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The explicitly correlated approach is one of the most important breakthroughs in ab initio electronic
structure theory, providing arguably the most compact, accurate, and efficient ansatz for describing the
correlated motion of electrons. Since Hylleraas first used an explicitly correlated wave function for the
He atom in 1929, numerous attempts have been made to tackle the significant challenges involved in
constructing practical explicitly correlated methods that are applicable to larger systems. These include
identifying suitable mathematical forms of a correlated wave function and an efficient evaluation of
many-electron integrals. R12 theory, which employs the resolution of the identity approximation,
emerged in 1985, followed by the introduction of novel correlation factors and wave function ansätze,
leading to the establishment of F12 theory in the 2000s. Rapid progress in recent years has significantly
extended the application range of explicitly correlated theory, offering the potential of an accurate
wave-function treatment of complex systems such as photosystems and semiconductors. This perspec-
tive surveys explicitly correlated electronic structure theory, with an emphasis on recent stochastic and
deterministic approaches that hold significant promise for applications to large and complex systems
including solids. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4976974]

I. INTRODUCTION

The remarkable progress of ab initio quantum theory
over the past 50 years has enabled the study of real atoms,
molecules, and solids in terms of the most accurate, system-
atic, and reliable electronic structure methods ever established.
This is particularly true for obtaining approximate solutions of
the electronic Schrödinger equation, encompassing the elec-
tron correlation that is often of central importance in obtaining
accurate descriptions and energetics of wave functions. Never-
theless, standard post-Hartree-Fock (post-HF) calculations in
many-body perturbation theory (MBPT), configuration inter-
action (CI), and coupled-cluster (CC) theory employ orbital
expansions and suffer from basis set problems. This is because
the cusp conditions,1,2 obeyed by the exact wave function
Ψ, cannot be satisfied by expansions based on orbitals. The
behavior of Ψ in the vicinity of the coalescence3 is

Ψ = [1 +
1

2(k + 1)
r12 + O(r2

12)]Φ, (1)

whereΦ is the eigenfunction of an unperturbed Hamiltonian in
the absence of electron–electron interactions and k takes val-
ues of 0 and 1 for singlet and triplet states (i.e., s- and p-wave
cusp conditions), respectively.4 The linear r12 discontinuity
arising from the singularity of the Coulomb interaction r−1

12 at
the coalescence can hardly be represent by an orbital-based

a)Electronic mail: tenno@garnet.kobe-u.ac.jp

CI expansion from the single-determinant reference Φ.
Therefore, it is essential to realize that the matrix element
for the correlation energy 〈Φ| V̂Ω̂ |Φ〉 from the coalescence
behavior (1),

Ikl
ij =

∞∑
αβ

〈ij | r−1
12 |αβ〉 〈αβ | r12 |kl〉 , (2)

is not a terminating series with the double summation over vir-
tual orbitals, α and β, in the complete basis set (CBS). Indeed,
their angular quantum numbers l can grow simultaneously,

leading to a very slow convergence of the order (l + 1
2 )
−4

in the
increment or (L + 1)�3 in the truncation error at the maximum
quantum number of the expansion L. For occupied orbitals
i, j, . . ., the convergence is very quick (one-electronically), ter-
minating at Locc.. In the following, we present a brief overview
of explicitly correlated electronic structure theory, which fun-
damentally ameliorates the root of the difficulty by explicitly
including r12 dependencies into the wave function. For details
of the advances until around 2012, readers can refer to the
review articles.5–11

A survey of the history of the progressive development
of explicitly correlated electronic structure theory is depicted
in Fig. 1. In 1929, Hylleraas12 introduced a wave function
form containing a polynomial of r12 and obtained an extremely
accurate energy of ground-state helium. Some 50 years after
his death, the Hylleraas Symposium13 was held in the winter of
2015 in honor of his profound influence. From that time, vari-
ous extensions of the Hylleraas-type wave function, including
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FIG. 1. A survey of the progress of explicitly correlated electronic structure
theory. Constants and coefficients dependent on the spin-multiplicities of pair
functions are omitted from the correlation factors for simplicity.

the combined CI and Hylleraas (CI-Hyl) methods, have been
proposed for the study of multielectron atoms and diatomic
molecules.14–21 However, these expansions require the compu-
tations of difficult integrals involving products of correlation
factors such as rµ12, rµ12rν13, rµ12rν13rλ23, rµ12rν13rλ14, and so on.
The complexity of these integrals has hindered applications
to many-electronic and polyatomic systems, especially for the
use of Slater-type orbitals.

The primal protocol for the significant progress of ab initio
methods is the use of Gaussian-type orbitals (GTOs), as pio-
neered by Boys in 1950,22 which enables very rapid computa-
tions of molecular integrals compared to those in exp(−ariA).
Ten years later, the extension to an explicitly correlated Gaus-
sian (ECG) basis was developed independently by Boys and
Singer,23,24 where the correlation factors rµij are replaced by

exp(−cr2
ij). All necessary integrals of ECG can be calculated

in closed-form algebraic expressions for molecules.25 Boys
and Singer also suggested linear expansions in MBPT and
CI calculations containing only two-body correlators in the
wave function, that is, Gaussian-type geminals (GTGs), as the
fully correlated Gaussian (exp(−

∑
i air2

iA −
∑

ij cijr2
ij)) in direct

variational calculations is only feasible for small molecules.
(ECG has been employed for the calculation of few-particle
systems in atomic and nuclear physics. See, e.g., a review
article.26) If the linear r12 behavior could be accurately repro-
duced by a linear combination of GTG in the vicinity of the
coalescence,

r12 ≈
∑

g

bg exp(−cgr2
12), (3)

(2) could be approximated as

Ikl
ij ≈

∑
g

bg 〈ij | r
−1
12 Q̂12 exp(−cgr2

12) |kl〉 , (4)

where Q̂12 = (1− Ô1)(1− Ô2) is the strong orthogonality pro-
jector and Ôn =

∑
i |i(n)〉 〈i(n)| is the projector on the occupied

space. (Indeed, (3) has been employed to avoid the nonlin-
ear optimization of GTG.27,28) The expression for the matrix
elements (4) can be precisely evaluated from the two- and
three-electron integrals over r−1

12 , exp(−cr2
12), exp(−cr2

12)/r12,
and exp(−cr2

12)/r13, providing much faster convergence than
the orbital expansion (2) at the expense of the calculation of
the three-electron integrals. Pan and King developed second-
order Møller–Plesset (MP2) perturbation theory in the GTG
basis and calculated pair energies for atoms including Ne.29,30

However, the three- and four-electron integrals arising from
Q̂12 in pair functions are so numerous that the application
of the naive implementation of MP2-GTG is limited only to
small molecules. To mitigate the problem of MP2-GTG, Sza-
lewicz and coworkers developed the weak orthogonality func-
tional (WOF) primarily to avoid four-electron integrals.31–33 In
WOF, Q̂12 is removed from the term involving the Fock oper-
ator in the Hylleraas energy functional, and a penalty term
is added to enforce the strong orthogonality. The avoidance
of four-electron integrals in CC singles and doubles (CCSD)
is achieved by combining the superweak orthogonality pro-
jection with an approximate strong orthogonality projection
(SWOP).34 Recently, there has been a resurgence of interest in
WOF, and Tew et al. proposed an improved functional within
MP2-GTG, the so-called intermediate orthogonal functional
(IOF).35

Another way to avoid four-electron integrals is to use a
similarity-transformed Hamiltonian. This approach was first
introduced by Hirschfelder to remove the electron–electron
poles from the original Hamiltonian.36 Based on the
Hirschfelder transformation, Boys and Handy developed the
transcorrelated (TC) method,37,38 which was applied to poly-
atomic molecules in the correlated Gaussian basis.39 The TC
Hamiltonian contains interactions up to the three-body case
from the commutator between the kinetic energy operators
and correlation factors. More recently, the TC Hamiltonian
has been combined with a preset frozen GTG,40 and corre-
lated methods based on biorthogonal reference wave functions
have been developed.41 In these methods, even three-electron
integrals are avoided using the resolution of the identity (RI),
similar to the technique employed in R12 theory (vide infra).
Luo investigated the asymptotic behavior of the correlation
factor for a homogeneous electron gas,42 refining the earlier
work of Armour.43 For more complex systems, Ochi et al.
developed an efficient algorithm for the TC Hamiltonian in
plane waves. This has been successfully applied to the cal-
culations of band structures and optical absorption spectra
in solids.44–46 Variational quantum Monte Carlo integration
using Metropolis sampling47 is another powerful technique
for more complicated correlation factors, as will be discussed
in Sec. II.
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A conceptual breakthrough was introduced by Kutzel-
nigg in 1985.48 On the basis of the observation that the
energy increment in the standard CI expansions converges,

at the worst, as (l + 1
2 )
−6

, except for the direct contribution∑
l 〈Φ| (r

−1
12 )l

1
2 (r12)l |Φ〉 =

1
2 near the coalescence, Kutzelnigg

proposed a hybrid scheme to employ a CI wave function χ
reinforced by a simple correlation factor r12,

Ψ = (1 +
r12

2
)Φ + χ. (5)

For instance, the partial wave expansions of integrals like
〈Φ| r12r−1

13 |Φ〉 and 〈Φ| r12r−1
23 r34 |Φ〉 terminate at a finite L, and

the increment of 〈Φ| r12r−1
23 r13 |Φ〉 is of the order (l + 1

2 )
−6

.48

Soon afterwards, the first molecular application of the corre-
sponding MP2-R12 in Gaussian basis functions was performed
by Klopper and Kutzelnigg49 using the RI expansion as

〈ij | r−1
12 Ô1r12 |kl〉

RI
'

∑
mp

〈ij | r−1
12 |mp〉 〈mp| r12 |kl〉 , (6)

where the summation over p is strictly bound to 3Locc. in the
one-center limit and converges very rapidly for molecules.
The standard approximations (SA) were developed to avoid
difficult integrals,50 and CC theory combined with the R12
ansatz (CC-R12) was advanced by Noga and co-workers.51,52

Note that the linear r12 behavior is unphysical at large
inter-electronic distances, resulting in artificial solutions if
we employ canonical orbitals to constitute pair functions.
Klopper circumvented this problem by introducing additional
amplitudes for (ij), (kl) to make the pair function unitary
invariant,53

u(IJKL)
ij,s =

∑
k≥l

ckl
ij,sQ̂12r12φkl,s + χij,s, (7)

i.e., the unitary-invariant or IJKL ansatz, where φkl,s are the
spin-free pair functions of occupied orbitals and χij,s is a
pair function spanned by virtual orbitals. Note that more flex-
ible geminal basis functions involving virtual orbitals, e.g.,
r12φak,s and r12φab,s, can be employed, as in the GGn model.54

Although these extensions of the geminal basis further improve
the convergence, the deterioration of the RI expansion (6),
which does not terminate at 3Locc. in this case, necessitates an
explicit evaluation of three-electron integrals.55

Explicitly correlated electronic structure theory was
developed enormously in the 2000s, expanding its applicabil-
ity considerably. Klopper and Samson introduced the auxiliary
basis set (ABS) for the RI expansion that gives rise to a novel
framework beyond SA.56 The complementary ABS (CABS)
approach of Valeev is the standard procedure to construct the
RI basis.57 Manby introduced robust density fitting (DF) into
explicitly correlated theory to significantly reduce the compu-
tational cost of various two-electron integrals.58 An alternative
approximation C with novel intermediates was also derived.59

Once RI is employed, linear r12 and exp(−cr2
12) are not the only

usable correlation factors for polyatomic molecules that can be
combined with Gaussian orbital basis. In 2004, the Slater-type
geminal (STG) correlation factor60

f (STG)
12 = −γ−1 exp(−γr12), (8)

was proposed, and all necessary two-electron integrals over
operators like f12 ≡ f (r12), f 12/r12, f 2

12, [∇2
1, f12], 1

2 [[∇2
1, f12], f12]

for STG were calculated either by expanding f 12 in a lin-
ear combination of GTGs (STG-nG) or written analytically
in closed-form using the extended Boys function, Gm(T , U)
= ∫

1
0 t2m exp[−Tt2 + U(1 − t−2)]dt, (m= − 1, 0, 1, . . .).60,61

A Gaussian quadrature algorithm was developed for the
integrals of genuine STGs.62 The performance of correla-
tion factors was thoroughly examined, such as the decisive
work of Valeev employing extremely flexible expansions with
up to nine GTGs, and a single STG proved to be near-
optimal.63–65 STG prevailed immediately in quantum chem-
istry, and corresponding orbital basis sets have been devel-
oped.66 The use of nonlinear correlation factors in place of
the linear r12 is often called F12 to distinguish it from R12
theory.

The advent of STG, which operates over short ranges and
provides the exact asymptotic behavior at short r12, soon pro-
moted the use of pair functions exploiting the s- and p-wave
cusp conditions directly (SP ansatz),67,68

u(SP)
ij,s = Q̂12R̂12φij,s + χij,s. (9)

R̂12 = f12( 3
8 +

1
8 p̂12) is the so-called rational generator68 with

the operator p̂12 to permute the spatial coordinates, applying
different cusp conditions (1) for singlet and triplet pairs by
means of the symmetry p̂12φij,s = (−1)sφij,s. The pair func-
tion (9), which can be considered as the generalization of
Kutzelnigg’s original wave function for s-waves (5), is orbital-
invariant, size-consistent, numerically robust, and avoids gem-
inal basis set superposition errors.69 The SP ansatz (also called
the fixed amplitude or diagonal orbital invariant ansatz), in con-
junction with STG, greatly simplifies the implementation and
has been used in various CC models with Lagrangian function-
als.70–75 These have also been expanded into F12 adaptations
in local correlation pictures, as we will outline later. Note
the rational generator is a spin-free operator that does not
contain the spin index s. This feature permits the applica-
tion of R̂12 to open-shell references involving unrestricted
HF (UHF),76,77 restricted open-shell HF (ROHF),74,78,79 and
multi-determinant80–85 wave functions in the manner of spin-
flipped geminal73,77 and internally contracted80 bases. The
extended SP (XSP) ansatz for correlated pairs involving vir-
tual orbitals was developed by Köhn for response properties,
excited states, and perturbational triples.86,87 More recent
advances involve methods for large molecules, an explicit cor-
relation for solids, and stochastic approaches, which we will
describe in the following sections.

The superior use of the exponential form of the corre-
lation factor (8) in F12 theory stems from the presence of
the quadratic term −(γ/2)r2

12 in the correlation factor related
to the second-order Taylor expansion coefficient in higher-
order cusp conditions.88,89 This coefficient is not universal, but
state-energy-dependent, yet the accuracy is insensitive to γ in
the correlation of valence electrons. In contrast, correlations
involving core electrons attenuate much faster, enlarging the
optimum γ, especially for the SP ansatz. This does not usually
become an obstacle in F12 calculations with core polariza-
tion functions for light elements,61 as the fast convergence in
(L + 1)�7 is guaranteed even in the R12 limit (γ → 0).50 How-
ever, if the CI description in the orbital part is unsatisfactory
without tight polarization functions for heavier elements (or
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even when it is necessary to drop χ entirely from (9) at the
worst), we apparently need to optimize the geminal amplitudes
or use a different γ for pairs with core orbitals.90

Similarly, there is controversy about the treatment of the
long-range behavior that should scale as 1/r12 at large r12

accompanying pair-specific amplitudes.8,68 Such long-range
components have not been included in the F12 machinery to
date because the standard CI expansion is particularly effi-
cient for dispersion interactions that converge asymptotically
only at Locc. + 1 in virtual functions. Therefore, it appears
that the use of a correlation factor with a Coulombic decay
for dispersion-type correlations is a roundabout choice that
introduces additional computational costs for new integrals
and manipulations arising from the strong orthogonality pro-
jector, at least for molecules with auxiliary CI expansions in
atom-centered basis functions, which already contain 1/r12

correlations in perturbative wave functions. Nevertheless, the
situation could be rather different for solid state calculations
in plane waves, the number of which can grow intractably in
proportion to the volume of the cell regardless of the number
of atoms. When a very small basis set, e.g., double-zeta, is
employed in F12 calculations, the principal source of the basis
set error shifts from dynamic correlation to the HF energy,
which can be corrected by single-electron excitations in the
CABS space.70,91 In this context, Nakatsuji and coworkers
investigated the structure of the exact wave function in terms
of the free-component wave function indicating a slower con-
vergence of the coalescence behavior in the free-component
wave function.92–94

In the following sections of this perspective, we mainly
focus on the explicitly correlated developments in recent years,
which enable applications to complex systems, i.e., stochastic
explicitly correlated methods with Monte Carlo integration,
F12 approaches for nanoscale applications, and explicitly cor-
related plane waves for solids. Finally, anticipated advances
related to these topics will be discussed.

II. STOCHASTIC ALGORITHMS

A potentially highly scalable method of evaluating inte-
grals entering the F12 correction is the Monte Carlo (MC)
approach.95 MC is a general and, in principle, efficient method
of evaluating the definite integral of a D-dimensional function,
say f (x), approximately as∫

f (x)dx =
∫

f (x)
w(x)

w(x)dx ≈
1
N

N∑
n=1

f (x[n])
w(x[n])

, (10)

where {x[n] |1 ≤ n ≤ N } is a set of D-dimensional coordinates
distributed randomly but according to the weight function,
w(x). A random distribution according to any weight func-
tion is achieved by the Metropolis algorithm.47 In a numerical
integration with quadrature, to maintain the same accuracy,
exponentially many (mD) grid points are needed with increas-
ing dimension, where m is the number of necessary grid points
per dimension. In contrast, the error (statistical uncertainty) in
the MC integral falls off as N�1/2, regardless of the dimen-
sion.96 This is because the Metropolis algorithm47 can place
more points in important dimensions, as well as in critical
areas of each dimension, as dictated by the weight function.

Therefore, MC is a sparse-integration method, which is known
to outperform a typical deterministic numerical integration for
D ≥ 8.97 The MC method also boasts extraordinary versatility
in integrating virtually any mathematical form of the integrand,
provided a suitable weight function is found.

Taking advantage of this versatility, quantum Monte Carlo
(QMC) methods96,98 have a long history of including the
effects of explicit correlation, e.g., through the Jastrow fac-
tor.99,100 This factor can describe three- as well as two-body
correlations,101 and is harder to use outside stochastic meth-
ods, with a notable exception of the TC method.39 With
modern supercomputers, which have hundreds of thousands
or even millions of CPUs, the ease and efficiency of paral-
lelizing stochastic algorithms is making QMC increasingly
popular for conducting benchmark high-accuracy calculations
for large and complex systems including solids.98 Further-
more, the computational cost of QMC methods is typically
cubic with respect to the system size,96,98 and their memory
cost is negligible. This also makes QMC more attractive than
ab initio methods, whose algorithms are usually based on many
dense matrix multiplications (e.g., the RI approximation with
ABS in the context of F12 theory), which are less scalable with
respect to both computer and system sizes.

The existing QMC methods are not without weaknesses.
They are, in principle, “ground-state” methods, making it hard
to extract reliably (without too much noise) energy differ-
ences such as correlation, excitation, ionization, and electron-
attachment energies, as well as energy bands. Many QMC
approaches suffer from the so-called sign problem, which
necessitates, e.g., the fixed-node approximation in diffusion
Monte Carlo (DMC).96,98 They are also subjected to finite-
size errors98 in solid-state applications and have to invoke a
thermodynamic extrapolation. These nonsystematic approxi-
mations often prevent QMC from reaching exact solutions of
the Schrödinger equation, which systematic ab initio methods
can demonstratively attain, albeit only for small molecules.102

There has been a surge of interest in combining ab
initio methods with QMC,103–110 aiming to retain the mer-
its of the two while eradicating their demerits. Some tech-
niques perform efficient stochastic sampling in the vast Hilbert
space using molecular integrals evaluated by deterministic
algorithms, whereas others consider random walks in real
space and stochastically integrate all objects entering a target
quantity.

The most prominent example in the first category
is full configuration interaction quantum Monte Carlo
(FCIQMC).106 This implements an algorithm analogous to
DMC, but its walkers represent discrete configurations (as
opposed to electrons in continuous real space), avoiding the
fixed-node approximation, although the sign problem per-
sists.111 A similar imaginary-time-evolution method was inde-
pendently developed by Ohtsuka and Nagase,105 whose tech-
nique does not involve an imaginary-time integration. These
methods have been extended to include F12 corrections.112,113

Here, we briefly review the Monte Carlo many-body per-
turbation (MC-MP) method,114 which is in the second category
and seems particularly well suited to an F12 extension,115,116

taking its second-order variant (MC-MP2) as an example. The
MP2 correlation correction to the restricted HF energy of a
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closed-shell molecule is given by

E(2) =

occ.∑
i,j

vir.∑
a,b

〈ij |ab〉(2〈ab|ij〉 − 〈ab|ji〉)
ε i + ε j − εa − εb

(11)

in the standard notation. This is a long sum of products of
dense matrices, whose evaluation requires significant disk I/O
and careful organization for an efficient parallel execution (for
large molecules). However, the actual hotspot of MP2 exists in
the preceding step of the transformation of two-electron inte-
grals from atomic orbitals (AOs) to molecular orbitals (MOs).
This step is both expensive, incurring an O(n5) operation cost
(where n is the number of AOs or MOs), and not well-suited to
a data-local layout, which is necessary for efficient serial and
parallel executions. This difficulty is caused by the completely
different characteristics of AOs (localized and asymmetric)
and MOs (delocalized and symmetric).

The transformation of the integrals (as well as their evalu-
ation and storage) can be avoided altogether as follows. Using
Almlöf’s Laplace transformation of the denominator,117 fol-
lowed by an interchange of the order of summations and
integrations, we can rewrite Eq. (11) as

E(2) =

∫∫∫∫
dr1dr2dr3dr4 f (r1, r2, r3, r4), (12)

with

f (r1, r2, r3, r4) = −
∫ ∞

0
dτ

1
r12r34

G+(r3, r1, τ)G+(r4, r2, τ)

×
{
2G−(r1, r3,−τ)G−(r2, r4,−τ)

− G−(r2, r3,−τ)G−(r1, r4,−τ)
}
, (13)

where G’s denote the traces of the real-space, imaginary-time,
zeroth-order Green’s functions,

G−(rp, rq, τ) =
occ.∑

i

ϕi(rp)ϕ∗i (rq) exp(−ε iτ), (14)

G+(rp, rq, τ) =
vir.∑
a

ϕa(rp)ϕ∗a(rq) exp(−εaτ). (15)

Equation (12) is a single 12-dimensional integral that can be
evaluated by MC integration, completely bypassing the evalua-
tion, storage, or transformation of two-electron integrals either
in the AO or MO basis (the one-dimensional integral over τ
can be evaluated by quadrature114). A suitable weight function
is a product of the integrands of the HF Coulomb energy of
electron density ρ(r) or a similar quantity, converting Eq. (12)
to

E(2) ≈
1
N

N∑
n=1

f (r[n]
1 , r[n]

2 , r[n]
3 , r[n]

4 )

w(r[n]
1 , r[n]

2 )w(r[n]
3 , r[n]

4 )
, (16)

with

w(r1, r2) =
1

2EJ

ρ(r1)ρ(r2)
r12

. (17)

Hence, the four-electron coordinates (r[n]
1 , r[n]

2 , r[n]
3 , r[n]

4 ) are
randomly distributed according to the 12-dimensional weight
function w(r1, r2)w(r3, r4). This function is analytically inte-
grable (EJ being the HF Coulomb energy), has identical and
therefore mutually canceling singularities to the integrand, and

is strictly nonnegative everywhere. MC integration does not
have a sign problem from the outset. The operation cost of
evaluating the quotient in Eq. (16) in each MC step grows only
linearly with the system size, and the memory requirement is
minimal.

After adopting the best practices of modern F12 theory,
i.e., the SP ansatz68 and strong orthogonality projector, the
F12 correction to the MP2 correlation energy is a sum of two-
through six-electron integrals. The GBC and EBC approxi-
mations56 can be used to reduce the dimension of integrals
to 15 (five electrons). These few high-dimensional integrals
are directly evaluated by the MC integration in the MC-MP2-
F12 methods115,116 without the RI approximation or an ABS.
For instance, one of the four-electron (4e) integrals in the F12
correction is evaluated as

E4e =
5
8

occ.∑
i,j,k,l

〈ijkl |
f34

r12
|klij〉

=

∫∫∫∫
dr1dr2dr3dr4 f4e(r1, r2, r3, r4)

≈
1
N

N∑
n=1

f4e(r[n]
1 , r[n]

2 , r[n]
3 , r[n]

4 )

w(r[n]
1 , r[n]

2 )w(r[n]
3 )w(r[n]

4 )
, (18)

with

f4e(r1, r2, r3, r4) =
5
8

f34

r12
G−(r1, r3, 0)G−(r2, r4, 0)

×G−(r3, r1, 0)G−(r4, r2, 0). (19)

Note that this single 12-dimensional integral is analytically
factorable into the sum of products of O(n4) 6-dimensional
integrals, 〈ij |r−1

12 |kl〉 and 〈kl |f12 |ij〉, but the former is preferred
over the latter by the MC method, whose advantage over
a deterministic numerical integration grows with dimension.
The integrand f4e(r1, r2, r3, r4) has the 1/r12 singularity but is
analytic in the other dimensions. Therefore, the same weight
function as Eq. (17) with the 1/r12 singularity is used for r1 and
r2, whereas a simple s-type Gaussian-type orbital is adopted
as w(r3) and w(r4).

MC-MP2 and MC-MP2-F12 can calculate the correla-
tion and F12 corrections directly (allowing an inexpensive
HF or small-basis MP2 calculation to be performed sepa-
rately and deterministically) without any bias (reproducing
the corresponding deterministic results). The operation costs
of MC-MP2 and MC-MP2-F12 for a given accuracy (relative
statistical error) were observed to be O(n3) and O(n4), respec-
tively, where n is the number of orbitals.116,118 The memory
cost is negligible. With the redundant-walker convergence
acceleration scheme,119 the method can easily achieve >90%
of the perfect parallel scalability up to thousands of CPUs, and
an unprecedented speedup by a factor of tens of thousands (rel-
ative to one CPU core) on hundreds of GPUs.118 These are by
virtue of completely eliminating two-electron integral evalua-
tions and transformations, and by foregoing the conventional
dense-matrix algorithms in favor of more scalable stochastic
ones.

Figure 2 is a result of the MC-MP2-F12 calculation for
tetrahydrocannabinol using the cc-pVDZ basis set.116 The F12
correction is substantial, exceeding 1 Eh, and is reasonably
converged in the sense that the difference between the vari-
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FIG. 2. Convergence of the MP2 correlation energy of tetrahydrocannabinol
(n = 472) in the cc-pVDZ basis set with respect to the number of MC steps. The
error bars correspond to the statistical uncertainty. Reprinted with permission
from C. M. Johnson et al., J. Chem. Phys. 145, 154115 (2016). Copyright
2016 AIP Publishing.116

ational (VBX) and nonvariational (V ) formulations or their
statistical uncertainties is much smaller than the correction
itself. Note the performance of MC-MP2-F12 is unaffected
by diffuse function augmentation that is essential for accurate
F12 results.

MC-MP2-F12 can use any differentiable correlation fac-
tor. The six correlation factors listed in Table I, all satis-
fying the cusp conditions,1,2 have been tested for the total
and relative correlation energies of small molecules.116 The
Slater-type geminal60,61 was found to be the best performer
(see Table I), whereas the “Gauss” function (not to be con-
fused with GTG, which does not satisfy the cusp condition)
is the poorest, possibly because it has the wrong shape in
the intermediate domain of r12. With the second- and higher-
order cusp conditions being system- and state-dependent,88,89

it seems unlikely that the observed relative performance of
correlation factors can be explained or predicted purely math-
ematically. Numerical characterization is, therefore, valu-
able for an exhaustive list of correlation factors, and such
a study is easily possible and well underway for MC-MP2-
F12. Other approaches that have the same flexibility include
the QMC methods,96,98 GTG expansions,65 and plane-wave-
based methods,120,121 with which excellent accuracy of the so-
called Yukawa–Coulomb geminal was observed for a homo-
geneous electron gas (HEG).120 To a lesser extent, the mixed
Gaussian-basis-set and multicenter-grid method68 also lifts

TABLE I. The average error (in mEh) in the MC-MP2-F12(VBX) correlation
energies from the MP2 correlation energies in the CBS limits for 17 small
molecules.116 For each correlation factor, a respective suitable value of γ was
used. The statistical errors are no greater than 0.7 mEh.

Function Name aug-cc-pVDZ aug-cc-pVTZ

f (1)
12 = (1 − e−γr12 )/γ Slater 6.9 3.5

f (2)
12 = (1 − e−γr2

12 )/(γr12) Gauss 63.4 21.9

f (3)
12 = γr12/(γ + r12) Rational 8.7 4.0

f (4)
12 = ln(1 + γr12)/γ Logarithm 12.3 4.6

f (5)
12 = arctan(γr12)/γ Arctangent 12.1 3.2

f (6)
12 = f (1)

12 /2 + f (3)
12 /2 Hybrid 7.2 3.2

some of the constraints on the mathematical form of the
correlation factor to be used. Silkowski et al.122 proposed a
McMurchie–Davidson-type recursion equation for all neces-
sary integrals for range-separated geminals.

The MC algorithm has been applied to third-order many-
body perturbation (MP3)123 and second-order many-body
Green’s function (GF2)124 methods, with an extension of the
latter to the F12 correction being underway, using the formu-
lation of the deterministic counterpart.125 GF methods126,127

can compute correlated ionization and electron-attachment
energies directly, which are key quantities in redox, electrocat-
alytic, and biochemical processes as well as in optoelectronic
materials. Hence, MC-GF methods and their F12 extension
may be even more useful than MC-MP and MC-MP2-F12.

MP and GF are rigorously (diagrammatically) size
consistent, and can thus be applied to solids without a
finite-size error or thermodynamic extrapolation. The MC-
MP2 and GF2 methods have been implemented for one-
dimensional solids,128 the latter providing quasiparticle
(electron-correlated) energy bands in the entire Brillouin zone
as nearly continuous functions of the wave vector, a difficult
feat for any existing QMC method.98 A deterministic MP2-F12
method for one-dimensional solids129 is already available, and
this should be extensible to an MC algorithm.

The MC-MP and GF methods are best viewed as types
of variational Monte Carlo (VMC) integration.96,98 Therefore,
they share the same extraordinary flexibility in handling any
integrand, i.e., any Hamiltonian, wave functions, basis sets,
and correlation factors. Their F12 extensions can, in princi-
ple, be free of any approximation except for the SP ansatz.
They share the same difficulty, however, in terms of optimiz-
ing their wave functions; the MC-MP and GF methods are
limited to one-shot evaluations of integrals and cannot be read-
ily extended to iterative ab initio methods such as CC theory
or analytical gradients. By the same token, MC-MP2-F12 can-
not at present be used to solve geminal amplitude equations
iteratively and, in this sense, it is the SP ansatz68 that makes
MC-MP2-F12 possible. Another important difference between
the MC-MP and GF methods and VMC is that the latter has
the so-called zero-variance property, whereas the former do
not.

Apart from the flexibility of the correlation factor, the MC-
MP, GF, and F12 methods essentially give the same results as
their deterministic counterparts, but with inevitable statistical
noise. Therefore, their usefulness ultimately hinges on their
ability to perform grand-challenge calculations on the largest
supercomputers that are not feasible with the best deterministic
implementations. The calculation of Fig. 2 cannot be said to
have demonstrated the unique capacity of MC-MP2-F12; a
much larger application is still warranted.

III. LARGE MOLECULES

Explicitly correlated theory is now a rather mature tech-
nology for molecules containing up to several dozen atoms,
and has been applied to investigate, e.g., reaction barriers of
enzymatic reactions combined with molecular mechanics.130

However, its application to molecules consisting of more than a
hundred atoms is still challenging because of the steep scaling
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of the computational cost with the system size. To overcome
this difficulty, F12 theory has been incorporated into cultivated
methodologies for large molecules, e.g., the local correlation
approaches initiated by Pulay and Sæbø,131,132 as seen in the
earlier local adaptations of GTG133 and F12.134 A detailed
explanation of local correlation methods is beyond the scope of
this perspective, and we only outline the milestone local treat-
ments in conjunction with explicitly correlated theory in the
last decade. Readers can find more comprehensive publication
lists elsewhere.135,136 In addition, we will explain other solu-
tions for large molecules using massively parallel computing
techniques.

Local correlation approaches restrict the excitations from
each pair of localized occupied orbitals to localized virtual
orbitals spanned by projected atomic orbitals (PAOs) within
finite domains, utilizing the short-range nature of the dynami-
cal electron correlation.137 The scaling of a correlated method
can be reduced by such a treatment, whereas the local approx-
imation appears to introduce the serious problem of irregular
domain errors. A large domain size is required to reduce these
domain errors. Werner demonstrated that the F12 correction
improves not only the basis set incompleteness but also the
PAO domain errors in a local version of MP2-F12 (LMP2-F12)
using pair-specific strong orthogonality projectors.138 Further
developments involving local CCSD(T) (LCCSD(T)) with
local DF and RI have enabled their quantitative applications
to biochemical molecules and their reactions.139 Nevertheless,
one still needs to pay attention to the choice of the domain
size to obtain energies comparable to those from a nonlocal
treatment.139

The domain-size problem can be largely alleviated using
Meyer’s pair natural orbitals (PNOs),140 as revived by Neese
et al.,141 because the accuracy can be controlled a priori by
a single occupation number threshold for the truncation of
PNOs. The steep scalings needed to generate PNOs can be
avoided using local variants that employ intermediates with
PAO domains or the orbital-specific virtuals (OSVs)142 often
generated from extended PAO domains to attain asymptotic
linear scalings.135,143,144 Among the choices of virtual orbitals,
PNOs provide the most compact representation of domains
with high accuracy. Krause and Werner proposed a scheme to
combine the advantages of OSV and PNO.143 Independently,
Hättig, Tew, and co-workers developed a hybrid OSV-PNO
scheme for F12 using auxiliary PNOs (X-PNOs) and reported
PNO-CC-F12 implementations.144,145 The recent develop-
ment of the domain-based local PNO MP2-F12 (DLPNO-
MP2-F12) for the O(N) scaling exhibits subquadratic scaling
for quasi one-dimensional n-alkanes.146 All of these imple-
mentations employ DF in their local representations to reduce
the computational cost and memory requirement. Although
PNOs have large linear dependencies amongst pairs, their use
leads to only dense operations over pairs and appears to be suit-
able for parallel implementations in distributed memory.136,147

Other explicitly correlated methods utilizing localities
involve explicitly correlated CCSD(T)148,149 in the incre-
mental scheme of Stoll150 and Divide-Expand-Consolidate
MP2-F12 (DEC-RIMP2-F12)151 with simpler structures for
F12 implementations to complement the domain-based
approaches.

In contrast to the context for inert molecules, the afore-
mentioned local correlation methods are much less effective
for excited states, large aromatic molecules in nanoscale,
and metallic systems. One effective approach for large-
scale calculations without exploiting the orbital locality is
to employ massively parallel computers. However, the stan-
dard algorithms for electron correlation methods involve suc-
cessive 4-index integral transformations, and the communi-
cation costs hinder efficient implementations as the num-
ber of processes in the message passing interface (MPI)
increases. This is particularly evident for the F12 treat-
ment containing various intermediates for many-electron inte-
grals. An alternative F12 approach uses real-space numer-
ical quadratures developed in the field of density func-
tional theory instead of the RI expansion.61,68 All two-,
three-, and four-electron molecular integrals in MP2-F12 are
generated using numerical integrations directly from 2-index
MO amplitudes and 3-index MO integrals over quadrature
points. The numerical quadrature technique significantly eases
the MPI parallelization in evaluating the 3-index intermediates
and the OpenMP parallelization in the summation over grid
points with efficient matrix–matrix multiplication libraries.
Details of the implementation are explained elsewhere.152,153

A typical application of the canonical F12 implementa-
tion is the assessment of the binding energy (BE) between
a bulky N-heterocyclic carbene and C60 fullerene in a Lewis
acid-base adduct,154 as depicted in Fig. 3. The RHF BEs are
+0.4 kcal mol�1 and �23.2 kcal mol�1, respectively, for the
imidazolin-2-ylidene-C60 and IDipp)-C60 adducts, contra-
dicting experimental observations.154 The corresponding
MP2-F12 BEs are +20.9 and +48.1 kcal mol�1, indicating
that the London dispersion force from the bulky ligand accel-
erates the formation of the IDipp-C60 adduct exceeding the
steric repulsion.155

The F12 ansatz similarly accelerates the convergence
of the frequency-independent GF2 ionization energies (IEs),
which possess contributions from partial sums of MP2 pair
energies.125 The IEs of GF2 in near-CBS quality can be
obtained using GF2-F12 in the aug-cc-pVTZ basis set. Despite
its rather simple theoretical framework, GF2-F12 reproduces
experimental IEs for conjugated systems quite well,125 and is
considered to be practically useful to investigate IEs of organic
functional materials. Figure 4 shows the calculated first IEs
of oligofurans from monomer to 15-mer, along with fits to
several analytic functions in 1/n. The evolution of the IEs for

FIG. 3. Geometries of imidazolin-2-ylidene-C60 (left) and 1,3-
bis(diisopropylphenyl)imidazol-2-ylene(IDipp)-C60 (right) adducts. Geome-
tries are optimized at ωB97X-D/6-31G(d) and MP2-F12 energies are cal-
culated in aug-cc-pVTZ with counterpoise corrections.
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FIG. 4. The vertical IEs (eV) of oligofurans up to 15-mer calculated from
GF2-F12/aug-cc-pVTZ as a function of the reciprocal of the number of rings
n. The black solid line is the result of fitting to A + B cos[π/(n + 1)] using
the data in the range of n = [2,15]. The green dashed line is the A + B/n fit
for n = [2,5] and the blue short dashed line is the A + B/n2 fit for n = [6,15].
All geometries are optimized withωB97X-D/6-31G(d). Experimental values
from Ref. 157.

these (quasi) 1-dimensional systems is well-represented by the
cos[π/(n + 1)] function derived from the Hückel theory com-
pared with the empirical cases, the 1/n sometimes employed
for short oligomers and the 1/n2 that is only valid for longer
chains. Note that the∆DFT method without long-range correc-
tions cannot reproduce this behavior, but exhibits much slower
1/n0.7 behavior for flat oligothiophene.156

IV. EXPLICITLY CORRELATED PLANE WAVES

Explicitly correlated theory in a plane wave basis set
is a computationally efficient means for the study of peri-
odic solids, because (i) the required many-electron inte-
grals, including three-electron integrals, can be calculated
efficiently, and (ii) the correlation factor can be expressed
using plane wave coefficients, providing a systematically
improvable machinery for a solid-state research. Despite these
advantages, there are many technical challenges in imple-
menting explicitly correlated methods in plane waves. This
is one reason why there have been relatively few studies
on explicitly correlated methods including TC implementa-
tions for solids.42,44,45,120,121,158 Alternatively, it is possible
to employ Gaussian basis sets in explicitly correlated theory
for solids.129,159 The main advantage of this approach is that
one can exploit the framework developed in F12 theory for
many-electron integrals in conjunction with the local correla-
tion techniques described in Sec. III.159 Furthermore, the linear
dependency problem of GTOs usually faced in the studies of
solids is mitigated by the inclusion of explicit electron corre-
lation. More recent developments such as the aforementioned
stochastic F12 methods could also be applied to solids, either
in plane wave or Gaussian basis sets.116

In this section, we briefly review an implementation of
explicitly correlated perturbation theory within the framework
of the projector augmented wave (PAW) method. This imple-
mentation employed the Vienna ab initio simulation pack-
age.160 In the PAW method, the all-electron orbitals (|ψn〉)
are obtained from the pseudo-orbitals (|ψ̃n〉) by means of the

linear transformation,161

|ψn〉 = |ψ̃n〉 +
∑

i

(|ϕi〉 − |ϕ̃i〉)
〈
p̃i |ψ̃n

〉
. (20)

The index n, labelling the orbitals ψ, denotes the band index
and the Bloch wave vector kn, whereas the index i is short-
hand for the atomic site Ri, the angular momentum quantum
numbers li and mi, and an additional index ε i denoting the lin-
earization energy. The wave vector is conventionally chosen
to lie within the first Brillouin zone. The pseudo-orbitals, the
variational quantities in PAW, are expanded in reciprocal space
using plane waves, 〈r|Ψ̃n〉 =

1√
Ω

∑
g Cn

gei(kn+g)r. Two-electron
repulsion integrals are evaluated as

〈ij |r−1
12 |ab〉 =

∑
G

Ca
i (G)ṽ(G)C∗jb(G), (21)

where ṽ is the Coulomb kernel. The translational invariance
of the integral kernel reduces the computational effort from a
six-dimensional integral in real space to a three-dimensional
sum in reciprocal space over the Fourier components of the
given electron pair codensities. In this PAW implementation,
the Fourier transformed codensities Ca

i (G) are approximated
using Eq. (2.87) of Ref. 162, as originally implemented by
Kresse and Harl for the correlation energies of the random
phase approximation.163 Alternatively, the integrals can be
evaluated by summing over different contributions on the plane
wave grid and a radial atom-centered grid.164 Note that keeping
all contributions on the plane wave grid is more efficient for the
three-electron integrals required for the explicitly correlated
implementation.

Using the above expressions, it is possible to calcu-
late the necessary two-electron integrals for the correlation
energy of an arbitrary post-HF method, e.g., MP perturbation
and CC. The standard expression for the correlation energy,
which is dependent on the determinantal coefficients and two-
electron integrals, can be rewritten by rearranging the nested
summations over orbital and plane wave indices165 as

Ec =
∑

G

S(G)ṽG. (22)

This expression clarifies the source of the error in achieving
the basis set and supercell size convergences. Figure 5 depicts

FIG. 5. The convergence of spherically averaged S(G) for an increasing num-
ber of virtual bands using 2 × 2 × 2 k-point mesh. S(G) has been calculated
using second-order Møller-Plesset perturbation theory. The vertical axis has
been rescaled. Inset: Non-spherically averaged S(G) for carbon diamond and
graphite (ABC) using 32 bands per k-point and a 3 × 3 × 3 k-point mesh. S(G)
has been calculated using second-order Møller-Plesset perturbation theory.
The vertical axis has been rescaled.
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the spherical average of S(G) for the carbon diamond crystal
by changing the size of the orbital basis set. The greater the
number of virtual orbitals, the slower S(G) decays to zero as
|G| increases. This indicates that the slow convergence with
respect to the number of virtual orbitals (as a result of the cusp
behavior of the exact wave function at short r) is reflected in
the profile of S(G) at large plane wave vectors G in the recipro-
cal space. It can also be noted that a sharp truncation of S(G) at
small G implies the presence of a convergence problem with
respect to the given supercell size, which can be mitigated
by interpolating S(G) at small plane wave vectors.165 It is a
common practice in QMC to calculate the electronic structure
factor by performing a similar interpolation.166,167 Neverthe-
less, the structure factor of QMC does not represent such slow
convergence with respect to the number of parameters, as the
correct shape of the wave function at short inter-electronic
distances is already captured by the employed Jastrow factors.
Explicitly correlated plane waves attain a more rapid basis
set convergence by augmenting a post-HF wave function with
terms containing a two-electron correlation factor.

We now turn to the discussion of evaluating the many-
electron integrals that occur in explicitly correlated theory for
solids. It is generally advantageous to employ a plane wave
basis set, in which various types of three- and four-electron
integrals can be calculated efficiently. We give an example
for the three-electron integrals over f12r−1

23 required for the
so-called V intermediate in explicitly correlated MP2 theory.
Using a series of forward and backward Fourier transforms,
the integrals can be calculated in the following manner:121

ylji
jil = 〈jil |f12r−1

23 |lji〉,

χ̃l
j(G) = Cl

j (G)f̃ (G),

χijl(r) = FT −1[ χ̃l
j(G)]C∗ji(r),

χ̃jil(G) = FT [χjil(r)],
ylji

jil =
∑
G
χ̃jil(G)ṽ(G)Ci

l (G).

(23)

The relatively fast decay of the Fourier coefficients for the cor-
relation factor (lim |G |→∞ f̃ (G) ∝ 1

G4 ) means that the required
size of the plane wave grids does not significantly increase
from that employed for two-electron integrals.121 Ochi et al.
have also shown that integrals for the kernel ∇1u12 · ∇1u13 can
be efficiently computed using plane wave basis sets.44 This
kernel appears in both TC and explicitly correlated F12 theo-
ries.44,61 In contrast to the direct evaluation of three-electron
integrals using atom-centered Gaussian basis sets in GTG
theory, plane wave basis sets benefit greatly from the compu-
tational efficiency of Fourier transformations and the transla-
tional invariance of the employed kernels. Another advantage
of using plane wave basis sets is that the Fourier coefficients
of the correlation factor in the above expression can be eas-
ily modified to further improve the rate of convergence of the
wave function expansion.

We now discuss the possible flexibility of correlation fac-
tors. In the vast applications of recent explicitly correlated
theory, correlation factors are dependent on a single parame-
ter γ, which models the decay of the correlation hole in the
STG factor.60 However, the pairwise ansatz for the first-order
wave function enables us to employ orbital-pair-dependent
parameters γij to increase the accuracy. This enables better

modeling for the optimum correlation factors of core and
valence electrons.90 In the case of the uniform electron gas,
such a correlation factor strongly depends on the average den-
sity of the valence electron gas.120 The optimum γ increases
with the gas density when modeling a strongly confined elec-
tron correlation hole. This observation suggests that the cor-
relation factor can be parametrized as a function of the aver-
age valence electron gas density. Such a parametrization can
work very efficiently, especially for properties that require an
accurate estimate of the correlation hole dependent on elec-
tron density, e.g., equilibrium volumes and bulk moduli of
solids.121

For a uniform electron gas, the optimal correlation fac-
tor deviates from the Slater-type function over longer ranges.
For two electrons in a box, it can be shown analytically and
observed numerically that the exponential behavior of the
Slater-type function is not optimal at large inter-electronic dis-
tances,120 but the decay should be 1/r12.68 This long-range
1/r12 tail for the pair correlation function is also suggested by
the random phase approximation in the thermodynamic limit,
where Gaskell100,168 found the exact long-range behavior of
the uniform electron gas to be limr12→∞ u(r12) ∝ r−(D−1)/2

12 for
a D-dimensional model. Therefore, a good approximation to
the optimal correlation factor for the homogeneous electron
gas at both short and long ranges is the Yukawa–Coulomb
correlation factor120

f (YC)
12 =

2

γ2

exp(−γr12) − 1
r12

, (24)

employed in QMC and TC calculations.42,100,158 However, for
real inhomogeneous systems such as simple solids, it has been
found that the Yukawa–Coulomb correlation factor does not
improve upon the Slater-type correlation factor.121 One pos-
sible explanation for this observation is that the coefficients
of the long-range 1/r12 tail for the correlation function are
generally pair dependent.68

For real solids with inhomogeneity and anisotropy, a large
degree of flexibility for correlation factors would be desirable
to further improve the efficiency of explicitly correlated theo-
ries. Note that plane waves can also be used as basis functions
to expand the Jastrow factors in VMC.169 Such Jastrow factors
with augmented variational parameters along with higher par-
ticle number correlations101 have been employed to capture
the entirety of correlation effects in VMC calculations.98 As
an example for anisotropic correlation effects, we show S(G)
from the MP2 theory for the carbon diamond and graphite
crystals in the inset of Fig. 5. A comparison of the respec-

tive structure factors at |G| ≈ 0.25 Å
−1

reveals a significantly
larger dispersion for graphite (red circles) than that for dia-
mond (yellow circles). We attribute this broadening of S(G)
to the larger anisotropy in graphite compared with that in dia-
mond. Prendergast et al. have shown that VMC recovery in the
correlation energy increases for graphite if the Jastrow factors
contain additional degrees of freedom for inhomogeneous and
anisotropic correlation effects.169 Therefore, it is likely that
a similar parameterization would further improve explicitly
correlated wave functions.

To conclude this section, we present a practical applica-
tion of explicitly correlated MP2 theory to the lattice constant
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FIG. 6. Convergence of the carbon diamond lattice constant calculated using
(explicitly correlated) MP2 theory and a 4 × 4 × 4 k-point mesh with respect
to the total number of orbitals per k-point. Note that this system has four
occupied orbitals per k-point in the frozen core approximation and that we
employ a two atomic unit cell.

of the carbon diamond crystal. The equilibrium lattice con-
stant is obtained by minimizing the energy with respect to
the volume of the unit cell. Figure 6 shows the convergence
of the calculated (explicitly correlated) MP2 lattice constant
with respect to the number of orbitals. It is clear that the
convergence of the lattice constant from F12 theory is sig-
nificantly faster than that of MP2 without F12 corrections.
The pMP2-F12 method,121 which corresponds to the MP2-
F12 approximation in the V -term only, has been employed
for these calculations, along with the Yukawa–Coulomb cor-
relation factor parametrized for the average electronic density
using results obtained for the uniform electron gas simulation
cell.121 We stress that the computational cost of pMP2-F12
with respect to the system size scales as O(N5), like MP2
without F12 corrections. In this way, the inclusion of explic-
itly correlated terms makes wave-function-based theories sig-
nificantly more efficient and accurate for the properties of
solids.

V. FUTURE CHALLENGES

The use of explicitly correlated methods has significantly
expanded the scope of both the studies of molecules and com-
plex systems such as solids over recent decades. The essential
ingredients would appear to be present for at least medium-
sized molecules within the standard ab initio framework repre-
sented by the F12 approach, yet several challenges remain, e.g.,
efficient algorithms for many-electron integrals with general
correlation factors,170 relativistic treatment of explicit elec-
tron correlation,171–174 especially beyond the Dirac–Coulomb
Hamiltonian, composite schemes,175 and three-body corre-
lation factors for the triple-point coalescence.176 Above all,
the requirement of manifold integrals with CABS indices for
nuclear derivatives has complicated the implementation of ana-
lytical energy gradients even for MP2-F12.177 Constructing
extended geminal spaces including virtual orbitals86,178 for
excited states and response properties is also nontrivial espe-
cially with high-angular-momentum contributions of geminal
basis to make the RI expansion less effective. Moreover, the
developments in this field of research will also help pave the
way towards other, more efficient wave function expansions
in different areas of electronic structure theory, where slowly

converging wave function expansions need to be dealt with,
including auxiliary field QMC (AFQMC)179 and FCIQMC
theories for both ground and excited states.106,108,110 In this
sense, possible conjunctions with strong correlation theories
are of great importance, as they may enable the treatment
of transition metal complexes that play the central role in
biological water splittings.180

Another branch of research in explicitly correlated the-
ories that will be continued in the future is the introduction
of more flexibility in the employed correlation factors. This
would help to further improve the rate of convergence in wave
function expansions with little or even no assistance from CI
expansions. This aim is shared by QMC, where a Jastrow cor-
relation factor with a small number of parameters explicitly
captures a majority or even the entirety of electronic corre-
lation effects. This would require a powerful and universally
transferable correlation factor with an increased flexibility that
is capable of including correlation effects in higher particle
numbers, e.g., the electron–electron–nucleus factor for inho-
mogeneous correlation effects. Various methods to optimize
a correlation factor with additional parameters can be envi-
sioned, including (i) minimization of the Hylleraas functional,
(ii) employing hybrid techniques that use VMC to optimize the
correlation factors and quantum chemical wave function the-
ories for the energy calculation, and (iii) combining Green’s
function-based theories such as the random-phase approxi-
mation to the electronic correlation with explicitly correlated
wave functions. When one attempts to capture the entirety of
correlation effects by a correlation factor (including Slater-
type geminal and Yukawa–Coulomb geminal, which share
an exponential structure), the resulting explicitly correlated
method may be similar to CC theory with a generalized oper-
ator.181 It would be interesting to know whether such a cluster
operator is largely dictated by these factors satisfying the cusp
conditions. This also touches upon the fundamental question
of partitioning and treating dynamic and static (possibly even
strong) correlation effects on a different, but more accurate,
footing than currently possible.

The field of explicitly correlated theories for the study of
solids has only emerged over the last few years. Many of the
techniques accumulated in ab initio quantum chemistry still
need to be transferred to the study of solid states. One major
technical challenge is to avoid different many-electron inte-
grals in explicitly correlated theories, as these are expensive,
increasing the computational cost compared with their parent
methods for electron correlation. Many promising approaches
to overcome these problems have already been proposed
for large or periodic systems, including Monte Carlo tech-
niques,115,116 local explicitly correlated methods,136,145,146 and
plane wave basis set techniques.44,121 These methods exhibit
a trade-off between computational cost and accuracy that is
strongly dependent on the system size, dimensionality, and
possibly the band gap. In addition, a significant portion of
the total correlation energy comes from the accumulation of
long-range dispersion in a solid. A full understanding of the
long-range dispersion in the CBS limit is therefore essential
for predictive simulations of solids. It may be worth inves-
tigating whether a good correlation factor for electron pairs
in essentially atomic environments remains so for itinerant
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electron pairs in metallic solids. In this regard, a numerical
study of various correlation factors (including many-particle
correlation effects) in different electronic environments should
be conducted. Finally, with the significantly deeper under-
standing of explicit correlation obtained over the last decade,
one may revisit the question of whether the F12 correction can
substantiate a systematic density functional. An affirmative
answer may lead to a method that simultaneously achieves
accuracy and efficiency and is particularly attractive for
solids.
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59S. Kedžuch, M. Milko, and J. Noga, Int. J. Quantum Chem. 105, 929 (2005).
60S. Ten-no, Chem. Phys. Lett. 398, 56 (2004).
61S. Ten-no, J. Chem. Phys. 126, 014108 (2007).
62T. Shiozaki, Chem. Phys. Lett. 479, 160 (2009).
63A. J. May, E. Valeev, R. Polly, and F. R. Manby, Phys. Chem. Chem. Phys.

7, 2710 (2005).
64D. P. Tew and W. Klopper, J. Chem. Phys. 123, 074101 (2005).
65E. F. Valeev, J. Chem. Phys. 125, 244106 (2006).
66K. A. Peterson, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 128, 084102

(2008).
67S. Ten-no, in Computational Science ICCS 2003, Part IV, Lecture Notes in

Computer Science, edited by P. Sloot, D. Abramson, A. Bogdanov, J. Don-
garra, A. Zomaya, and Y. Gorbachev (Springer, Berlin, 2003), Vol. 2660,
pp. 152–158.

68S. Ten-no, J. Chem. Phys. 121, 117 (2004).
69D. P. Tew and W. Klopper, J. Chem. Phys. 125, 094302 (2006).
70T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127, 221106 (2007).
71D. P. Tew, W. Klopper, and C. Hättig, Chem. Phys. Lett. 452, 326 (2008).
72E. F. Vallev, Phys. Chem. Chem. Phys. 10, 106 (2008).
73D. Bokhan, S. Ten-no, and J. Noga, Phys. Chem. Chem. Phys. 10, 3220

(2008).
74G. Knizia, T. B. Adler, and H.-J. Werner, J. Chem. Phys. 130, 054104 (2009).
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174B. Simmen, E. Mátyus, and M. Reiher, J. Phys. B: At., Mol. Opt. Phys. 48,

245004 (2015).
175A. Karton and J. M. L. Martin, J. Chem. Phys. 136, 124114 (2012).
176C. R. Myers, C. J. Umrigar, J. P. Sethna, and J. D. Morgan III, Phys. Rev. A

44, 5537 (1991).
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