO,

the use of closed-shell reaction cycles may represent
a workaround.
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