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By performing a stochastic dynamic in a space of Slater determinants, the full configuration interac-
tion quantum Monte Carlo (FCIQMC) method has been able to obtain energies which are essentially
free from systematic error to the basis set correlation energy, within small and systematically improv-
able error bars. However, the weakly exponential scaling with basis size makes converging the energy
with respect to basis set costly and in larger systems, impossible. To ameliorate these basis set is-
sues, here we use perturbation theory to couple the FCIQMC wavefunction to an explicitly correlated
strongly orthogonal basis of geminals, following the [2]R12 approach of Valeev et al. The required
one- and two-particle density matrices are computed on-the-fly during the FCIQMC dynamic, using
a sampling procedure which incurs relatively little additional computation expense. The F12 energy
corrections are shown to converge rapidly as a function of sampling, both in imaginary time and
number of walkers. Our pilot calculations on the binding curve for the carbon dimer, which exhibits
strong correlation effects as well as substantial basis set dependence, demonstrate that the accuracy of
the FCIQMC-F12 method surpasses that of all previous FCIQMC calculations, and that the F12 cor-
rection improves results equivalent to increasing the quality of the one-electron basis by two cardinal
numbers. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762445]

I. INTRODUCTION

The full configuration interaction quantum Monte Carlo
(FCIQMC) method has arisen over the last few years as a
way to obtain near exact ground state energies (in the full
configuration interaction sense) for Hamiltonians in a given
Hilbert space. A range of Hamiltonians have been tackled
from molecular1–6 to solid-state systems,7–10 obtaining ac-
curate correlation energies in Hilbert spaces far beyond the
reach of traditional iterative diagonalizers. This is achieved
by stochastically sampling the underlying Slater determinant
space using a discrete “walker” representation, thereby reduc-
ing the computational effort spent on the realisation of the
large number of low-weighted amplitudes in the expansion.
The price of this stochastic algorithm is the introduction of
random errors, which nonetheless can be controlled and re-
duced as the inverse square-root of the computational effort.

However, it has been known since the early days of
electronic structure theory that the necessity for these huge
many-body expansions is to a large extent an artifact of
the basis functions that are used to represent the wave-
function. The full configuration interaction (FCI) expansion
constructs the wavefunction as a linear combination of all
possible antisymmetrized spin-orbital products, called Slater
determinants.11–13 Although the evaluation of matrix ele-
ments, and the resulting linear optimisation problem is rel-
atively straightforward and computationally efficient, the size
of the determinantal basis scales binomially with the num-
ber of spin-orbitals, which is the source of the current restric-
tion on FCI-based methodology. Moreover, since the spin-

a)Electronic mail: ghb24@cam.ac.uk.

orbitals are intrinsically one-electron functions, the Slater de-
terminant basis is ill-suited to some aspects of many-electron
correlated motion, specifically those caused by the singular
electron-electron interactions at short range. This results in a
slow convergence of the electronic energy with the size of the
underlying basis, hence exacerbating the binomial bottleneck.

Due to this high scaling with basis size, enlargement of
the basis set and subsequent extrapolation is in many cases
impossible, particularly for the multi-configurational meth-
ods required for strongly correlated systems. As a conse-
quence, for high-level methods, the basis set error is often
far larger than the error in the correlation treatment within
the basis. Even if convergence with respect to basis size is
possible, strong correlation effects are generally considered to
be a “small” basis set problem, and thus a similar high-level
treatment with increasingly large basis sets is an unnecessary
burden. Traditionally, this issue has been dealt with by par-
titioning the orbital space into a small, active basis in which
the wavefunction is constructed from a multiconfigurational
FCI-type expansion,14–16 before the dynamical, short-ranged
correlation is captured via excitations from this wavefunction
into a larger, external basis. This is the rationale behind meth-
ods such as complete active space second-order perturbation
theory (CASPT2),17, 18 multireference configuration interac-
tion (MRCI),19, 20 canonical transformation theory,21, 22 and
others.23, 24 However, these methods can be expensive, and
problems can result if the strong correlation is not adequately
captured by the active basis.

In this paper, we take a different approach, and attempt to
overcome the slow basis set expansion by including geminal
functions in the expansion, which perturbatively couple to the
FCIQMC wavefunction. Hylleraas’s pioneering work in 1929
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demonstrated that a highly compact form for the short-ranged
wavefunction behavior can be found by introducing an ex-
plicit dependence on the interelectronic coordinate, r12.25–27

This naturally describes the dynamical correlation problem,
which covers both the exact form of the “cusp” at r12 = 0,
and the longer ranged Coulomb hole around each electron
pair coalescence point. These cusp conditions, derived ini-
tially by Kato and co-workers,28–30 result from the singular-
ities in the Coulombic electron-repulsion potential, which are
balanced by derivative discontinuities in the wavefunction.
Neither these cusps, nor the short to medium-range Coulomb
holes are well approximated by an expansion of the wavefunc-
tion in terms of Slater determinants formed from Gaussian-
type orbitals that are centered on the nuclei of the system.

The umbrella of “explicitly correlated” methods covers
ways to introduce this explicit dependence on r12 into the
wavefunction ansatz, including the use of exponentially corre-
lated Gaussians31 and the transcorrelated method.32, 33 These
methods have fewer variational parameters to optimize, how-
ever, the presence of many-electron (more than two) inte-
grals, and a more complicated optimization problem has re-
stricted these methods to small systems, and their use is not
yet routine. An exception to this is the variational Monte Carlo
method, where the need for integral evaluation is avoided
altogether, by direct stochastic evaluation of the local en-
ergy for the optimization of a nonlinear Jastrow form for the
wavefunction.34

The R12/F12 methods35–37 augment the set of Slater de-
terminants with a small number of determinants that include
two-electron geminal functions.38–40 The resulting many-
electron integrals are avoided, or approximated via resolution
of the identity (RI).38, 39, 41–43 The result is a method, which for
the same level of theory approaches the basis set limit much
more rapidly,44 thus greatly reducing the computational effort
required for a given target accuracy. This approach has been
in active development for many years, and is now at a highly
advanced stage for single reference methods, where it is rou-
tinely used in a black-box fashion, and present in many quan-
tum chemistry packages. However, apart from some early
work,45, 46 multireference F12 methods have only appeared
relatively recently,47–55 even though the F12 approach offers
great benefits in these cases, where the scaling with respect to
basis size is often at its most prohibitive.

In this paper, we extend the stochastic FCIQMC method
to include a perturbative coupling from the FCI determinant
amplitudes, to a set of Gaussian-type geminal functions which
explicitly correlate all pairs of orbitals in the FCIQMC orbital
basis set (OBS). This is in contrast to single-reference meth-
ods, where only the occupied orbitals of the reference deter-
minant are correlated. We follow the a posteriori [2]R12 ap-
proach of Torheyden and Valeev,48 where the geminal basis is
used to compute a basis set incompleteness correction for the
dynamic correlation energy using second-order perturbation
theory. The geminal contribution is not optimized, but chosen
to satisfy the derivative discontinuity at the electronic cusps,
and accurately represent the shape of the Coulomb hole. Fur-
thermore, we neglect the effect of relaxation of the FCIQMC
amplitudes and directly use the one- and two-particle reduced
density matrices computed from the FCIQMC procedure.

Since the geminals are evaluated at a different level of theory
to those FCIQMC amplitudes in the OBS, strict variational-
ity with respect to the FCI complete basis set (CBS) is lost.
Nevertheless, we will demonstrate that the perturbative level
of theory for geminal amplitudes is sufficiently accurate and
that convergence to the FCI-CBS limit is much faster with our
hybrid approach, where FCIQMC captures the strong corre-
lation effects from the OBS, while the cheaper, polynomially
scaling, but still multireference F12 corrections are used for
the remaining dynamic correlation. This “diagonalize-then-
perturb” approach offers a balanced description of the elec-
tronic correlation, while only requiring the small overhead
from accumulating the density matrices on-the-fly.

The geminal basis corrects for the incompleteness in
the description of pair correlations, but there remains an
incompleteness due to the finite basis for the one-electron
description. To remedy this, we modify the [2]S method
of Kong and Valeev56 designed to correct for basis set in-
completeness in complete active space self-consistent field
(CASSCF) wavefunctions to provide a similar multireference
a posteriori approach to one-particle incompleteness. For
single reference methods, it has been demonstrated numeri-
cally that the one- and two-particle incompleteness errors are
largely decoupled.49, 57 Therefore, the proposed corrections
are independent and can be simply applied additively. When
both one- and two-electron corrections have been applied to
the FCIQMC energy, we will denote the result FCIQMC-F12.

However, obtaining these corrections is not as straightfor-
ward as for many other deterministic methods. The strength of
the FCIQMC approach lies in the fact that only a small frac-
tion of the space is occupied at any one iteration, and there-
fore accurate energies and wavefunctions only emerge after
appropriate time-averaging of the walker dynamic. However,
explicit averaging of the FCIQMC wavefunction to obtain ap-
propriate density matrices would negate many of the advan-
tages of the method, requiring substantially increased storage
and computational costs. Therefore, accumulation of accurate
time-averaged one- and two-particle reduced density matri-
ces of the FCIQMC wavefunction required for the correc-
tions must be performed “on-the-fly,” in a manner that neither
becomes a substantial computational burden nor reduces the
parallelism of the algorithm. In addition, the additional stor-
age requirements of such an algorithm should ideally remain
modest, and of course, must not scale with the size of the FCI
space.

In this paper, we will demonstrate the potential of the
FCIQMC-F12 method by first considering the case of the dis-
sociation of the hydrogen molecule, for which the sampling of
the density matrices is trivial. For this simple case we demon-
strate some salient features of our approach, and the necessity
for multireference F12 corrections in the presence of strong
correlation effects. We will then discuss the quality of the on-
the-fly stochastically sampled reduced density matrices, and
their convergence both with elapsed imaginary time and num-
ber of walkers in the space. This issue is important for the ap-
plication and scope of our approach to larger systems. Finally,
a detailed study is performed on the carbon dimer, a strongly
correlated molecule, which is chosen since much work
with FCIQMC has already been performed for this system
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(see Ref. 5). Accurate results for the carbon dimer are pre-
sented, and the outlook for the approach considered.

II. METHODOLOGY

A. FCIQMC recap

A brief overview of the FCIQMC method is given here,
with more details provided in Refs. 1–8. Assuming a basis of
M orthogonal one-particle orbitals {p, q, . . . }, an explicitly
antisymmetric basis of N-electron Slater determinants can be
formed, {Di, Dj, . . . }, which exactly span the FCI-space. Ex-
act diagonalization of the Hamiltonian in this basis provides
the FCI energy (defining the basis-set correlation energy), and
wavefunction components on each of the determinantal basis
functions {Ci, Cj, . . . }, though its drawback is that the di-
mension of this matrix scales factorially with both M and N.
In FCIQMC, the description of the determinantal amplitudes
is coarse-grained through a discrete “walker” representation
of the wavefunction. This allows for a compression of the
instantaneous representation of the wavefunction, and corre-
sponding reductions in computational effort and storage. A
set of stochastically realised rules are then iteratively applied
to each walker, and the energy averaged over these iterations,
until the desired convergence is reached.

The master equations governing the stochastic walker dy-
namic can be derived by starting with the imaginary-time
Schrödinger equation,

∂�

∂τ
= −Ĥ�. (1)

By performing an integration to large imaginary time, τ , the
ground-state wavefunction is projected out from the set of
all stationary solutions, in keeping with the approach of all
projector-based methods. A set of coupled differential equa-
tions is found,

−dCi

dτ
= (Hii − E0 − S)Ci +

∑

j�=i

HijCj, (2)

where Ci are the determinant coefficients, and S is introduced
as an energy-offset “shift” parameter, which acts as popula-
tion control, and provides an estimate of the correlation en-
ergy when it is allowed to vary to keep the walker population
constant.

The coefficients in Eq. (2) are discretised, and repre-
sented as the signed sum of walkers on the determinant. The
second term in the equation is simulated each iteration as a
stochastically realised spawning criterion between connected
determinants, while the first represents a diagonal death step.
Annihilation events occur at the end of each iteration be-
tween oppositely signed walkers residing on the same deter-
minant. However, brute force application of this procedure
will only converge onto the ground state assuming that a
system-specific number of walkers is exceeded, since anni-
hilation events need to be numerous enough in order to over-
come the “sign problem” present in the sampling of the space.
If this is achieved, then at convergence, the signed number of
walkers on any determinant will be proportional to their FCI
coefficient.

The number of walkers required to achieve convergence
to FCI accuracy within small error bars is dramatically ac-
celerated by invoking a systematically improvable approxi-
mation, termed initiator or i-FCIQMC, which will be used
exclusively in this work. In this, the growth of the occupied
determinant space is controlled, such that previously unoc-
cupied determinants can only become occupied if they are
spawned onto from a determinant with a population exceed-
ing a preset parameter nadd. The rationale behind this is that
determinants with weights larger than nadd are likely to have
their sign established correctly with respect to the rest of the
instantaneous wavefunction, and therefore the uncontrolled
propagation of noise from competing signed solutions of the
problem should be limited. Since the walker population on
any determinant is constantly changing, so does the space
which can successfully spawn onto the unoccupied determi-
nants, and as such the approximation cannot be written as
a simple change to a static Hamiltonian matrix, but rather
one which utilises efficient error cancellation within a time-
averaged dynamic. The dynamic rigorously converges to the
original scheme as the walker number is increased, or nadd is
reduced, which has been shown in several systems to provide
an exponential saving over the original formulation.

The energy can be extracted from the dynamic via a non-
variational projection onto a reference wavefunction, D0,

Eproj = E0 +
∑

i

〈Di|H |D0〉 〈Ci〉
〈C0〉 , (3)

which in this work is chosen to be the instantaneously largest
weighted single determinant in the space (which was the
Hartree–Fock determinant for geometries close to equilib-
rium). Alternatively, once the walker population has equili-
brated, the value of the shift parameter, S, which renders the
propagated FCIQMC wavefunction L1 norm-conserving, can
also be used as an estimate for the correlation energy, which
when averaged over imaginary time is denoted ES. Due to the
independence of this estimate from a reference state, it is gen-
erally used for the highly multireference stretched geometries
in order to obtain smaller error bars.6 However, the value of
the energy is independent of the specifics of how the energy
expectation value is obtained from the dynamic, and within
the intrinsic random errors of each estimate, the value of ES

should agree with the projected energy estimate from Eq. (3).
As we will see later, it is also possible to calculate another
energy estimate from the trace of the reduced Hamiltonian
with the sampled two-electron density matrix, but this is not
generally the estimate which is used, due to its convergence
properties which are discussed later.

B. [2]R12 and [2]S

The [2]R12 and [2]S methods were developed by Valeev
and co-workers as perturbative basis set completeness cor-
rections that can in principle be applied to any electronic
state for which the one- and two-particle reduced density ma-
trices are available.48, 49, 56 Here we apply these corrections
to the situation where the FCIQMC correlation energy has
been determined in a computational basis of spin-orbitals
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{p, q, r, s}. Consider the Mukherjee–Kutzelnigg normal-
ordered Hamiltonian

Ĥ = E0 + F̂ + Ĝ, (4)

where E0 = 〈0|Ĥ |0〉 is the energy of the reference zeroth-
order FCIQMC wavefunction |0〉. The effective Fock opera-
tor F̂ , in a formally complete one-particle basis denoted by
orbital indices {κ , λ}, is given by

F̂ = f λ
κ ãκ

λ , (5)

f λ
κ = hλ

κ + gλq
κpγ p

q , (6)

where γ
p
q is the one-particle reduced density matrix which

spans the one-particle basis of |0〉, g
λq
κp = 〈κp‖λq〉 are an-

tisymmetric electron repulsion integrals, ãκ
λ are the elemen-

tary normal-ordered operators in the Mukherjee–Kutzelnigg
sense, and Einstein summation convention is assumed. The
zeroth-order Hamiltonian is chosen to be

Ĥ 0 = E0 + P̂ F̂ P̂ + (1 − P̂ )F̂ (1 − P̂ ) + P̂ ĜP̂ , (7)

where P̂ projects onto the computational basis {p, q}, used
for the FCIQMC calculation.

The [2]S energy correction is computed by second-order
perturbation theory in a basis of states generated by singly
exciting from the reference |0〉 into complementary auxiliary
(CA) orbitals {a′, b′}, orthogonal to the computational basis
{p, q},

|1〉 = t
p

a′ ã
a′
p |0〉, (8)

E[2]S = f a′
p t

q

a′γ
p
q , (9)

where the amplitudes t
q

a′ are calculated from the solution of

A
pa′
b′q t

q

a′ = −γ p
r f r

b′ , (10)

A
pa′
b′q = δa′

b′ f
s
r (λpr

qs − γ p
s γ r

q ) + f a′
b′ γ

p
q . (11)

λrs
pq = γ rs

pq − γ r
pγ s

q + γ s
pγ r

q is the two-electron cumulant and
γ

q
p and γ rs

pq are the one- and two-particle density matrices. We
also investigated the performance of the zeroth-order Dyall
Hamiltonian,56 but found that the convergence was less nu-
merically stable.

The [2]R12 energy correction is computed by second-
order perturbation theory in an internally contracted basis of
Gaussian geminal-containing Slater determinants

|1〉 = 1

4
txy
pq |	̃xy

pq〉, (12)

|	̃xy
pq〉 = 1

2
ÔR

xy

κλã
κλ
pq |0〉 . (13)

The operator Ô ensures the strong orthogonality (one-
electron orthogonality) condition of the geminal basis to the
reference wavefunction, and the matrix elements

R
xy

κλ = Ŝxy〈κλ|Q̂12f (r12)|xy〉 (14)

are the representation of the projected Gaussian geminals in
second quantization. The projector Q̂12 = 1 − P1P2 is used
in order to simplify the working equations, and the rational

generator Ŝxy = ( 3
8 + 1

8 p̂xy), where p̂xy interchanges the spa-
tial components of the spin-orbitals x and y,58, 59 is used to
impose the appropriate cusp conditions. The Gaussian gem-
inals f(r12)|xy〉 are defined by the orbital space {v,w, x, y},
which is chosen to be the full computational basis {p, q, r, s}
and the correlation factor f (r12) is a linear combination of six
Gaussians that closely fit an exponential −γ −1exp (−γ r12),60

according to Ref. 61. The [2]R12 energy correction is given by
the Hylleraas functional

E[2]R12 = 1
2V

xy
pq t

pq
xy + 1

16 tvw
rs

(
B

xy
vwγ rs

pq − X
xy
vw
rs

pq

)
t
pq
xy , (15)

where the many-electron integrals are approximated using
standard R12/F12 manipulations and through RI insertions of
the basis {p′, q′, r′}, defined as the union of the computational
basis {p, q, r, s} and the CA basis {a′, b′}. This results in the
working equations

V xy
pq = 1

2

(
vxy

rs − gta′
rs γ u

t r
xy

ua′ − 1

2
gtu

rs r
xy
tu

)
γ rs

pq, (16)

Bxy
vw = −rrq

vwf p
r rxy

pq − ra′q
vw f

p

a′ r
xy
pq − rpq

vwf a′
p r

xy

a′q

+ rpa′
vw γ q

p f r
q γ s

r r
xy

sa′ − rpa′
vw γ q

p f b′
a′ r

xy

qb′

− rp′a′
vw f

p

p′γ
q
p r

xy

qa′ − rpa′
vw γ q

p f p′
q r

xy

p′a′

+ τ xy
vw + 1

2
x

xy
v∗w + 1

2
x

xy
vw∗ + 1

2
xx∗y

vw + 1

2
xxy∗

vw

− rp′q ′
vw kr ′

p′r
xy

r ′q ′ , (17)

Xxy
vw = xxy

vw − rta′
vwγ u

t r
xy

ua′ − 1

2
rtu
vwr

xy
tu , (18)


rs
pq = P (pq)P (rs)

(
γ r

pγ t
qf

u
t γ s

u + 1

2
γ s

t f t
uγ ru

pq

+ 1

2
γ t

pf u
t λrs

uq − γ r
pf u

t λts
uq

)
, (19)

where P(pq)Opq = Opq − Oqp, |x∗〉 = (f x
p′ + kx

p′ )|p′〉, and
f and k are the Fock and exchange matrix elements (see
Eq. (6)). The geminal integrals are defined through

r
xy

p′q ′ = Ŝxy〈p′q ′|f (r12)|xy〉, (20)

v
xy

p′q ′ = Ŝxy〈p′q ′|r−1
12 f (r12)|xy〉, (21)

xxy
vw = ŜvwŜxy〈vw|f (r12)2|xy〉, (22)

τ xy
vw = ŜvwŜxy〈vw|(∇1f (r12))2|xy〉. (23)

The geminal amplitudes, t
pq
xy , are not optimized, but se-

lected to satisfy the coalescence conditions, which due to
the presence of the rational generator, reduce to t

pq
xy = δxpδyq

− δxqδyp. The above equations are essentially those of Kong,
Torheyden, and Valeev, adapted for the present purpose. The
spin-adapted formalism presented in Ref. 49 recasts the equa-
tions in terms of spin-free orbitals, although also introduces
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an approximation to remove the appearance of 4-reduced den-
sity matrices (RDMs) in the formal theory when calculat-
ing the B intermediate. This modification is not expected to
change results greatly.71 Our implementation reduces exactly
to the single reference MP2-F12/2C* F12 correction62–64 if
the diagonal Hartree–Fock density matrices are used. All in-
tegrals were computed using the DALTON program65 and were
combined with stochastically generated one- and two-particle
density matrices from FCIQMC in a stand-alone program.

III. DISSOCIATION OF HYDROGEN

In this section, we provide a simple example to illustrate
the importance of an F12 correction that takes into account
the multireference nature of the underlying wavefunction.
The hydrogen molecule provides a simple two-electron sys-
tem which nonetheless encapsulates many of the problems in
ab initio quantum chemistry. At equilibrium and compressed
bond lengths, dynamic correlation dominates, and both one-
and two-electron basis set incompleteness are generally sig-
nificant. However, as the bond is stretched, the system be-
comes intrinsically multireference, as unphysical ionic terms
in the Hartree–Fock determinant need to be cancelled by a
similarly weighted excited determinant. At the dissociation
limit, the system reduces to two independent one-electron hy-
drogen atoms, with no local correlation between the two elec-
trons. By size extensivity, the energy of this system must be
exactly –1 Eh. However, even if the static correlation is ex-
actly captured, this will still only be achieved in the CBS limit
since there remains an incompleteness in the one-electron de-
scription, which will simply be twice the error in the Hartree–
Fock energy of a hydrogen atom in the same basis. This, there-
fore, provides a good system to consider both dynamic and
static correlation effects, as well as separating the basis set
incompleteness in both the one- and two-electron parts of the
wavefunction.

In Fig. 1 we contrast the FCIQMC and FCIQMC-F12
binding curves for molecular hydrogen with a range of stan-
dard methods, all using the cc-pVDZ basis set. Second-order
Møller–Plesset theory (MP2) gives a qualitatively incorrect
description for bond lengths greater than ∼2.5a0 due to the
increasingly static correlation effects, whereas the coupled-
cluster singles and doubles (CCSD) energies agree exactly
with FCIQMC (and FCI) values at all bond lengths, as ex-
pected for a two-electron system. However, the CCSD-F12
methods all fail to dissociate H2 correctly, with errors in the
dissociation energy up to 7 mEh. The FCIQMC-F12 method
achieves the exact dissociation energy to within O[μEh],
which highlights the necessity for an F12 correction that ex-
plicitly correlates a multireference wavefunction.

Further insight can be obtained by analysing the in-
dividual contributions to the potential energy curves from
Fig. 1. In Fig. 2, we plot the [2]R12 and [2]S contribu-
tions to the FCIQMC-F12 curve, and contrast them with the
equivalent one- and two-body contributions in the MP2-F12,
CCSD(F12*), and CCSD-F12b methods. The reason for the
failure of the CCSD-F12 methods is that the geminal ampli-
tudes are selected such that they satisfy the coalescence con-
ditions of the first-order wavefunction, that is, they explicitly

FIG. 1. Binding curves of H2 in a cc-pVDZ basis. The system takes on
a more multireference character as the bond is stretched. Dissociation to
two hydrogen atoms should yield an exact energy of –1 Eh. However, de-
spite agreement between CCSD and FCIQMC, the single-reference F12 cor-
rections all fail to successfully obtain the correct dissociation limit, with
only the fully multireference FCIQMC-F12 energy getting this exactly (error
O[μEh]). The individual corrections can be seen in Fig. 2. All calculations
used a cc-pV6Z-RI CABS basis, and a γ of 1.0a−1

0 . CCSD calculations were
run with MOLPRO.67, 68

correlate the Hartree–Fock orbital pairs only. At infinite sepa-
ration, the hydrogen molecule reverts to a sum of two atomic
hydrogen atoms, and since the two electrons are now spatially
separated the two-electron F12 contribution should be rigor-
ously zero. This spuriously does not occur for CCSD-F12,
because the Hartree–Fock determinant still contains terms
with both electrons localized to the same atomic fragment.
CCSD-F12 variants where the geminal amplitudes are opti-
mised rather than fixed will dissociate H2 correctly, since the

FIG. 2. Individual one- (dashed) and two- (solid) particle corrections to dif-
ferent methods across the dissociation of H2, as given in Fig. 1. Although
there is no two-particle correlation at dissociation, only the [2]R12 F12 cor-
rection to the FCIQMC wavefunction correctly goes to zero in this limit.
The multireference [2]S correction for single-particle incompleteness to the
FCIQMC wavefunction then provides the remaining energy to give the ex-
act FCIQMC-F12 dissociation limit. The CABS singles approach (CABSS)
overestimates the energy, while the single-reference F12 contributions to the
different methods all converge to non-zero contributions.
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geminal amplitudes optimise to zero at infinite separation, but
these methods suffer from numerical instabilities and gemi-
nal basis set superposition errors66 and are not recommended.
In the FCIQMC-[2]R12 approach, all orbital pairs are explic-
itly correlated and the two-electron correction naturally tends
to exactly zero, as required. This example does not intend to
highlight a deficiency of CCSD-F12 theory, since for systems
of more than two electrons the parent method would also fail
for bond-breaking processes, but rather highlight the impor-
tance of an explicitly correlated geminal basis composed of
more than the occupied Hartree–Fock orbitals in the presence
of strong static correlations.

Similar considerations apply to the one-electron basis
set incompleteness correction, although this should not now
go to zero at the dissociation limit. For increasing bond
lengths the FCI basis set incompleteness tends to a sum of
the Hartree–Fock basis set errors for the individual hydro-
gen atoms. Again, the correction for this based on a single
Hartree–Fock reference68 is shown to be inadequate for long
bond lengths where strong correlation effects are large. How-
ever, the FCIQMC-[2]S approach almost exactly corrects for
the one-electron error over the whole binding curve, resulting
in a total energy at dissociation of –1 Eh.

IV. REDUCED DENSITY MATRICES FROM FCIQMC

In order to construct the perturbative coupling to the gem-
inal basis, it is necessary to obtain the one- and two-electron
RDM. Much of the benefit of the FCIQMC approach would
be lost if the time-averaged wavefunction over the entire FCI
space was required in order to construct these, and even an
explicit consideration of all occupied determinants connected
via the desired RDM each iteration would become impractical
when extending the approach to larger systems. Despite this,
an accurate extraction of the RDM information from the time-
averaged FCIQMC dynamics is essential for this method,
while many other important molecular properties, such as nu-
clear gradients, dipole moments, and polarizabilities can also
be obtained from the density matrices via a trace of the ob-
servable operator with the appropriate density matrix.

The reduced density matrices over all orbitals in the OBS
can be defined in second quantization as

γ q
p = 〈�|â†

pâq |�〉, (24)

γ rs
pq = 〈�|â†

pâ†
q âs âr |�〉, (25)

where the distinction between the one- and two-body matrices
is evident from the rank of the tensor. Since the Hamiltonian
operator that is sampled during the FCIQMC dynamic con-
tains the same excitation rank as these matrices, it is possible
to devise a way to sample the one- and two-body density ma-
trices on-the-fly and stochastically, during the FCIQMC dy-
namic. The contributions must be appropriately unbiased for
the magnitude of the Hamiltonian matrix element between in-
dividual connected determinant pairs. The precise manner in
which this is done will be described elsewhere. The accumu-
lation of the reduced density matrices begins once the simu-
lation has reached equilibrium and continues for a number of

iterations until sufficient statistical accuracy is obtained, be-
fore the matrices are normalized according to their required
trace relation. As will be shown, in many cases the density
matrices converge rapidly with iterations, resulting in a rela-
tively small computational overhead for their accumulation.

Ignoring potential errors in the description of the wave-
function due to the initiator approximation, two errors can
arise due to this on-the-fly sampling of the density matrices.
Since they are accumulated via a sampling of the Hamilto-
nian, it requires that a non-zero Hamiltonian matrix element
exists between all pairs of occupied determinants which are
connected via one- and two-body excitation operators. If this
is not the case, then no walkers can spawn between these
determinants, and therefore no contribution can be made to
the density matrices from this pair, introducing a bias into
the matrices (but not the variational energy from the matri-
ces). Determinants between different symmetry blocks of the
Hamiltonian are not connected, however since there will be no
weight on determinants outside the currently sampled symme-
try block, this does not introduce an error.

The only instance of this criteria being rigorously unful-
filled is in the case of Brillouin’s theorem when the one par-
ticle basis consists of canonical Hartree–Fock orbitals, and
Hamiltonian matrix elements between the Hartree–Fock de-
terminant and all of its single excitations are rigorously zero,
despite potentially significant weights on these determinants.
To account for this, and improve the description of the RDMs,
all connections between the Hartree–Fock determinant and its
single and double excitations, are considered explicitly during
each iteration. This removes any error due to Brillouin’s the-
orem, and improves the quality of the RDMs with negligible
computational overhead. The small possibility that two sig-
nificantly weighted symmetry-similar determinants are con-
nected via a single or double excitation operator, but with a
statistically zero Hamiltonian matrix element between them,
remains a potential source of error.

The other possible error from this sampling can arise
if instantaneous wavefunction values are used, rather than
walker populations averaged in time, i.e., the assumption that
〈CiCj〉 = 〈Ci〉〈Cj〉, where the averages are over the iterations
of the FCIQMC run during accumulation of the density ma-
trices. This assumes no serial correlation between the errors
in the determinant populations on Di and Dj, and therefore
enough walkers such that any correlated fluctuations in the
amplitudes do not introduce a bias. Since the RDMs are func-
tions of products of these determinant coefficients, this error
will not decay to zero simply with increasing sampling time.

However, as opposed to the first error, this bias is system-
atically improvable, and will rigorously vanish in the limit of
a large number of walkers. To ameliorate this error when not
at this limit, an averaged walker population over the duration
of non-zero occupancy is maintained for each occupied deter-
minant. Since this is only calculated over the instantaneously
occupied subspace, it again involves only small additional
effort, and weights were not maintained across the whole
space. However, an error is still present since this averaged
walker population information is lost once a determinant be-
comes unoccupied. An important question is the rate at which
any error decays as the total walker population increases,
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FIG. 3. Convergence of the energy estimates and F12 corrections with increasing walker number, for C2 in a cc-pVDZ basis set, at equilibrium (1.3 Å) and
stretched (7.0 Å) geometries. The dotted lines represent the stochastic errors on the most accurate Eproj or ES values, relative the final [2]R12 and [2]S results.
The density matrices were accumulated over 100 000 iterations.

especially in comparison to the decay of the initiator error
and the size of the random errors. This rate of convergence is
likely to depend on the specific property that the density ma-
trices are being used to calculate, and in this paper, we will
consider the convergence of the error in the calculation of the
F12 corrections and energy estimators with increased walker
number, as well as the convergence with increased iterations.

A. Convergence of density matrix properties

To investigate the convergence of the density matrices
with walker number and imaginary time, we consider both the
equilibrium (1.3 Å) and stretched (7.0 Å) geometries of the
frozen-core carbon dimer molecule in a restricted Hartree–
Fock basis, with a geminal exponent fixed to equal 1.0a−1

0 .
These two bond lengths highlight vastly different correlation
effects and wavefunctions, to provide contrasting tests for the
accuracy of the sampled density matrices. The equilibrium ge-
ometry is predominantly single-reference, dominated by the
weight at the Hartree–Fock determinant, while the stretched
case is highly multiconfigurational, with no single determi-
nant contributing overwhelmingly to the electronic structure.
Figure 3 shows the convergence of various estimators used
in this work with increasing walkers in a cc-pVDZ basis
set, while Fig. 4 extends this to the larger cc-pVTZ basis.

It should be noted that these calculations are independent to
the ones calculated in Ref. 5, since angular momentum sym-
metry was not explicitly included in these calculations. This
resulted in a larger space of 2.25 × 1010 symmetry-allowed
determinants in the cc-pVTZ basis, although through the use
of time-reversal symmetry, the number of distinct N-electron
functions is about half this number.

The ERDM energy estimator is calculated from the trace
of the two-electron RDM with the reduced two-electron
Hamiltonian,

ERDM =
∑

pqrs

γ rs
pqk

rs
pq = Tr[γ k], (26)

where

krs
pq = 1

N − 1
hr

pδs
q + grs

pq . (27)

This should not be confused with the projected or shift en-
ergy estimator from the FCIQMC calculation, which is used
to calculate the energy in FCIQMC, and is defined in Eq. (3).
Generally, Eq. (26) would define a strictly variational energy
for the wavefunction, and be equivalent to the pure estimate
〈�|H|�〉. However, since the RDM is not explicitly calcu-
lated, but rather stochastically sampled, it may not strictly
correspond to the FCIQMC wavefunction at all times. This
therefore has the potential to break strict N-representability,
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FIG. 4. Convergence of the energy estimates and F12 corrections with increasing walker number, for C2 in a cc-pVTZ basis, at equilibrium (1.2425 Å) and
stretched (7.0 Å) geometries. The dotted lines represent the stochastic errors on the most accurate Eproj or ES values, relative the final [2]R12 and [2]S results.
The density matrices were accumulated over 100 000 iterations.

and thus returns a non-variational energy; however, this is
not found in this study and always represents a variational
estimate. The effect of the correlated sampling error, com-
pounded by the variational constraint, means that the ERDM

energy estimator is found to converge to the FCI energy of the
system far slower with respect to walker number compared to
the projected or shift energy, as shown in Fig. 3. For this rea-
son, it is not used as an estimate of the FCI basis set energy
of the system.

However, this is not found to be the case for the pertur-
bative basis set incompleteness corrections, with [2]R12 and
[2]S based on the sampled density matrices also shown. These
indicate convergence to approximately within the stochas-
tic errors of the final FCIQMC energy estimate when the
walker number exceeds 3.5 × 106, for both the equilibrium
and stretched geometries. These errors were 0.17 mEh in
the projected energy (Eproj) for the equilibrium case and
0.43 mEh in the shift estimate (ES) for the stretched case.
Intriguingly, the convergence is faster for the multiconfig-
urational stretched case, although less monotonic. In the
stretched case, the two-particle F12 correction is only ∼66%
of the correction at equilibrium, reflecting the increased sep-
aration of the electrons localized to each atom and thus
reduced energetic importance of the cusps between them.
However, the magnitude of the incompleteness in the one-

electron space is virtually unchanged, and is approximately
half the size of the [2]R12 correction.

The convergence in the cc-pVTZ basis (Fig. 4) shows a
similar trend, with large errors remaining in the energy from
the density matrices (ERDM), while the F12 corrections con-
verge at a much faster rate. Convergence to approximately
within the error bars of the FCIQMC energy (0.19 mEh for
the equilibrium case and 0.25 mEh for stretched) is achieved
within a sampling of 15 × 106 walkers. The magnitude of the
[2]R12 basis set corrections are only approximately a third of
the size in the cc-pVTZ basis compared to the cc-pVDZ ba-
sis, while the [2]S correction is reduced even further to ap-
proximately a quarter of its previous size. This reflects the
increased correlation captured by FCIQMC in the larger or-
bital basis, while indicating that this improves the accuracy of
the one-body description more than the two-body case.

The observation that the F12 corrections converge much
faster than the energy estimate from the density matrices can
be rationalized by considering the limiting case of a diagonal
Hartree–Fock density matrix. This would recover the single-
reference F12 and CABS singles corrections of MP2, which
are already quite accurate at equilibrium, whereas the cor-
relation energy computed using ERDM is by definition zero.
It is key to note that in both cases, the convergence of the
F12 corrections with walker number to within the stochastic
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FIG. 5. Convergence of the energy estimates with imaginary time spent sampling the density matrices for C2 in a cc-pVDZ basis for both equilibrium
(1.3 Å) and stretched (7.0 Å) geometries. About 3.5 × 106 walkers sampled the space. Dotted lines show typical error bars in FCIQMC projected energy
and shift, taken to be the same as in Fig. 3.

errors of the i-FCIQMC energy is not significantly slower than
the number of walkers required to acceptably remove the ef-
fects of the initiator approximation in the FCIQMC energy
estimate, and therefore the additional expense of calculating
the F12 corrections is not a large fraction of the overall com-
putational cost.

Another key consideration is the convergence of the F12
corrections with respect to sampled imaginary time. Figure 5
shows this for the cc-pVDZ basis, again at both equilibrium
and stretched geometries. In contrast to the convergence with
walker number, significant differences exist between the two
geometries, with the more multiconfigurational wavefunction
at stretched geometry requiring many more iterations to reach
energy convergence to within typical stochastic error bars of
the i-FCIQMC energy estimator. Despite this, the number of
iterations required to sample the density matrices to obtain
this accuracy in the F12 estimates is again not generally more
than required to obtain typical error bars in the calculation
of the FCIQMC energy estimate (O[10−4]Eh). Although not
shown, the cc-pVTZ basis exhibits a similar convergence.

V. THE CARBON DIMER

The carbon dimer has been the focus of a recent FCIQMC
investigation, where its strong correlation effects, state cross-
ings of the same Abelian symmetry group, avoided crossings
and large basis set incompleteness provided a stringent test of

any method.5 Despite enlargement of the basis to quadruple-
zeta quality, it was evident that large basis set errors remained.
This is now tackled within the framework of the explicitly
correlated approach in order to improve upon these results.
Following the convergence investigations shown in Figs. 3
and 4, the cc-pVDZ and cc-pVTZ C2 binding curves were
calculated with FCIQMC-F12 using 3.5 × 106 and 13 × 106

walkers, respectively, for each geometry. The 2-RDM was
stochastically constructed once each simulation reached con-
stant walker mode. Angular momentum symmetry is not
explicitly imposed in our calculations. Therefore, to avoid
complications arising from state crossings and metastable
convergence to excited states,5 we considered bond lengths
less than 1.6 Å where the ground X1�+

g state is dominant, as
well as geometries near dissociation with bond lengths more
than five times the equilibrium.

In Fig. 6 we plot the deviation between FCIQMC and
FCIQMC-F12 energies with various basis sets and our ref-
erence FCIQMC-F12/cc-pVTZ values, as a function of bond
length. In Table I we present non-parallelity errors (NPE), de-
fined as the maximum absolute deviations over the range of
geometries considered. The F12 corrections reduce the NPE
of the FCIQMC/cc-pVDZ method by more than a factor of
seven, which is comparable with the NPE of the FCIQMC/cc-
pVQZ energies. However, the cc-pVQZ basis requires over
30 × 106 walkers to converge the FCIQMC energy,5 even
when angular momentum symmetry is utilised. In contrast,
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FIG. 6. The errors relative to the FCIQMC-F12 results in the cc-pVTZ basis,
for the C2 binding curves calculated using the cc-pVDZ, cc-pVTZ, and cc-
pVQZ basis sets, as well as the cc-pVDZ energies with F12 corrections and
extrapolated cc-pV(TQ)Z energies.69 Only the 0.9–1.6 Å region is shown, as
all these calculations converge onto the X1�+

g state. With F12 corrections,
the NPE across the entire cc-pVDZ binding curve is reduced from 86.8(4) to
12.3 mEh. The NPEs are compared in Table I. The vertical line denotes the
equilibrium geometry.

the cc-pVDZ basis only requires a tenth of this number, even
without the additional symmetries, highlighting the saving
achieved with the hybrid F12 approach within FCIQMC. The
effect of including the whole range of bond lengths is unlikely
to affect the NPEs, since the dominant basis set incomplete-
ness error is found at equilibrium and compressed geometries,
where the electrons are in close proximity, and dynamical cor-
relation is at its largest.

It is this fact which makes the calculation of the dissoci-
ation energy so sensitive to basis set incompleteness. To com-
pute this quantity, we performed a calculation of the system
at a dissociated geometry of 6.21265 Å. This bond length rep-
resents a stretching to five times the experimental equilibrium
geometry, which has been shown to provide an energetic dis-
sociation limit within the given random error bars, as well
as being consistent with previous studies.5 This was chosen
rather than twice the atomic system, since it provides a highly

TABLE I. The non-parallelity error and dissociation energies obtained from
each of the C2 binding curves. The uncorrected cc-pVQZ results were taken
from Ref. 5. The NPE refers to the non-parallelity error across the X1�+

g

state up to geometries of 1.6 Å. The experimental dissociation energy was
taken from Ref. 70, and includes a correction to account for core-valence
correlation. A standard deviation random error in the final digit is indicated
by the number in parentheses. These are not included in the F12 corrected
values, but can be expected to have random errors of at least the same mag-
nitude of those in the uncorrected energies.

Basis NPE (mEh) De (kcal mol−1)

cc-pVDZ 86.8(4) 130.0(1)
cc-pVTZ 21.0(6) 139.9(3)
cc-pVQZ 4.9(6) 143.3(2)
cc-pVDZ+F12 12.3 142.3
cc-pVTZ+F12 145.3
Experimental 146.9(5)

multiconfigurational state with which to test the application
of the corrections, and allows for a test in the uncorrected
FCIQMC values for any size-consistency error relative to the
atomic reference systems. The results can be seen in Table I,
compared to the experimental dissociation value which is ap-
proximately corrected for zero-point energy and core-valence
correlation effects. A similar trend to the NPEs is observed,
with the F12 corrected FCIQMC value in a cc-pVDZ basis
achieving accuracy just shy of the uncorrected cc-pVQZ re-
sult.

Despite the large improvement of the cc-pVTZ basis
FCIQMC-F12 result, the dissociation energy is still not within
chemical accuracy of the experimental value. When taking
into account random errors of the FCIQMC method, as well
as uncertainty in experimental results, these values differ
by 1.6(6)kcal mol−1. From a calculation of the all-electron
cc-pVTZ FCIQMC-F12 energy at the experimental equilib-
rium and fully dissociated geometries, the error is reduced to
0.92(53)kcal mol−1, with the approximate core-valence cor-
rection neglected. Although this improves the final dissocia-
tion energy to within “chemical accuracy,” it is yet to be seen
whether remaining basis set error (such as a need for addi-
tional diffuse functions within the F12 framework), other ne-
glected effects, or experimental ambiguity can account for the
remaining discrepancy between the two values. However, it is
clear from this, and other studies,70 that achieving chemical
accuracy for this system is exceedingly difficult, where strong
correlation, as well as significant basis set incompleteness can
cause severe errors.

VI. SUMMARY AND CONCLUSIONS

In this paper we use an a posteriori [2]R12 and [2]S

approach48, 49, 56 in order to account for basis set incomplete-
ness within FCIQMC. This allows for perturbative excita-
tions from the sampled FCIQMC wavefunction into a space
of strongly orthogonal geminal functions, via the two-body
reduced density matrix which is accumulated on-the-fly. The
basis set error in the one-particle space is accounted for via
an adaptation of the [2]S method designed for incompleteness
in CASSCF. It is shown that the need for an F12 correction
which can correlate a multireference zeroth order wavefunc-
tion, is crucial in strongly interacting systems. The conver-
gence of the F12 properties with respect to both increasing
walker number and sampling time of the density matrix is in-
vestigated, and found to converge at a similar rate to that of
the projected energy estimate used in i-FCIQMC. This was
the case for both the primarily dynamically correlated carbon
dimer at equilibrium geometry as well as the highly multicon-
figurational stretched geometry. A relatively modest increase
in computational effort was required to calculate these F12
corrections, and therefore a large saving was achieved by us-
ing the corrections to reduce the basis set error with FCIQMC
in converged calculations.

This machinery was then used to treat the carbon dimer
at a variety of bond lengths and basis sets, in order to quantify
the benefit of the F12 corrections. This system was the sub-
ject of a previous investigation, where remaining basis set er-
ror, even in quadruple zeta basis sets, prevented convergence
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to within chemical accuracy. In keeping with other studies,
the F12 corrections were found to provide a gain of close to
two cardinal numbers in the basis set when considering non-
parallelity errors and dissociation energies, and provided a
balanced description of both dynamic and strong correlation
effects at equilibrium and stretched geometries. This enabled
the calculation of the dissociation energy to within chemical
accuracy once core electron correlation was explicitly taken
into account. In the future, we hope this approach will allow
us to tackle a range of strongly correlated systems, without
requiring large computational basis sets for the FCIQMC cal-
culation. This approach, however, does not allow for a relax-
ation of the FCIQMC wavefunction due to the presence of
the geminal functions. A future aim will be to compare this
approach with an alternative a priori transcorrelation of the
Hamiltonian,32, 55 as well as more traditional CASPT2 and
MRCI techniques.
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