minor
This commit is contained in:
parent
484fc3f0f8
commit
c23ca2aacd
@ -255,18 +255,18 @@ and $\Gam{pq}{rs} = 2 \mel*{\wf{}{\Bas}}{ \aic{r_\downarrow}\aic{s_\uparrow}\ai{
|
|||||||
= \sum_{pqrstu \in \Bas} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu} \SO{t}{1} \SO{u}{2},
|
= \sum_{pqrstu \in \Bas} \SO{p}{1} \SO{q}{2} \V{pq}{rs} \Gam{rs}{tu} \SO{t}{1} \SO{u}{2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
and $\V{pq}{rs}=\langle pq | rs \rangle$ are the usual two-electron Coulomb integrals.
|
and $\V{pq}{rs}=\langle pq | rs \rangle$ are the usual two-electron Coulomb integrals.
|
||||||
With such a definition, $\W{}{\Bas}(\br{1},\br{2})$ satisfies (see Appendix A of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
|
\titou{With such a definition, $\W{}{\Bas}(\br{1},\br{2})$ satisfies (see Appendix A of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})}
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
\label{eq:int_eq_wee}
|
% \label{eq:int_eq_wee}
|
||||||
\mel*{\wf{}{\Bas}}{\hWee{\updw}}{\wf{}{\Bas}} = \frac{1}{2}\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},
|
% \mel*{\wf{}{\Bas}}{\hWee{\updw}}{\wf{}{\Bas}} = \frac{1}{2}\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
where $\hWee{\updw}$ contains only the opposite-spin component of $\hWee{}$.
|
%where $\hWee{\updw}$ contains only the opposite-spin component of $\hWee{}$.
|
||||||
Because Eq.~\eqref{eq:int_eq_wee} can be recast as
|
%Because Eq.~\eqref{eq:int_eq_wee} can be recast as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\iint \frac{ \n{2}{\Bas}(\br{1},\br{2})}{r_{12}} \dbr{1} \dbr{2} =
|
\iint \frac{ \n{2}{\Bas}(\br{1},\br{2})}{r_{12}} \dbr{1} \dbr{2} =
|
||||||
\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},
|
\iint \W{}{\Bas}(\br{1},\br{2}) \n{2}{\Bas}(\br{1},\br{2}) \dbr{1} \dbr{2},
|
||||||
\end{equation}
|
\end{equation}
|
||||||
it intuitively motivates $\W{}{\Bas}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
|
\titou{which} intuitively motivates $\W{}{\Bas}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
|
||||||
Note that the divergence condition of $\W{}{\Bas}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis-set incompleteness error originating from the e-e cusp.
|
Note that the divergence condition of $\W{}{\Bas}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis-set incompleteness error originating from the e-e cusp.
|
||||||
As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{}{\Bas}(\br{1},\br{2})$ is symmetric, \textit{a priori} non translational, nor rotational invariant if $\Bas$ does not have such symmetries.
|
As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{}{\Bas}(\br{1},\br{2})$ is symmetric, \textit{a priori} non translational, nor rotational invariant if $\Bas$ does not have such symmetries.
|
||||||
Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
|
Thanks to its definition one can show that (see Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18})
|
||||||
@ -323,17 +323,16 @@ Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by ECMD functionals evaluated wi
|
|||||||
The local-density approximation (LDA) of the ECMD complementary functional is defined as
|
The local-density approximation (LDA) of the ECMD complementary functional is defined as
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:def_lda_tot}
|
\label{eq:def_lda_tot}
|
||||||
\titou{\bE{\LDA}{\Bas}[\n{}{},\zeta,\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},}
|
\titou{\bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
where \titou{$\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin-polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$} is the ECMD correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06} as a function of the spin densities $\qty{\n{\sigma}{}}_{\sigma=\uparrow,\downarrow}$ and the range-separation parameter $\mu$.
|
where \titou{$\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin-polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$} is the ECMD correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06} as a function of the spin densities $\qty{\n{\sigma}{}}_{\sigma=\uparrow,\downarrow}$ and the range-separation parameter $\mu$.
|
||||||
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
||||||
In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
|
In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
|
||||||
\begin{multline}
|
\begin{equation}
|
||||||
\label{eq:def_pbe_tot}
|
\label{eq:def_pbe_tot}
|
||||||
\titou{\bE{\PBE}{\Bas}[\n{}{},s,\zeta,\rsmu{}{\Bas}] =}
|
\titou{\bE{\PBE}{\Bas}[\n{}{},s,\rsmu{}{\Bas}] =
|
||||||
\\
|
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},}
|
||||||
\titou{\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},}
|
\end{equation}
|
||||||
\end{multline}
|
|
||||||
\titou{(where $s$ is the reduced gradient)} inspired by the recent functional proposed by some of the authors. \cite{FerGinTou-JCP-18}
|
\titou{(where $s$ is the reduced gradient)} inspired by the recent functional proposed by some of the authors. \cite{FerGinTou-JCP-18}
|
||||||
\titou{$\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$} interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} \titou{$\e{\text{c}}{\PBE}(\n{}{},s,\zeta)$}, at $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
\titou{$\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$} interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} \titou{$\e{\text{c}}{\PBE}(\n{}{},s,\zeta)$}, at $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
@ -345,7 +344,7 @@ In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof
|
|||||||
\titou{\beta(\n{}{},s,\zeta) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\text{c}}{\PBE}(\n{}{},s,\zeta)}{\n{2}{\UEG}(0,\n{}{},\zeta)}.}
|
\titou{\beta(\n{}{},s,\zeta) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\text{c}}{\PBE}(\n{}{},s,\zeta)}{\n{2}{\UEG}(0,\n{}{},\zeta)}.}
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~\titou{$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(0,\n{}{}(\br{}),\zeta(\br{}))$, where $\n{2}{\UEG}(r_{12},\n{}{},\zeta) \approx 4 \n{\uparrow}{} \n{\downarrow}{} g(r_{12},n)$} with the parametrization of the UEG on-top pair-distribution function $g(0,n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
|
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~\titou{$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(0,\n{}{}(\br{}),\zeta(\br{}))$, where $\n{2}{\UEG}(r_{12},\n{}{},\zeta) \approx \n{}{2} (1-\zeta^2) g(r_{12},n)$} with the parametrization of the UEG on-top pair-distribution function $g(0,n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
|
||||||
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$.
|
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$.
|
||||||
|
|
||||||
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||||
|
Loading…
Reference in New Issue
Block a user