This commit is contained in:
Emmanuel Giner 2019-04-17 16:10:02 +02:00
commit cf0352de07
2 changed files with 5 additions and 5 deletions

View File

@ -1,5 +1,5 @@
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1} \documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace,wrapfig}
\usepackage{mathpazo,libertine} \usepackage{mathpazo,libertine}
\usepackage{natbib} \usepackage{natbib}
@ -136,10 +136,10 @@
\affiliation{\LCT} \affiliation{\LCT}
\begin{abstract} \begin{abstract}
%\begin{wrapfigure}[12]{o}[-1.2cm]{0.4\linewidth} \begin{wrapfigure}[14]{o}[-1.2cm]{0.4\linewidth}
% \centering \centering
% \includegraphics[width=\linewidth]{TOC} \includegraphics[width=\linewidth]{TOC}
%\end{wrapfigure} \end{wrapfigure}
We report a universal density-based basis set incompleteness correction that can be applied to any wave function method. We report a universal density-based basis set incompleteness correction that can be applied to any wave function method.
The present correction, which appropriately vanishes in the complete basis set (CBS) limit, relies on short-range correlation density functionals (with multi-determinant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis set incompleteness error. The present correction, which appropriately vanishes in the complete basis set (CBS) limit, relies on short-range correlation density functionals (with multi-determinant reference) from range-separated density-functional theory (RS-DFT) to estimate the basis set incompleteness error.
Contrary to conventional RS-DFT schemes which require an \textit{ad hoc} range-separation \textit{parameter} $\mu$, the key ingredient here is a range-separation \textit{function} $\mu(\bf{r})$ which automatically adapts to the spatial non-homogeneity of the basis set incompleteness error. Contrary to conventional RS-DFT schemes which require an \textit{ad hoc} range-separation \textit{parameter} $\mu$, the key ingredient here is a range-separation \textit{function} $\mu(\bf{r})$ which automatically adapts to the spatial non-homogeneity of the basis set incompleteness error.

BIN
Manuscript/TOC.pdf Normal file

Binary file not shown.