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Benchmark quantum Monte Carlo calculations

Jeffrey C. Grossman
Lawrence Livermore National Laboratory, Livermore, California 94550

(Received 20 February 2002; accepted 30 April 2002

Fixed node diffusion Monte Carl@~-N-DMC) atomization energies are calculated for a benchmark
set of 55 molecules. Using single determinant trial wave functions, comparison with experiment
yields an average absolute deviation of 2.9 kcal/mol, placing this simplest form of FN-DMC roughly
at the same level of accuracy as the CCBIaug-cc-pvVQZ method. However, unlike perturbative
wave function expansion approaches, FN-DMC is applicable to systems containing thousands of
valence electrons. For the Rolecule, a number of possible sources of error are explored in detail.
Results show that the main error is due to the fixed-node approximation and that this can be
improved significantly with multireference trial wave functions.[DOI: 10.1063/1.1487829

I. INTRODUCTION QMC can be implemented to scdieearly as the number of
particles, with effectively no loss of accuracy, by applying a
Benchmark sets of molecules have proven to be a usefulnitary transform to localize the single-particle orbitdls.
tool for gauging the accuracy and predictive abilities of aThe combination of high accuracy and the ability to study
given computational method. A set of 31 molecules wassystems with thousands of valence electrons makes QMC a
originally grouped together to fit the semiempirical very promising approach.
Gaussian-1G1) (Ref. 1) theory. This set, combined with 24 Despite the successes of QMC, comparisons with experi-
additional molecules containing second-row elemémE-  ment have not been made systematically for a large data set,
rgsents a broad range of ghemlcal environments. The comy,q the accuracy of QMC approaches has yet to be measured
bined 55-molecule set, which we refer to here as the “Glygainst a well-defined benchmark such as the G1 set. Re-
set,” is oft_en _used to te_st new the_oret|cal methods. Computegenﬂy, Manten and Lehow have approached the subject of
G1 atomization energies for this set of molecules have genera| accuracy for a small set of molecules and molecular
mean absolute QeV|at|0fMAD_from experiment of 1.6 keal/ reactions using all-electron fixed-node DM&and found ac-
mol and a maximum deviation of 7.4 kcal/mol. These tWO . \racies for reaction energetics comparable to CO¥c-
numbers have become a standard benchmark for electronbci/.l.z' Indeed, such studies are necessary and long overdue

. . . 34
structure approaches, including further riGtheorieS as to, answer many questions regarding the overall consistency

well as other state-of-the-art approaches such as the coupl - .
cluster approximation with single, double, and perturbation-%(l;ild predictive capability of the approach. For example, when

ally included triple excitation§CCSO(T)) (benchmark cal- QMC is referr(_ad_to as _hlghly accurate,” what exactly_ls
. . : meant? How big is the fixed-node error, on average? It is of
culations, e.g., Refs. 5,)6and density functional theory

(DFT) methods(benchmark calculations, e Refs. 7, 8 great practical importance to answer these types of questions
Recently, the quantum Monte Carﬂ(’?M'gj’appro.a(;hes for a standard benchmark set of molecules such that one may

have been éhown to provide highly accurate results WheRetter gauge the accuracy of QMC as well as develop further

applied to a wide range of chemical systefesg., atoms understanding of its limitations and methods for improve-

molecules, solids, nuclei, ejcto calculate a wide range of ment.

properties(e.g., binding energies, reaction pathway energet- In this work, res_ults are pre;ented for atom|zat|9n ener-
ics, optical gaps, momentum densities, et{See, for ex- 91€S calculated by single determinant, pseudopotential, fixed-

ample, Ref. 9 and references thejeid number of factors Node diffusion Monte CarléFN-DMC) for the 55 molecules
make QMC, which relies on a stochastic solution of thell the G1 set. The average absolute deviation is 2.9 kcal/mol
many-body Schidinger equation, a highly attractive alterna- With @ maximum deviation from experiment of 14 kcal/mol.
tive to the more traditional mean-field and wave function These results support claims that QMC provides near
expansion based techniques. Similar to the mean-field methchemical” accuracy; however, it is also apparent that con-
ods such as DFT, the computation time required in QMcsistent accuracy ofessthan 1-2 kcal/mol is challenging
scales ad\® whereN is the number of particles in the sys- Within FN-DMC. Possible sources of error include: atomic
tem. Yet, more closely related to post-Hartree—Fock waverbital basis set, determinantal basis set, geometry, pseudo-
function expansion methods, QMC solves the full potentials, and zero-point energy. For therfolecule, a de-
3N-dimensional Schdinger equation directly, allowing for tailed investigation of some of these potential sources of er-
explicit evaluation of electron correlation. Typically, within ror has been carried out. Results show that one of the main
the diffusion Monte CarldDMC) variant the method recov- sources of error is in the fixed node approximation which can
ers ~95% of the total valence correlation energy. Further-be improved by including multiple determinants in the QMC
more, very recent algorithmic developments have shown thatial wave function.
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1. METHOD TABLE I. Atomization energiegkcal/mo) for the 55 molecules in the G1
15 15 set(Refs. 1, 2. Diffusion Monte Carlo(DMC) calculations and experimen-
In our QMC approach; we use the variational tal (Expt) results are listed. For DMC, statistical error bars are given in

Monte Carlo method to find an optimized correlated many-parentheses. Experimental errors are listed in parentiiasdssh indicates
body trial function. This trial function is a product of Slater "° €ror was available

determinants and a correlation fac’c%!n the Slater determi-  \15iccule DMC Expt.

nant part, we employ natural orbitaldNO) rather than

Hartree—Fock or density functional orbitdfsTo eliminate L 521533;;;; igggg
most of the remaining variational bias we use the dn‘fu5|onCH 79:32) 79:9(12)
Monte Carlo method, which is based on the property that the, (3g)) 181.94) 179.64)
operatore” ™, whereH is the Hamiltonian, projects out the cH, (*A;) 169.714) 170.64)
ground state of any trial function with the same symmetryCH; 290.92) 289.32)
and nonzero overlap. All QMC results presented here ar€H4 395.42) 392.51)
78.24) 79.04)

from the diffusion Monte Carlo approach. 169.24) 170.03)
Atomic cores are treated with Stevens—Basch— Kraung 276.92) 276.71)
(SBK) effective core potentiaté for all atoms except hydro- oH 101.23) 101.43)
gen, unless otherwise noted. The natural orbitals are derived.O 219.42) 219.381)
from small multiconfiguration self-consistent figlicscp  HF 135.92) 135.22)
SiH, (*A) 145.52) 144.42)

calculations that include 15-30 virtual and all occupied va- SiH, (°B.) 125.82) 123.42)
lence orbitals in the e_lctlve space.  Sit ! 215:1(2) 21",(1)
FN-DMC calculations for all 55 molecules were carried sjH, 305.92) 302.65)

out using a single determinant trial wave function exceptPH, 143.12) 144.76)
when noted. For multideterminant FN-DMC calculations, PHs 224.82) 228.64)
weights from MCSCF were used. In each case a single paﬁzcS 1135223 ggg
ticle basis of quality similar to 6-31 +G(2d,2p) was em- ;. 23.52) 23.97)
ployed. More specifically, @) uncontracteds and p func-  LiF 145.1(4) 1382)
tions, including 1 diffuse function, were used for CH, 390.04) 386.92)
first(secongirow elements. For all elements 2 uncontraaled C2Hs 533.54) 531.91)
functions were used. For the atomic part, contractions wer f\lHe’ igg:éi; 616765(35)
generated from least squares fits of 6-12 Gaussians to the-\ 302:(18) 301(2)
exact Hartree—Fock solution for the given pseudoatom. co 253.23) 256.22)
Geometries were taken from the original G1 seg., HCO 269.84) 27012)
optimized within MP2/6-31G{). In order to make accurate H2CO 357.85) 357.21)
: : ; - H;COH 483.85) 480.8-)
comparisons with experiment, FN-DMC calculations were 221.08) 225.14)
carried out for a long enough time to obtain stochastic erro;\I H, 406.89) 405.4-)
bars of <1 kcal/mol (typically 0.2—0.4 kcal/mgl Careful No 142.94) 150.064)
time-step studies were performed for several cases and cof; 111.75) 117.962)
servative time steps were used for the entire(set, DMC ~ Hz0; 246.63) 252.3-)
acceptance ratios were always greater than)99% P2 32.08) 36.91)
Co, 379.54) 381.931)

All Hartree—Fock and MCSCF calculations in this work Na, 17.32) 16.93)
were performed using thesAMESS quantum chemistry s, 73.32) 74.0-)
package® All LDA and GGA calculations were performed P, 107.92) 116.15)
using theGAUSSIAN 98 program®® S 98.33) 100.667)
Cl, 54.32) 57.181)

NaCl 98.83) 97.35)

Ill. RESULTS FOR THE G1 SET Sio 186.72) 1902)
cs 165.45) 1696)

The experimental data reported here are taken from ao 117.66) 123.43)
combination of NIST-JANAF tablé8 and Huber and CIO 55.44) 63.422)
Herberg?! in the same manner as Ref. 6. ExpenmentallyCIF 5%3;—';% 55361(1(1))
measured atomization energies for the G1 set range from H CI 371.68) 371:(1:)
kcal/mol (Ng) to 709 kcal/mol (GH;). Most experimental  p,csH 446.04) 445.1-)
errors are smalli.e., <0.5 kcal/mo), although several are HocCI 152.84) 156.35)
somewhat largefe.g., CS has an experimental error of 6 SO 240.08) 254.02)

kcal/mol (Ref. 2Q]. To compare with theory, zero point en-

ergies are taken from experiment when available and from

the calculations of Ref. 6 otherwise. For several species ex-

perimental errors are unavailable. bars are shown for experiment and the@ralculational error
Calculated FN-DMC atomization energies for the 55 Glbars originate from the statistical sampling inherent in the

molecules are shown in Table I. For each molecule, both th®MC energy evaluation

experimental and calculated binding energies are listed. Error  The largest error between FN-DMC and experiment oc-
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curs for the S@ molecule, where the discrepancy is 14 kcal/ TABLE Il FN-DMC error, FN-DMC eyp , Hartree—Fock HOMO-LUMO
ap, and two largest CSF weights from MCSCF calculations averaged over

mol. This mE;.lkeS SQa. somewhat SpeCIal case a_s_ the nex'{qhe 27 worst and 28 best FN-DMC energies in the G1 set. A breakdown of
largest error in the set is only8 kcal/mol. The sensitivity of  the kinds of spin multiplicities is also given, where=Singlet, D

the atomization energy of SQo the single particle basis has =doublet, and Ftriplet.
been studied carefully for the CC$D approactf:?>?3In

particular, it was found that SOGshowed very slow conver- 21 Worst 28 Best
gence with respect to standard correlation consistent basfs.g (kcal/mo) —-2.7 +0.2
sets [e.g., CCSIT)/aug-cc-pVQZ is 10 kcal/mol under- €wao (kcalimo 50 0.9

. . . Spin multiplicities 20S, 4D, 3T 17S, 7D, 4T
bounc]_, and that the addition of tighd qndf functions on | 5vi0-Lumo gap(eV) 14.4 1.6
sulfur improved the convergence considerably. For the FNground state CSF weight 0.959 0.964
DMC method employed here, additional tightandf func- Second largest CSF weight 0.080 0.075

tions on sulfur in the generation of the trial function did not
improve the energy. Because this molecule is somewhat

larger and its error is so much greater than any other case . S
additional studies and ways for improving the FN-DMC re present FN-DMC resultésee discussion in next sectioso

sult for SG are relegated to a separate study. it may be difficult to identify a single quantity or property

After S th lecul ith the bi t di that points to a trend. Indeed, as shown in Table Il, a com-
er OZ € molecules with he LIgges _'ScrEpanCyparison of the 27 worst case molecules with the 28 best case
from experiment are R CIO, CN, LiF, and NO, with errors

. ones does not seem to yield any visible trends for a number
—8.2,-8.0, =7.6, +7.5, and—7.1 kcal/mol, respectively. properties; if anything, the trends appear to be counterin-
Averaging over all molecules in the set yields a fairly good

agreement between FN-DMC and experiment, with a meaaljitive. For example, one might expect closed-shell systems
L ) . ’ ith large gaps to be, on average, better represented by a
absolute deviation of 2.9 kcal/mdkxcluding SQ lowers ge gap g b y

thi ber to 2 single Slater determinant. The results here show that while
IS number to .'B ._both subsets are mostly closed-shell in character, the better-
It is interesting to compare the FN-DMC results against

h hemical h g dies h performing half of the G1 set has more open-shell molecules,
other quantum chemical approaches. Previous studies ahd the average gap over the closed shell cases is actually

compared a number of DFT methods for the G1 test Selyy,)jer than the same average over the worse half of the set.
including local density approximatiofLDA) angga varlety  one might also guess that the weights of excited state deter-
of generalized gradient approximatio®GA)."* As ex-  inants from MCSCF calculations may tend to be larger for

pected, LDA overbinds for every molecule in the &tcept  he noorer performerémeaning that the true wave function
LiF), with eyap~40 kcal/mol. The GGAs offer significant g petter represented with a multireference description

improvements over LDA, with the best functiondB3LYP 5 yever, we find that the average weights are very similar,
and B3PW9] giving eyap~2.5 keal/mol. It was shown that it only a very slight, essentially insignificant, difference
the key ingredient to achieving this result was in the(0.080 vs 0.07Bbetween the two subsets.

3-parameter B3 exchange functlffnwhlch uses a semi- It is also interesting to note that the average error among
empirical fit to incorporate a fraction of the exact Hartree—iha worst 27 cases is negative a2.7 kcal/mol, while the
Fock exchange. It was also noted that whilgy, foralarger  same average for the best 28 molecules is nearly zero at
93-molecule test set using the same B3 functional was only 1 5 kcal/mol. This difference may be indicative of the fol-
kcal/mol higher than for the original 55-molecule test set, th%wing general tendency. If FN-DMC fails to describe the
maximurrdeviation was doubled to 20 kcal/mol. This signifi- 41om and molecule with the same degree of accuracy, it is far

cantly larger range of error is evidence that accuracy trendg, e likely that the larger error will be made on the mol-
in DFT methods are not always systematic and must bgge.

checked; a given functional working well for one problem
does not necessarily imply it will work as well for another.
CCSDOT) has proven to be one of the most accurabe
initio electronic structure technique when applied with large  As mentioned, all of the FN-DMC results listed in Table
basis sets to small molecules. Recent CCS2alculations | are obtained from trial wave functions using a single slater
for atomization energies of the 55 G1 molecules provide aleterminant built from natural orbitals. In order to probe the
wealth of valuable information regarding the accuracy ofmain source of discrepancy from experiment, one can exam-
CCSOT).>® It was found that CCS[T)/aug-cc-pVQZ has ine how changes to this trial wavefunction impact the FN-
emap = 2.8 kcal/mol which is very similar to the FN-DMC DMC result. For such a study, we choose one of the worst
results presented here. Using the C@BDcomplete basis case molecules, R since its relatively small size allows for
set limit, by extrapolating a series of correlation consistenta number of thorough tests to be carried out.
basis sets, reducesg,p by half to 1.3 kcal/mol. It would be
interesting to attempt to formulate and apply such extrapol
tion techniques to FN-DMC, for example, using determinan-  One possible source of error is due to the use of pseudo-
tal (rather than single particldasis expansions. potentials. It is difficult to compare our pseudopotential
Part of the advantage of having data for a benchmark sdDMC results with all-electron DMC calculations since the
of molecules is the ability to look for trends within the set. core electrons introduce additional nodal error which would
There are several possible reasons for the errors in thiee hard to separate from the effect of the pseudopotential.

IV. IMPROVEMENT OF THE P, MOLECULE

o7 Pseudopotentials
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TABLE lll. DMC atomization energiegkcal/mol, with zero-point correc- -13.0620
tions) for the B, molecule calculated with two trial wave functions using
three different pseudopotentialBP.

-13.0625

Trial function Hartree—Fock PP LDA PP BPW91 PP

LDA 108.92) 110.72) 107.93) ~13.0830
BPWO1 108.92) 110.42) 107.83)

-13.0635

Total Energy (au)

=13.0640 |

Although in this work the SBK(Ref. 17 pseudopotentials _13.0645 |
are employed, a number of other types of pseudopotentials
are available. In addition to the method of construction, there

are different theories on which the psuedopotential can be
based. For example, SBK pseudopotentials are based on

Hartree-Fock. but others can be made from LDA. GGA orFIG- 1. FN-DMC energy of the Pmolecule as a function of the bond
other correlat’ed theories ' distance. The solid line represents a quadratic fit to the QMC data. The

) ; . . x-axis has been shifted by the MP2/631}(ond distance.
When comparing different pseudopotentials for use in

DMC calculations, if one remains consistent between
pseudopotential and trial wave function there is little impactB. Geometry
of the pseudopotential on the DMC result. For example, we
compared t,WO DMQ calculations using Hartree—Fock ,malanother important test in our attempt to improve the energy.
functions with two dlfsferent Hartree—F(_)ck_pseudopqtentlals,FOrces are still challenging to evaluate within QMC, al-
SBK and Hay-Wadft” The DMC atomization energies for yq,qh there has been recent progf82&in the case of the
these cases were the same to within statlstlgal error bars. q% dimer, only a single bond distance needs to be optimized
the other hand, if one were to construct a trial function gensyyhich can be done easily with a series of total energy calcu-
erated by one method using a pseudopotential generated by #ions. Figure 1 shows FN-DMC energies for the rRol-
different method, there may be differences among the resulicule at varying bond distances. Note that the optimal FN-
ing DMC atomization energies. These differences are illusbMC bond distance is 0.035 A shorter than the
trated in Table Il which lists DMC atomization energies MP2/6-31G() value. The difference in energy between
based on single determinant trial functions generated usinghese two structures is0.5 kcal/mol. This small difference
two different methodgLDA and GGA) and three different indicates that the sensitivity of atomization energy to geom-
pseudopotentialgHartree—Fock, LDA, and GGAfor each  etry is fairly minimal in this case and is not a large source of
method. the error from experiment.

Note that for LDA trial functions, the largest FN-DMC Since the geometry correction is an order of magnitude
atomization energy is obtained with the LDA pseudopotenless than the missing binding energy, we focus on the quality
tial (i.e., the method used to construct the pseudopotential i8f the nodal structure which is likely to have a far greater
the same as that used to build the trial functiddowever, —impact. The FN-DMC nodes are determined entirely by the
for GGA trial functions, the largest atomization energy is notnodes of the Slater determingg)t which are constructed
obtained with the GGA pseudopotential, but rather with the?Vith single-body orbitals. There are a number of ways in
pseudopotential generated within LDA. In fact both theWhich one can easily at least attempt to improve upon these
Hartree—Fock and LDA pseudopotentials give larger I:N__nodes. First, the accuracy of the single-body orbitals may be

DMC atomization energies than the GGA pseudopotential'mproved by increasing the atomic orbital basis sets. Second,

for LDA or GGA trial functions. Table Il indicates that, at the orbitals themselves can be taken from any number of

least for this case, the FN-DMC atomization energy is morethe.ones(l'e" Hartree—Fock, LDA, GGA, NO, ebg.some of
) which may lead to better nodes than others. Third, the deter-
strongly dependent on the pseudopotential than on th

: . : inantal basis can be expanded to include more than a single
method used to construct the trial wave function. This resu'ﬁeterminant

is tested further below by comparing different trial functions
all with the same pseudopotential. . . .
Based on these results, it is likely that the FN-DMC C. Single-particle orbitals

error is partially due to an error in the pseudopotential. While gy pseudopotential calculations, it is generally assumed

it is difficult to quantify this error(making a comparison  that the fixed-node error is not effected much by the quality
between pseudopotential and all-electron FN-DMC is someof the atomic orbital basis, as long as the basis is suf-

what ambiguous we can nevertheless estimate that the erroficient (i.e., 6-311G quality or bettey. For P,, 3 atomic

in FN-DMC due to the pseudopotential is roughly on theorbital basis sets were tested: s17p2d/4s4p2d,
order of the differences observed in Table Ill, around 2 kcal27s27p3d/6s6p3d, and 3332p8d/8s8p4d. Contractions
mol. for these basis sets were least squares fit to the orbitals of the

. . . ) ) .
-0.0800 -0.0600 -0.0400 -0.0200 0.0000 0.0200
Ditference From MP2 Geometry (Angstrom)

The impact of how the Pbond distance is optimized is
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TABLE |V. Total single determinant FN-DMC enerdg.u) of the B mol- TABLE V. Total FN-DMC energy(a.u) of the B molecule with differing
ecule for different types of orbitals used to fill the Slater determinant. number of determinants in the trial wave function. The number of virtual
states in the MCSCF calculation is also listed. For each case, all configura-
Orbitals Total energy tion state functions with weight greater than 0.01 were included.
Hartree—Fock orbitals —13.06281) No. of determinants No. virtual states Total energy
Natural orbitals —13.06361)
LDA orbitals —13.06521) 1 1 —13.06281)
BPW91 orbitals —13.06521) 54 3 —13.06601)
B3LYP orbitals —13.06511) 167 8 —13.06961)
269 16 —13.07011)
245 25 —13.06911)
223 40 —13.06981)

exact Hartree—Fock solution for the P pseudoatom. Uncon-
tracted basis functions were chosen to optimize the energy of
the Hartree—Fock dimer. For each case FN-DMC total ener-
gies were computed with statistical error bars less tha§ases can even worsen the fixed node €éfftirhas also been
0.0001 a.u. All 3 basis sets give the same total energy withiguggested recently that multideterminantal trial functions
error bars, indicating the relative insensitivity of the nodes tobased on pair natural orbital Cl wave functions may improve
the atomic orbital basis in this case. It may be interesting téhe nodal surface more efficiently than MCSCF-based trial
carry out this same kind of test systematically for other mol-functions®*
ecules in the set, although that is beyond the scope of the Table V shows the total FN-DMC energies foj &sing
present work. Further, these atomic orbital basis set tesgeveral different multireference trial functions. In each case,
were performed with single determinant trial functions; it is determinants were taken from a MCSCF calculation in
possible that the effect of the atomic orbital basis becomewhich all occupied electrons were singly and doubly excited
more important as the trial function is expanded to includgnto a given number of virtual states. The number of result-
multiple determinants. ing determinants corresponds to a threshold of 0.01 for the
A number of different single-particle orbitals have beenweight of the configuration state functiot€SH to keep.
used in the past to construct the Slater determinant part difeights of these determinants in the FN-DMC calculations
QMC trial wave functions. In some cases, it was found tha@re taken to be the same as the MCSCF weights. Of course,
NO offer a slight improvement in the nodes over Hartree-these weights may not be ideal since they are taken from a
Fock orbitals'® Other times, DFT orbitals may be more ap- minimization of the total energy which may not always cor-
propriate. It is difficult to predica priori which orbitals are respond to improving the nodal surface. Nonetheless, MC-
better suited to a given system. In many cases, the resultingCF weights provide a good starting point and can help
differences tend to be rather small. Table IV lists the totalguide us in selecting the determinants.
energy of the P molecule using a single Slater determinant ~ Note that the energies are improved using a multirefer-
built from five different kinds of orbitals: Hartree—Fock, NO, ence trial function based on MCSCF orbitals and weights.
LDA, BPW91, and B3LYP. The same Hartree—Fock SBKUsing a single determinant of MCSCF orbitals gives the
pseudopotential was used in each case. Note that using ti@me FN-DMC energy as Hartree—Fock orbitals, slightly
NO gives a small(~0.7 kcal/mo} improvement over higher than the NO single determinant enefgge Table V.
Hartree—Fock, and the LDA and GGA orbitals are slightly Taking excitations into just the first three virtual states low-
better(~1.0 kcal/mo) than NO. While it is interesting that in  ers the FN-DMC energy by 2.1 kcal/mol compared with a
this case the DFT orbitals are best, they only account for 1 o$ingle determinant.
the 8 kcal/mol FN-DMC error found with NO. Of course, In going from 3 to 8 virtual states in the MCSCF calcu-
other single-body orbitals could be used, however it appearé@tion, the FN-DMC energy is improved yet again rather sub-
that, like geometry, the choice of single-body orbitals is astantially. With a 167-determinant wave function, the FN-

small contribution to the discrepancy with experiment. DMC energy is 4.3 kcal/mol lower in energy than a single
determinant. The additional improvement may be due to the

fact that the 167-determinant expansion includes excitations
into d-like orbitals not present in the smaller 54-determinant
Another way to change and possibly improve the nodakun. This explanation is in good agreement with previous
surface of the trial QMC wave function is to use more than awork which found that significant improvement in the nodal
single Slater determinant. Just as an expansion of the detestructure of several atorffsand the N moleculé® relied on
minantal basis increases the variational freedom in the wavthe inclusion of determinants with excitations irdetates.
function and therefore lowers the total energy in post-  The largest determinantal expansion listed is for 269 de-
Hartree—Fock calculations, multideterminantal trial waveterminants from a MCSCF calculation that included excita-
functions can lead to better nodes which lower the FN-DMCtions into 16 virtual states. The energy for this case is only
total energy® In general, however, a given determinantal slightly improved[0.31) kcal/mol] compared to the 167-
expansion that improves the variational energy does not adeterminant case. This makes our best multideterminant FN-
ways lead to a similar improvement in the nodal surface. IlDMC energy roughly 4.@1) kcal/mol lower than the single-
fact, recent work has shown that MCSCF-based trial funcdeterminant NO result listed in Table I.
tions may not improve the FN-DMC enefgyand in some Further excitations into more virtual states in the MC-

D. Multiple determinants
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SCF calculations do not lead to further improvements in the
FN-DMC energy. This may be partly due to the fact that we
use here the same cutdfd.01) for the CSF weights in all
cases. As the number of virtual states increases, the total
number of determinants increases and the weights of eachs
determinant decreas€lhis is also the reason why the num-
ber of determinants decreases for the last two rows of Table g
V.) Such an explanation cannot be complete, however, sincel
the energy is improved in going from 25 to 40 virtual states
(245 to 223 determinants

We have so far only examined the improvement in total ~13.070 |
energy of the Pmolecule. Of course, to compute the atomi-
zation energy one must also know the energy of the P atom.
Therefore, it is reasonable that if multireference determinants
are used for the molecule one should recompute the atomi-
zation energy using a similar multideterminant wave func-FIG. 2. FN-DMC energy of the Pmolecule as a function of the number of
tion for the atom. A 66-determinant trial function for the P determinants in the trial function. Results both with and without a Jastrow
atom was generated from a MCSCF calculation with eXcita_fsunctlon are shown. Statistical error bars are smaller than the symbols
tions into 24 virtual states. The energy was indeed lower than
the single determinant FN-DMC energy, but only by (@)3

kcal/mol. The best correction above, then, is 3.5 kcanOPeferring to the fixed-node error we mean more precisely a

when referring to the atomization energy. combination of fixed-node and localization errors.
In our quest to improve the FN-DMC atomization of the

P, molecule, we have found-2.0 kcal/mol (pseudopoten-
tial), 0.5 kcal/mol(geometry, 1.0 kcal/mol(single-body or- V. CONCLUSIONS

bitalg), and 3.5 kcal/mol(determinantal basis Previous The accuracy of the pseudopotential FN-DMC approach
W0rk6 found roughly 0.8 kca|/m0| in Core'VaIence Correlation has been assessed for the 55 G1 mo'ecu|es_ For these Ca|cu_
(not included here due to our use of pseudopotenteaisl & |ations, the method was treated in as “black box” a way as
0.2 kcal/mol correction due to scalar relativistic effects. Apossible. For example, all calculations were run systemati-
sum of these individual effects would result in a 8.0 kcallm0|ca||y with the same basis sets and type of orbital for a single
improvement in the atomization energy of ,Foringing the  determinant trial function. With such an approach, a mean
error with experiment to-0.2 kcal/mol. Although it is not  apsolute deviation of 2.9 kcal/mol was achieved. The main
entirely clear that one can sum these errrs., that the source of error for the Pmolecule was found in the fixed-
correction terms listed above are unrelatiétds nonetheless node approximation, a second important error was in the use
evident that a substantial improvement can be made in thisf the SBK pseudopotential, and smaller errors were due to
case. geometry and choice of single-body orbitals. The nodes were

Another, somewhat complicated source of error is theshown to be substantially improved by using multiple deter-
localization errot* which is intimately connected with the minants in the trial function. These results indicate #ato
fixed-node error. It was shown that the localization errorcould be significantly reduced.e., by a factor of 2if mul-
scales as the error in the trial function square@hus, with  tireference trial wave functions were employed for the whole
a good enough trial function, it is typically assumed that thisset,
error is minimal(i.e., significantly smaller than the statistical Many more careful studies are needed to understand the
error barg. However, in the current set of data we are ex-best means of improving the fixed-node error. It is our hope
ploring small energies with very small error bars. that the benchmark results provided in this work will aid in

It is likely that the 4.1 kcal/mol improvement found by some of these studies. For example, the 5 or 10 worst case
expanding the determinantal basis is an improvemehbth  molecules could provide a useful laboratory for tests and
the nodal error and the localization error. To separate the twimprovements. Furthermore, the results presented here put
is, unfortunately, exceedingly difficult, particularly since im- pseudopotential single determinant FN-DMC on the map as
proving the nodes also improves the localization error. Fig-a benchmark, with its absolute mean deviation now a number
ure 2 shows the total energy of the Rolecule as a function that can be directly compared with other methods.
of the number of determinants for two trial functions: one
w!th the full Jastrow as used throughout this work, and ON&\ ~KNOWLEDGMENTS
without any Jastrow term. For a given number of determi-
nants, the nodal surface is the same in both cases. For one This work was performed under the auspices of the U.S.
determinant, the difference between the two curves is enBepartment of Energy by University of California Lawrence
tirely due to the localization error. However, as the numbelLivermore National Laboratory under Contract No. W-7405-
of determinants is increased, the nodal error is improvedng-48. | am grateful to C. J. Umrigar, A. J. Williamson, and
which in turn improves the locality error and separating theL. Mitas for useful conversations, and to the Lawrence Liv-
two is not possible. For the purpose of this discussion, wheermore Fellowship program for financial support.
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