This commit is contained in:
Pierre-Francois Loos 2019-04-12 13:56:33 +02:00
parent b3406fe888
commit ee6a62a5d4

View File

@ -136,11 +136,10 @@
\begin{abstract}
We report a universal density-based basis set incompleteness correction that can be applied to any wave function method.
The present correction relies on short-range correlation density functionals (with multi-determinant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis set incompleteness error and appropriately vanishes in the complete basis set (CBS) limit.
Contrary to conventional RS-DFT schemes which require an \textit{ad hoc} range separation \textit{parameter} $\mu$, the key ingredient here is a range separation \textit{function} $\mu(\bf{r})$ which automatically adapts to the spatial non-homogeneity of the basis set incompleteness error.
As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T) atomization energies near the CBS limit for the G2-1 set of molecules with compact Gaussian basis sets.
For example, while CCSD(T)/cc-pVTZ yields a mean absolute deviation (MAD) of 7.79 kcal/mol compared to CCSD(T)/CBS atomization energies, the CCSD(T)+LDA and CCSD(T)+PBE corrected methods return MAD of 2.89 and 2.46 kcal/mol (respectively) with the same basis.
These values drop below 1 {\kcal} with the cc-pVQZ basis set.
The present correction, which appropriately vanishes in the complete basis set (CBS) limit, relies on short-range correlation density functionals (with multi-determinant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis set incompleteness error.
Contrary to conventional RS-DFT schemes which require an \textit{ad hoc} range-separation \textit{parameter} $\mu$, the key ingredient here is a range-separation \textit{function} $\mu(\bf{r})$ which automatically adapts to the spatial non-homogeneity of the basis set incompleteness error.
As illustrative examples, we show how this density-based correction allows us to obtain CCSD(T) correlation energies near the CBS limit for the G2-1 set of molecules with compact Gaussian basis sets.
For example, while CCSD(T)/cc-pVTZ yields a mean absolute deviation (MAD) of 6.06 kcal/mol compared to CCSD(T)/CBS atomization energies, the CCSD(T)+LDA and CCSD(T)+PBE corrected methods return MAD of 1.19 and 0.85 kcal/mol (respectively) with the same basis.
\end{abstract}
\maketitle
@ -256,8 +255,8 @@ and $\Gam{pq}{rs} = \mel*{\wf{}{\Bas}}{ \aic{r}\aic{s}\ai{p}\ai{q} }{\wf{}{\Bas}
\end{equation}
and $\V{pq}{rs}$ are the usual two-electron Coulomb integrals.
Note that the divergence condition of $\W{\Bas}{}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems do not have any basis set correction.
\PFL{I don't agree with this. There must be a correction for one-electron system.
However, it does not come from the e-e cusp but from the e-n cusp.}
%\PFL{I don't agree with this. There must be a correction for one-electron system.
%However, it does not come from the e-e cusp but from the e-n cusp.}
With such a definition, $\W{\Bas}{}(\br{1},\br{2})$ satisfies (see Appendix A of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
\begin{equation}
\label{eq:int_eq_wee}
@ -275,9 +274,9 @@ An important quantity to define in the present context is the value of the effec
\label{eq:wcoal}
\W{\Bas}{}(\br{}) = \W{\Bas}{}(\br{},{\br{}}),
\end{equation}
which is necessarily \textit{finite} for an incomplete basis set as long as the on-top pair density $\n{2}{}(\br{},\br{})$ is non vanishing.
Of course, there exists \textit{a priori} an infinite set of functions in $\mathbb{R}^6$ satisfying \eqref{eq:int_eq_wee}, but thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
which is necessarily \textit{finite} for an incomplete basis set as long as the on-top pair density $\n{2}{}(\br{})$ is non vanishing.
%Of course, there exists \textit{a priori} an infinite set of functions in $\mathbb{R}^6$ satisfying \eqref{eq:int_eq_wee}, but
Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
\begin{equation}
\label{eq:lim_W}
\lim_{\Bas \to \infty}\W{\Bas}{}(\br{1},\br{2}) = r_{12}^{-1}\
@ -290,7 +289,7 @@ for any $(\br{1},\br{2})$ such that $\n{2}{}(\br{1},\br{2}) \ne 0$ and for any $
%\subsection{Range-separation function}
%=================================================================
\alert{Because the Coulomb operator within a basis set $\Bas$ is a non divergent two-electron interaction, we can straightforwardly link the present theory with the RS-DFT which uses the so-called long-range interaction which are smooth bounded two-electron operators.}
Because $\W{\Bas}{}(\br{1},\br{2})$ is a non-divergent two-electron interaction, it can be straightforwardly linked to RS-DFT which employs smooth long-range operators.
Although this choice is not unique, we choose here the range-separation function
\begin{equation}
\label{eq:mu_of_r}
@ -300,9 +299,9 @@ such that the long-range interaction
\begin{equation}
\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \frac{1}{2} \qty{ \frac{\erf[ \rsmu{\Bas}{}(\br{1}) r_{12}]}{r_{12}} + \frac{\erf[ \rsmu{\Bas}{}(\br{2}) r_{12}]}{ r_{12}} }
\end{equation}
\PFL{This expression looks like a cheap spherical average.
What about $\rsmu{\Bas}{}(\br{1},\br{2}) = \sqrt{\rsmu{\Bas}{}(\br{1}) \rsmu{\Bas}{}(\br{2})}$ and a proper spherical average to get $\rsmu{\Bas}{}(r_{12})$?}
coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{\Bas}{}}(\br{},\br{}) = \W{\Bas}{}(\br{})$.
%\PFL{This expression looks like a cheap spherical average.
%What about $\rsmu{\Bas}{}(\br{1},\br{2}) = \sqrt{\rsmu{\Bas}{}(\br{1}) \rsmu{\Bas}{}(\br{2})}$ and a proper spherical average to get $\rsmu{\Bas}{}(r_{12})$?}
%=================================================================
%\subsection{Short-range correlation functionals}
@ -327,7 +326,7 @@ with $\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \w{}{\lr,\rsmu{}{}}(r_{ij})$.
% \w{}{\lr,\rsmu{}{}}(r_{12}) = \frac{\erf(\rsmu{}{} r_{12})}{r_{12}}.
%\end{equation}
%is the long-range part of the Coulomb operator.
The ECMD functionals admit, for any density $\n{}{}(\br{})$, the two following limiting forms:
The ECMD functionals admit, for any density $\n{}{}(\br{})$, the following two limiting forms
\begin{subequations}
\begin{align}
\label{eq:large_mu_ecmd}
@ -338,21 +337,20 @@ The ECMD functionals admit, for any density $\n{}{}(\br{})$, the two following l
\end{align}
\end{subequations}
where $\Ec[\n{}{}(\br{})]$ is the usual universal correlation functional defined in KS-DFT.
The choice of ECMD in the present scheme is motivated by the analogy between the definition of $\bE{}{\Bas}[\n{}{}]$ [Eq.~\eqref{eq:E_funcbasis}] and that of the ECMD functionals [Eq.~\eqref{eq:ec_md_mu}].
The choice of ECMD in the present scheme is motivated by the analogy between the definition of $\bE{}{\Bas}[\n{}{}]$ [Eq.~\eqref{eq:E_funcbasis}] and the ECMD functionals [Eq.~\eqref{eq:ec_md_mu}].
Indeed, provided that $\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) \approx \W{\Bas}{}(\br{1},\br{2})$, then the wave function $\wf{}{\rsmu{\Bas}{}}$ coincides with $\wf{}{\Bas}$.
%The ECMD functionals differ from the standard RS-DFT correlation functional by the fact that the reference is not the KS Slater determinant but a multi-determinantal wave function.
%This makes them particularly well adapted to the present context where one aims at correcting a general WFT method.
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluated with the range separation function $\rsmu{\Bas}{}(\br{})$.
Therefore, we define the LDA version of $\bE{}{\Bas}[\n{}{}]$ as
Therefore, following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluated with the range separation function $\rsmu{\Bas}{}(\br{})$.
The LDA version of $\bE{}{\Bas}[\n{}{}]$ is defined as
\begin{equation}
\label{eq:def_lda_tot}
\bE{\LDA}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\LDA}{\sr}\big(\n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{},
\end{equation}
where $\be{\LDA}{\sr}(\n{}{},\rsmu{}{})$ is the short-range ECMD per particle of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} for which a parametrization can be found in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
where $\be{\LDA}{\sr}(\n{}{},\rsmu{}{})$ is the short-range reduced (i.e.~per electron) correlation energy of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
The short-range LDA correlation functional defined in Eq.~\eqref{eq:def_lda_tot} relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
In order to correct such a defect, we propose here a new ECMD functional inspired by the recent functional proposed by some of the present authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
In order to correct such a defect, we propose here a new ECMD functional inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
\begin{subequations}
\begin{gather}
\label{eq:epsilon_cmdpbe}
@ -362,7 +360,7 @@ In order to correct such a defect, we propose here a new ECMD functional inspire
\beta(n,\nabla n,\rsmu{}{}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{\n{2}{\UEG}(\n{}{})}.
\end{gather}
\end{subequations}
The difference between the ECMD PBE functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density of the system $\n{2}{}(\br{})$ by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\br{}) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}) )$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
The difference between the ECMD PBE functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\br{}) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}) )$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
This represents a major computational saving without loss of performance as we eschew the computation of $\n{2}{}(\br{})$.
Therefore, the PBE complementary functional reads
\begin{equation}
@ -523,25 +521,24 @@ iii) it vanishes in the limit of a complete basis set, hence guaranteeing an una
%\subsection{Comparison between the CIPSI and CCSD(T) models in the case of C$_2$, N$_2$, O$_2$, F$_2$}
We begin our investigation of the performance of the basis set correction by computing the atomization energies of \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2} obtained with Dunning's cc-pVXZ basis sets (X $=$ D, T, Q and 5).
In the case of \ce{C2} and \ce{N2}, we also perform calculations with the cc-pCVXZ family.
\ce{N2}, \ce{O2} and \ce{F2} are weakly correlated systems and belong to the G2 set, whereas \ce{C2} already contains a non-negligible amount of strong correlation. \cite{BooCleThoAla-JCP-11}
In a second time, we compute the entire atomization energies of the G2 set \cite{CurRagTruPop-JCP-91} composed by 55 molecules with the cc-pVXZ family of basis sets.
\ce{N2}, \ce{O2} and \ce{F2} are weakly correlated systems and belong to the G2-1 set, whereas \ce{C2} already contains a non-negligible amount of strong correlation. \cite{BooCleThoAla-JCP-11}
In a second time, we compute the entire correlation energies of the G2-1 set \cite{CurRagTruPop-JCP-91} composed by 55 molecules with the cc-pVXZ family of basis sets.
This molecular set has been exhausively studied in the last 20 years (see, for example, Refs.~\onlinecite{FelPetDix-JCP-08,Gro-JCP-09,FelPet-JCP-09,NemTowNee-JCP-10,FelPetHil-JCP-11,PetTouUmr-JCP-12,FelPet-JCP-13,KesSylKohTewMar-JCP-18}).
%The reference values for the atomization energies are extracted from Ref.~\onlinecite{HauKlo-JCP-12} and corresponds to frozen-core non-relativistic atomization energies obtained at the CCSD(T)(F12)/cc-pVQZ-F12 level of theory corrected for higher-excitation contributions ($E_\text{CCSDT(Q)/cc-pV(D+d)Z} - E_\text{CCSD(T)/cc-pV(D+d)Z})$.
As a method $\modY$ we employ either CCSD(T) or exFCI.
Here, exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
We refer the interested reader to Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details.
In the case of the CCSD(T) calculations, we have $\modZ = \HF$ as we use the restricted open-shell Hartree-Fock (ROHF) one-electron density to compute the complementary energy.
\titou{For exFCI, we use the density of a converged variational wave function.}
For the definition of the interaction, we use a single Slater determinant built in the ROHF basis for the CCSD(T) calculations, and built with the natural orbitals of the converged variational wave function for the exFCI calculations.
In the case of the CCSD(T) calculations, we have $\modZ = \HF$ as we use the restricted open-shell HF (ROHF) one-electron density to compute the complementary energy.
\titou{For exFCI, we use the density of a converged variational wave function.
For the definition of the interaction, we use a single Slater determinant built in the ROHF basis for the CCSD(T) calculation, and built with the natural orbitals of the converged variational wave function for the exFCI calculations.}
The CCSD(T) calculations have been performed with Gaussian09 with standard threshold values. \cite{g09}
RS-DFT and exFCI calculations are performed with {\QP}. \cite{QP2}
For the numerical quadrature, we employ the SG-2 grid. \cite{DasHer-JCC-17}
Except for the carbon dimer where we have taken the experimental equilibrium bond length (\InAA{1.2425}), all geometries have been extracted from Ref.~\onlinecite{HauJanScu-JCP-09} and have been obtained at the B3LYP/6-31G(2df,p) level of theory.
Frozen core calculations are defined as such: an \ce{He} core is frozen from \ce{Li} to \ce{Ne}, while a \ce{Ne} core is frozen from \ce{Na} to \ce{Ar}.
In the context of the basis set correction, the set of valence spinorbitals $\val$ involved in the definition of the effective interaction refers to the non-frozen spinorbitals.
The ``valence'' correction was used consistently when the FC approximation was applied.
In order to estimate the complete basis set (CBS) limit for each model, we employed the two-point extrapolation proposed in Ref.~\onlinecite{HalHelJorKloKocOlsWil-CPL-98} for the correlation energies.
We refer to these atomization energies as $\CBS$.
In the context of the basis set correction, the set of spinorbitals $\BasFC$ involved in the definition of the effective interaction refers to the non-frozen spinorbitals.
The FC density-based correction was used consistently when the FC approximation was applied in WFT methods.
In order to estimate the complete basis set (CBS) limit for each model, we employed the two-point extrapolation proposed in Ref.~\onlinecite{HalHelJorKloKocOlsWil-CPL-98} for the correlation energies, and we refer to these as $\CBS$.
%\subsection{Convergence of the atomization energies with the WFT models }
As the exFCI calculations were converged with a precision of about 0.1 {\kcal}, we can consider these atomization energies as near-FCI values.
@ -564,12 +561,12 @@ Such weak sensitivity to the approximated functionals in the DFT part when reach
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section*{Supporting information}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
See {\SI} for raw data associated with the G2 atomization energies.
See {\SI} for raw data associated with the G2-1 correlation energies.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{acknowledgements}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The authors would like to thank... nobody.
The authors would like to thank the \textit{Centre National de la Recherche Scientifique} (CNRS) for funding.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\end{acknowledgements}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%