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We report a universal density-based basis set incompleteness correction that can be applied to any wave function
theory method.

I. INTRODUCTION

Contemporary quantum chemistry has developed in two
directions — wave function theory (WFT)1 and density-
functional theory (DFT).2 Although both spring from the same
Schrödinger equation, each of these philosophies has its own
advantages and shortcomings.

WFT is a�ractive as it exists a well-de�ned path for sys-
tematic improvement. For example, the coupled cluster (CC)
family of methods o�ers a powerful WFT approach for the
description of weakly correlated systems and is well regarded
as the gold standard of quantum chemistry. By increasing the
excitation degree of the CC expansion, one can systematically
converge, for a given basis set, to the exact, full con�guration
interaction (FCI) limit, although the computational cost asso-
ciated with such improvement is usually pricey. One of the
most fundamental drawback of conventional WFT methods is
the slow convergence of energies and properties with respect
to the size of the one-electron basis set. �is undesirable fea-
ture was put into light by Kutzelnigg more than thirty years
ago,3 who proposed, to palliate this, to introduce explicitly the
interelectronic distance r12 = |r1 − r2| as a basis function.3–8

�e resulting F12 methods yields a prominent improvement
of the energy convergence, and achieve chemical accuracy
for small organic molecules with relatively small Gaussian
basis sets.9–12 For example, at the CCSD(T) level, it is adver-
tised that one can obtain quintuple-zeta quality correlation
energies with a triple-zeta basis,13 although computational
overheads are introduced by the large auxiliary basis used to
resolve three- and four-electron integrals.

Present-day DFT calculations are almost exclusively done
within the so-called Kohn-Sham (KS) formalism, which cor-
responds to an exact dressed one-electron theory.14 DFT’s
a�ractivity originates from its very favorable cost/e�cient
ratio as it can provide accurate energies and properties at a
relatively low computational cost. �anks to this, KS-DFT14,15

has become the workhorse of electronic structure calculations
for atoms, molecules and solids.16 To obtain accurate results
within DFT, one only requires an exchange and correlation
functionals, which can be classi�ed in various families de-
pending on their physical input quantities.17 Although there
is no clear way on how to systematically improve density-
functional approximations (DFAs), climbing the Jacob’s ladder
of DFT is potentially the most satisfactory way forward (or
upward in that case).18,19 In the present context, one of the
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interesting feature of density-based methods is their much
faster convergence with respect to the size of the basis set.20

Progress toward unifying these two approaches are on-
going. Using accurate and rigorous WFT methods, some of us
have developed radical generalisations of DFT that are free of
the well-known limitations of conventional DFT. In that re-
spect range-separated DFT (RS-DFT) is particularly promising
as it allows to perform multi-con�gurational DFT calculations
within a rigorous mathematical framework. Range-separated
hybrids, i.e. single-determinant approximations of RS-DFT,
correct for the wrong long-range behavior of the usual hybrid
approximations thanks to the inclusion of the long-range part
of the Hartree-Fock (HF) exchange.

�e present manuscript is organised as follows. Unless
otherwise stated, atomic used are used.

II. THEORY

�e basis-set correction investigated here proposes to use
the RSDFT formalism to capture a part of the short-range cor-
relation e�ects missing from the description of the WFT in a
�nite basis set. Here, we brie�y explain the working equations
and notations needed for this work, and the interested reader
can �nd the detailed formal derivation of the theory in 21.

A. Correcting the basis set error of a general WFT model

Consider a N−electron physical system described in an
incomplete basis-set B and for which we assume to have both
the FCI density nΨBFCI

and energy EBFCI. Assuming that nΨBFCI
is a good approximation of the exact ground state density,
according to equation (15) of 21, one can approximate the
exact ground state energy E0 as

E0 ≈ EBFCI + ĒB [nΨBFCI
] (1)

where ĒB [n] is the complementary density functional de�ned
in equation (8) of 21

ĒB [n] = min
Ψ→n
〈Ψ| T̂ + Ŵee |Ψ〉

− min
ΨB→n

〈
ΨB
∣∣∣ T̂ + Ŵee

∣∣∣ΨB〉,
(2)

ΨB is a wave function obtained from the N−electron Hilbert
space spanned byB, Ψ is a general N−electron wave function
being obtained in a complete basis, and both wave functions
ΨB and Ψ yield the same target density n.
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Provided that the functional ĒB [n] is known exactly, the
only approximation performed in (1) is that the FCI density
nΨBFCI

coincides with the exact ground state density, which
in general is a reasonable approximation as the density con-
verges rapidly with the basis set.

An important aspect of such a theory is that, in the limit
of a complete basis set B (which we refer as B → ∞), the
functional ĒB [n] tends to zero

lim
B→∞

ĒB [n] = 0 ∀ n , (3)

which implies that the exact ground state energy coincides
with the FCI energy in complete basis set (which we refer as
E∞

FCI)

lim
B→∞

EBFCI + ĒB [nΨBFCI
] = E∞

FCI . (4)

Here we propose to generalize such approach to a general
WFT model, referred here as Y , projected in a basis set B
which must provides a density nBY and an energy EBY . As any
wave function model is necessary an approximation to the
FCI model, one can write

EBFCI ≈ EBY (5)

and

nΨBFCI
≈ nBY (6)

and by de�ning the energy provided by the model Y in the
complete basis set

E∞
Y = lim

B→∞
EBY , (7)

we can then write

E∞
Y ≈ EBY + ĒB [nBY ] (8)

which veri�es the correct limit since

lim
B→∞

ĒB [nBY ] = 0 . (9)

B. Basis set correction for the CIPSI algorithm and the
CCSD(T) ansatz

In this work we propose to apply the basis set correction to a
selected CI algorithm, namely the CIPSI algorithm, and to the
CCSD(T) ansatz in order to speed-up the basis set convergence
of these models.

1. Basis set correction for the CCSD(T) energy

�e CCSD(T) method is a very popular WFT approach
which is known to provide very good estimation of the cor-
relation energies for weakly correlated systems, whose wave

function are dominated by the HF Slater determinant. De�n-
ing EBCCSD(T) as the CCSD(T) energy obtained in B, in the
present notations we have

EBY = EBCCSD(T) . (10)

In the context of the basis set correction, one needs to choose
a density as the density of the model nBY , and we chose here
the HF density

nBY = nBHF . (11)

Such a choice can be motivated by the fact that the correction
to the HF density brought by the excited Slater determinants
are at least of second-order in perturbation theory. �ere-
fore, we approximate the complete basis set CCSD(T) energy
E∞

CCSD(T) by

E∞
CCSD(T) ≈ EBCCSD(T) + ĒB [nBHF] . (12)

2. Correction of the CIPSI algorithm

�e CIPSI algorithm approximates the FCI wave function
through an iterative selected CI procedure, and the FCI energy
through a second-order multi-reference perturbation theory.
�e CIPSI algorithm belongs to the general class of methods
build upon selected CI22–28 which have been successfully used
to converge to FCI correlation energies, one-body properties,
and nodal surfaces.26,29–40 �e CIPSI algorithm used in this
work uses iteratively enlarged selected CI spaces and Epstein–
Nesbet41,42 multi-reference perturbation theory. Within a
basis set B, the CIPSI energy is

EBCIPSI = Ev + E(2) , (13)

where Ev is the variational energy

Ev = min
{cI}

〈
Ψ(0)

∣∣∣ Ĥ
∣∣∣Ψ(0)

〉
〈Ψ(0)|Ψ(0)〉

, (14)

where the reference wave function
∣∣∣Ψ(0)

〉
= ∑I∈R cI |I〉

is expanded in Slater determinants I within the CI reference
spaceR, and E(2) is the second-order energy correction

E(2) = ∑
κ

|
〈

Ψ(0)
∣∣∣ Ĥ |κ〉|2

Ev − 〈κ|H |κ〉
= ∑

κ

e(2)κ , (15)

where κ denotes a determinant outsideR. To reduce the cost
of the evaluation of the second-order energy correction, the
semi-stochastic multi-reference approach of Garniron et al.43

was used, adopting the technical speci�cations recommended
in that work. �e CIPSI energy is systematically re�ned by
doubling the size of the CI reference space at each iteration,
selecting the determinants κ with the largest |e(2)κ |. In order
to reach a faster convergence of the estimation of the FCI



3

energy, we use the extrapolated FCI energy (exFCI) proposed
by Holmes et al44 which we refer here as EBexFCI.

In the context of the basis set correction, we use the follow-
ing conventions

EBY = EBexFCI (16)

nBY (r) = nBCIPSI(r) (17)

where the density nBCIPSI(r) is de�ned as

nBCIPSI = ∑
ij∈B

〈
Ψ(0)

∣∣∣ â†
i âj

∣∣∣Ψ(0)
〉

φi(r)φj(r) , (18)

and φi(r) are the spin orbitals in the MO basis evaluated at
r. As it was shown in 21 that the CIPSI density converges
rapidly with the size of Ψ(0) for weakly correlated systems,
nBCIPSI(r) can be thought as a reasonable approximation of the
FCI density nΨBFCI

.
Finally, we approximate complete basis set exFCI energy

E∞
exFCI as

E∞
exFCI ≈ EBexFCI + ĒB [nBCIPSI] (19)

C. General scheme for the approximation of the unknown
complementary functional ĒB [n]

�e functional ĒB [n] is not universal as it depends on the
basis set B used and a simple analytical form for such a func-
tional is of course not known. Following the work of 21,
we approximate ĒB [n] in two-steps which grantee the cor-
rect behaviour in the limit of a complete basis set (see (4)).
First, we de�ne a real-space representation of the coulomb
interaction projected in B, which is then ��ed with a long-
range interaction thanks to a range-separation parameter µ(r)
varying in space (see II D). �en, we choose a speci�c class
of short-range density functionals, namely the short-range
correlation functionals with multi-determinantal reference
(ECMD) introduced by Toulouse et al45, that we evaluate at
the density nBY provided by the model (see II E 1) and with the
range-separation parameter µ(r) varying in space.

D. Definition of a real-space representation of the
coulomb operator truncated in a basis-set B

One of the consequences of the use of an incomplete basis-
setB is that the wave function does not present a cusp near the
electron coalescence point, which means that all derivatives
of the wave function are continuous. As the exact electronic
cusp originates from the divergence of the coulomb inter-
action at the electron coalescence point, a cusp-free wave
function could also originate from an Hamiltonian with a non-
divergent electron-electron interaction. �erefore, the impact
of the incompleteness of a �nite basis-set B can be thought
as a cu�ing of the divergence of the coulomb interaction at
the electron coalescence point.

�e present paragraph brie�y describes how to obtain an
e�ective interaction WΨB (X1, X2) which:

• is non-divergent at the electron coalescence point as
long as an incomplete basis set B is used,

• tends to the regular 1/r12 interaction in the limit of a
complete basis set B.

1. General definition of an e�ective interaction for the
basis set B

Consider the coulomb operator projected in the basis-set B

ŴBee =
1
2 ∑

ijkl ∈ B
Vkl

ij â†
k â†

l âj âi, (20)

where the indices run over all orthonormal spin-orbitals
in B and Vkl

ij are the usual coulomb two-electron integrals.
Consider now the expectation value of ŴBee over a general
wave function ΨB belonging to the N−electron Hilbert space
spanned by the basis set B. A�er a few mathematical work
(see appendix A of 21 for a detailed derivation), such an ex-
pectation value can be rewri�en as an integral over the two-
electron spin and space coordinates:〈

ΨB
∣∣∣ ŴBee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2 fΨB (X1, X2) , (21)

where the function fΨB (X1, X2) is

fΨB (X1, X2) = ∑
ijklmn ∈ B

Vkl
ij Γmn

kl [ΨB ]

φn(X2)φm(X1)φi(X1)φj(X2) ,
(22)

Γpq
mn[ΨB ] is the two-body density tensor of ΨB

Γpq
mn[ΨB ] =

〈
ΨB
∣∣∣ â†

p â†
q ân âm

∣∣∣ΨB〉 , (23)

and X collects the space and spin variables,

X = (r, σ) r ∈ IR3, σ = ±1
2∫

dX = ∑
σ=± 1

2

∫
IR3

dr .
(24)

�en, consider the expectation value of the exact coulomb
operator over ΨB〈

ΨB
∣∣∣ Ŵee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2

1
r12

n(2)
ΨB (X1, X2) (25)

where n(2)
ΨB (X1, X2) is the two-body density associated to ΨB .

Because ΨB belongs to B, such an expectation value coincides
with the expectation value of ŴBee〈

ΨB
∣∣∣ ŴBee

∣∣∣ΨB〉 =
〈

ΨB
∣∣∣ Ŵee

∣∣∣ΨB〉, (26)
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which can be rewri�en as:∫∫
dX1 dX2 WΨB (X1, X2) n(2)

ΨB (X1, X2)

=
∫∫

dX1 dX2
1

‖r1 − r2 ‖
n(2)

ΨB (X1, X2).
(27)

where we introduced WΨB (X1, X2)

WΨB (X1, X2) =
fΨB (X1, X2)

n(2)
ΨB (X1, X2)

, (28)

which is the e�ective interaction in the basis set B.
As already discussed in 21, such an e�ective interaction is

symmetric, a priori non translational nor rotational invariant
if the basis set B does not have such symmetries and is neces-
sary �nite at the electron coalescence point for an incomplete
basis set B. Also, as demonstrated in the appendix B of 21,
WΨB (X1, X2) tends to the regular coulomb interaction 1/r12
for all points (X1, X2) and any choice of ΨB in the limit of a
complete basis set B.

2. Definition of a valence e�ective interaction

As most of the WFT calculations are done using a frozen
core approximation, it is important to de�ne an e�ective in-
teraction within a general subset of molecular orbitals that
we refer as Bval.

According to (32) and (21), the e�ective interaction is de-
�ned by the expectation value of the coulomb operator over
a wave function ΨB . �erefore, to de�ne an e�ective interac-
tion accounting only for the valence electrons, one needs to
de�ne a function f val

ΨB (X1, X2) satisfying〈
ΨB
∣∣∣ ŴBvalee

∣∣∣ΨB〉 =
1
2

∫∫
dX1 dX2 f val

ΨB (X1, X2), (29)

where ŴBvalee is the valence coulomb operator de�ned as

ŴBvalee =
1
2 ∑

ijkl ∈ Bval

Vkl
ij â†

k â†
l âj âi , (30)

and Bval is the subset of molecular orbitals for which we want
to de�ne the expectation value, which will be typically the
all MOs except those frozen. Following the spirit of (22), the
function f val

ΨB (X1, X2) can be de�ned as

f val
ΨB (X1, X2) = ∑

ij ∈ B
∑

klmn ∈ Bval

Vkl
ij Γmn

kl [ΨB ]

φn(X2)φm(X1)φi(X1)φj(X2).
(31)

�en, the e�ective interaction associated to the valence
Wval

ΨB (X1, X2) is simply de�nes as

Wval
ΨB (X1, X2) =

f val
ΨB (X1, X2)

n(2)
ΨB , val(X1, X2)

, (32)

where n(2)
ΨB , val(X1, X2) is the two body density associated to

the valence electrons:

n(2)
ΨB , val(X1, X2) = ∑

klmn ∈ Bval

Γkl
mn[Ψ

B ] φm(X1)φn(X2)φk(X1)φl(X2).

(33)
It is important to notice in (31) the di�erence between the
set of orbitals for the indices (i, j), which span the full set
of MOs within B, and the (k, l, m, n), which span only the
valence space Bval. Only with such a de�nition, one can show
(see annex) that f val

ΨB (X1, X2) ful�lls (29) and tends to the
exact interaction 1/r12 in the limit of a complete basis set B,
whatever the choice of subset Bval.

3. Definition of a range-separation parameter varying in
space

To be able to approximate the complementary functional
ĒB [n] thanks to functionals developed in the �eld of RSDFT,
we �t the e�ective interaction with a long-range interaction
having a range-separation parameter varying in space. More
precisely, if we de�ne the value of the interaction at coales-
cence as

WΨB (r) = WΨB (X, X̄). (34)

where (X, X̄) means a couple of anti-parallel spins at the same
point in r, we propose a �t for each point in IR3 of WΨB (r)
with a long-range-like interaction:

WΨB (r) = wlr,µ(r;ΨB)(r, r) (35)

where the long-range-like interaction is de�ned as:

wlr,µ(r)(r1, r2) =
1
2

(erf
(
µ(r1) r12

)
r12

+
erf
(
µ(r2) r12

)
r12

)
.

(36)
�e equation (34) is equivalent to the following condition for
µ(r; ΨB):

µ(r; ΨB) =
√

π

2
WΨB (r) . (37)

As we de�ned an e�ective interaction for the valence electrons,
we also introduce a valence range-separation parameter as

µval(r; ΨB) =
√

π

2
Wval

ΨB (r) . (38)

An important point to notice is that, in the limit of a complete
basis set B, as

lim
B→∞

WΨB (X1, X2) = 1/r12 ∀ (X1, X2)

lim
B→∞

Wval
ΨB (X1, X2) = 1/r12 ∀ (X1, X2) ,

(39)

one has
lim
B→∞

WΨB (r) = +∞ ,

lim
B→∞

Wval
ΨB (r) = +∞ ,

(40)
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and therefore

lim
B→∞

µ(r; ΨB) = +∞

lim
B→∞

µval(r; ΨB) = +∞ .
(41)

E. Approximations for the complementary functional
ĒB [nBY ]

1. General scheme

In 21 the authors have proposed to approximate the comple-
mentary functional ĒB [n] by using a speci�c class of SRDFT
energy functionals, namely the ECMD whose general de�ni-
tion is45:

Ēsr
c,md[n(r); µ] = min

Ψ→n(r)
〈Ψ| T̂ + Ŵee |Ψ〉

− 〈Ψµ[n(r)]| T̂ + Ŵee |Ψµ[n(r)]〉,
(42)

where the wave function Ψµ[n(r)] is de�ned by the con-
strained minimization

Ψµ[n(r)] = arg min
Ψ→n(r)

〈Ψ| T̂ + Ŵlr,µ
ee |Ψ〉, (43)

where Ŵlr,µ
ee is the long-range electron-electron interaction

operator

Ŵlr,µ
ee =

1
2

∫∫
dr1dr2 wlr,µ(|r1 − r2|)n̂(2)(r1, r2), (44)

with

wlr,µ(|r1 − r2|) =
erf(µ|r1 − r2|)
|r1 − r2|

, (45)

and the pair-density operator n̂(2)(r1, r2) = n̂(r1)n̂(r2) −
δ(r1 − r2)n̂(r1). �e ECMD functionals admit two limits as
function of µ

lim
µ→∞

Ēsr
c,md[n(r); µ] = 0 ∀ n(r) (46)

lim
µ→0

Ēsr
c,md[n(r); µ] = Ec[n(r)] ∀ n(r) (47)

where Ec[n(r)] is the usual universal correlation functional
de�ned in the Kohn-Sham DFT. �ese functionals di�er from
the standard RSDFT correlation functional by the fact that the
reference is not the Kohn-Sham Slater determinant but a multi
determinant wave function, which makes them much more
adapted in the present context where one aims at correcting
the general multi-determinant WFT model.

�e general scheme for estimating ĒB [nBY ] is the fol-
lowing. Consider a given approximated ECMD functional
Ēsr

c,md-X [n; µ] labelled by ECMD-X . Such a functional of the
density n(r) (and potentially its derivatives∇n(r)) is de�ned

for any value of the range-separation parameter µ. A gen-
eral scheme to approximate ĒB [nBY ] is to use Ēsr

c,md-X [n; µ]

with the µ(r) de�ned in (32) and to evaluate it at the density
de�ned by the model nBY

ĒB [nBY ] ≈ Ēsr
c,md-X [n

B
Y ; µ(r)] (48)

�erefore, any approximated ECMD can be used to estimate
ĒB [nBY ]. It is important to notice that in the limit of a complete
basis set, according to equations (41) and (46) one has

lim
B→∞

Ēsr
c,md-X [n

B
Y ; µ(r)] = 0 , (49)

for whatever choice of density nBY , wave function ΨB used to
de�ne the interaction, and ECMD functional used to approxi-
mate the exact ECMD.

2. LDA approximation for the complementary functional

As done in Ref. 21, one can de�ne an LDA-like approxima-
tion for ĒB [nBY ] as

ĒB,ΨB
LDA [nBY ] =

∫
dr nBY (r) ε̄sr,unif

c,md

(
nBY (r); µ(r; ΨB)

)
,

(50)
where ε̄sr,unif

c,md (n, µ) is the multi-determinant short-range cor-
relation energy per particle of the uniform electron gas for
which a parametrization can be found in Ref. 46. In practice,
for open-shell systems, we use the spin-polarized version of
this functional (i.e., depending on the spin densities) but for
simplicity we will continue to use only the notation of the
spin-unpolarized case.

3. New PBE interpolated ECMD functional

�e LDA-like functional de�ned in (61) relies only on the
transferability of the physics of UEG which is certainly valid
for large values of µ but which is known to over correlate
for small values of µ. In order to correct such a defect, we
propose here a new ECMD functional inspired by the recently
proposed functional of some of the present authors47 which
interpolates between the usual PBE correlation functional
when µ→ 0 and the exact behaviour which is known when
µ→ ∞.

�anks to the study of the behaviour in the large µ limit of
the various quantities appearing in the ECMD48–50, one can
have an analytical expression of Ēsr

c,md[n(r); µ] in that regime

Ēsr
c,md[n(r); µ] =

2
√

π
(

1−
√

2
)

3 µ3

∫
dr n(2)(r) (51)

where n(2)(r) is the exact on-top pair density for the ground
state of the system. As the exact ground state on-top pair
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density n(2)(r) is not known, we propose here to approximate
it by that of the UEG at the density of the system:

n(2)(r) ≈ n(2)
UEG(n↑(r), n↓(r)) (52)

where n↑(r) and n↓(r) are, respectively, the up and down
spin densities of the physical system at r, n(2)

UEG(n↑, n↓) is the
UEG on-top pair density

n(2)
UEG(n↑, n↓) = 4 n↑ n↓ g0(n↑, n↓) (53)

and g0(n↑, n↓) is the correlation factor of the UEG whose
parametrization can be found in? .

As the form in (54) diverges for small values of µ as 1/µ3,
we follow the work proposed in47 and interpolate between the
large-µ limit and the µ = 0 limit where the Ēsr

c,md[n(r); µ]
reduces to the Kohn-Sham correlation functional (see equation
(47)), for which we take the PBE approximation as in47. More
precisely, we propose the following expression for the

Ēsr
c,md[n(r); µ] =

∫
dr ēPBE

c,md(n(r),∇n(r); µ) (54)

with

ēPBE
c,md(n,∇n; µ) =

ePBE
c (n,∇n)

1 + βc,md PBE(n,∇n; µ)µ3 (55)

β(n,∇n; µ) =
3ePBE

c (n,∇n)

2
√

π
(

1−
√

2
)

n(2)
UEG(n↑, n↓)

. (56)

�erefore, we propose this approximation for the comple-
mentary functional ĒB [nBY ]:

ĒB,ΨB
PBE [n] =

∫
dr ēPBE

c,md(n(r),∇n(r); µ(r)) (57)

F. Valence-only approximation for the complementary
functional

We now introduce a valence-only approximation for the
complementary functional which is needed to correct for
frozen core WFT models. De�ning the valence one-body spin
density matrix as

ρval
ij,σ[Ψ

B ] =
〈

ΨB
∣∣∣ a†

i,σaj,σ

∣∣∣ΨB〉 if (i, j) ∈ Bval

= 0 in other cases
(58)

then one can de�ne the valence density as:

nval
σ (r) = ∑

i,j
ρval

ij,σ[Ψ
B ]φi(r)φj(r) (59)

�erefore, we propose the following valence-only approxima-
tions for the complementary functional

ĒB,ΨB
LDA, val[n] =

∫
dr nval(r) ε̄sr,unif

c,md

(
nval(r); µval(r); ΨB)

)
,

(60)

ĒB,ΨB
PBE, val[n] =

∫
dr ēPBE

c,md(n
val(r),∇nval(r); µval(r)) (61)

III. RESULTS

A. Comparison between the CIPSI and CCSD(T) models in
the case of C2, N2, O2, F2

We begin the investigation of the behavior of the basis-
set correction by the study of the atomization energies of
the C2, N2, O2, F2 homo-nuclear diatomic molecules in the
Dunning cc-pVXZ and cc-pCVXZ (X=D,T,Q,5) using both the
CIPSI algorithm and the CCSD(T). All through this work, we
follow the frozen core (FC) convention of Klopper et. al51

which consists in all-electron calculations for Li-Be, a He core
for B-Na atoms and a Ne core for the Al-Cl series. In the
context of the DFT correction for the basis-set, this implies
that, for a given system in a given basis set B, the set of
valence orbitals Bval involved in the de�nition of the valence
interaction Wval

ΨB (X1, X2) and density ρval
ij,σ refers to all MOs

except the core.

1. CIPSI calculations and the basis-set correction

All CIPSI calculations were performed in two steps. First, a
CIPSI calculation was performed until the zeroth-order wave
function reaches 106 Slater determinants, from which we ex-
tracted the natural orbitals. From this set of natural orbitals,
we performed CIPSI calculations until the EBexFCI reaches about
0.1 mH convergence for each systems. Such convergence cri-
terion is more than su�cient for the CIPSI densities nBCIPSI.
Regarding the wave function ΨB chosen to de�ne the local
range-separation parameter µ(r), we take a single Slater de-
terminant built with the natural orbitals of the �rst CIPSI
calculation.

2. CCSD(T) calculations and the basis-set correction
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