theory
This commit is contained in:
parent
eeccf20717
commit
bfa23f48da
@ -278,7 +278,7 @@ We refer the interested reader to Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} fo
|
|||||||
%\subsection{Correcting the basis set error of a general WFT model}
|
%\subsection{Correcting the basis set error of a general WFT model}
|
||||||
%=================================================================
|
%=================================================================
|
||||||
Let us assume we have both the energy $\E{\modX}{\Bas}$ and density $\n{\modY}{\Bas}$ of a $\Nel$-electron system described by two methods $\modX$ and $\modY$ (potentially identical) in an incomplete basis set $\Bas$.
|
Let us assume we have both the energy $\E{\modX}{\Bas}$ and density $\n{\modY}{\Bas}$ of a $\Nel$-electron system described by two methods $\modX$ and $\modY$ (potentially identical) in an incomplete basis set $\Bas$.
|
||||||
According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming that $\E{\modX}{\Bas}$ and $\n{\modY}{\Bas}$ are reasonable approximations of the \textit{exact} ground state energy $\E{}{}$ and density $\n{}{}$, respectively, one may write
|
According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming that $\E{\modX}{\Bas}$ and \alert{$\n{\modY}{\Bas}$} are reasonable approximations of the \textit{exact} ground state energy $\E{}{}$ and density $\n{}{}$, respectively, one may write
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:e0basis}
|
\label{eq:e0basis}
|
||||||
\E{}{}
|
\E{}{}
|
||||||
@ -480,9 +480,9 @@ Although this choice is not unique, the long-range interaction we have chosen is
|
|||||||
and ensuring that $\w{}{\lr,\rsmu{}{}}(\br{1},\br{2})$ and $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ have the same value at coalescence of same-spin electron pairs yields
|
and ensuring that $\w{}{\lr,\rsmu{}{}}(\br{1},\br{2})$ and $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ have the same value at coalescence of same-spin electron pairs yields
|
||||||
\begin{equation}
|
\begin{equation}
|
||||||
\label{eq:mu_of_r}
|
\label{eq:mu_of_r}
|
||||||
\rsmu{\wf{}{\Bas}}{}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{}(\br{}).
|
\rsmu{\wf{}{\Bas}}{}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{}(\bx{},\Bar{\bx{}}),
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
where $(\bx{},\Bar{\bx{}})$ represents a couple of same-spin electrons at the same position $\br{}$.
|
||||||
%More precisely, if we define the value of the interaction at coalescence as
|
%More precisely, if we define the value of the interaction at coalescence as
|
||||||
%\begin{equation}
|
%\begin{equation}
|
||||||
% \label{eq:def_wcoal}
|
% \label{eq:def_wcoal}
|
||||||
@ -592,7 +592,7 @@ Therefore, the PBE complementary function reads
|
|||||||
\label{eq:def_lda_tot}
|
\label{eq:def_lda_tot}
|
||||||
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}[\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})] \n{}{}(\br{}) \dbr{}
|
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}[\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})] \n{}{}(\br{}) \dbr{}
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\wf{}{\Bas}}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\wf{}{\Bas}}{}(\br{}),\rsmu{\wf{}{\Bas}}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\wf{}{\Bas}}{}(\br{}),\rsmu{\wf{}{\Bas}}{}(\br{})]$ where $\rsmu{\wf{}{\Bas}}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||||
|
|
||||||
%The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$.
|
%The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$.
|
||||||
%Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$.
|
%Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$.
|
||||||
@ -625,7 +625,7 @@ where $\hWee{\Val}$, the valence part of the Coulomb operator, has a similar exp
|
|||||||
%\begin{equation}
|
%\begin{equation}
|
||||||
% \hWee{\Val} = \frac{1}{2} \sum_{ijkl \in \Val} \vijkl \aic{k}\aic{l}\ai{j}\ai{i},
|
% \hWee{\Val} = \frac{1}{2} \sum_{ijkl \in \Val} \vijkl \aic{k}\aic{l}\ai{j}\ai{i},
|
||||||
%\end{equation}
|
%\end{equation}
|
||||||
Following the spirit of Eq.~\eqref{eq:fbasis}, the function $\f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})$ can be defined as
|
Following the spirit of Eq.~\eqref{eq:fbasis}, we have
|
||||||
\begin{multline}
|
\begin{multline}
|
||||||
\label{eq:fbasisval}
|
\label{eq:fbasisval}
|
||||||
\f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})
|
\f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})
|
||||||
@ -633,38 +633,42 @@ Following the spirit of Eq.~\eqref{eq:fbasis}, the function $\f{\wf{}{\Bas}}{\Va
|
|||||||
= \sum_{ij \in \Bas} \sum_{klmn \in \Val} \SO{i}{1} \SO{j}{2} \vijkl \gammaklmn{\wf{}{\Bas}} \SO{n}{2} \SO{m}{1}.
|
= \sum_{ij \in \Bas} \sum_{klmn \in \Val} \SO{i}{1} \SO{j}{2} \vijkl \gammaklmn{\wf{}{\Bas}} \SO{n}{2} \SO{m}{1}.
|
||||||
\end{multline}
|
\end{multline}
|
||||||
and, the valence part of the effective interaction is
|
and, the valence part of the effective interaction is
|
||||||
\begin{equation}
|
\begin{subequations}
|
||||||
\label{eq:def_weebasis}
|
\begin{gather}
|
||||||
\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2}) = \f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})/\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2}),
|
\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2}) = \f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})/\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2}),
|
||||||
\end{equation}
|
\\
|
||||||
|
\rsmu{\wf{}{\Bas}}{\Val}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{\Val}(\bx{},\Bar{\bx{}}),
|
||||||
|
\end{gather}
|
||||||
|
\end{subequations}
|
||||||
where $\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2})$ is the two body density associated to the valence electrons.
|
where $\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2})$ is the two body density associated to the valence electrons.
|
||||||
%\begin{equation}
|
%\begin{equation}
|
||||||
% \twodmrdiagpsival = \sum_{klmn \in \Val} \SO{m}{1} \SO{n}{2} \gammamnkl[\wf{}{\Bas}] \SO{k}{1} \SO{l}{2} .
|
% \twodmrdiagpsival = \sum_{klmn \in \Val} \SO{m}{1} \SO{n}{2} \gammamnkl[\wf{}{\Bas}] \SO{k}{1} \SO{l}{2} .
|
||||||
%\end{equation}
|
%\end{equation}
|
||||||
%It is worth noting that, in Eq.~\eqref{eq:fbasisval} the difference between the set of orbitals for the indices $(i,j)$, which span the full set of MOs within $\Bas$, and the $(k,l,m,n)$, which span only the valence space $\Basval$. Only with such a definition, one can show (see annex) that $\fbasisval$ fulfills \eqref{eq:expectweebval} and tends to the exact interaction $1/r_{12}$ in the limit of a complete basis set $\Bas$, whatever the choice of subset $\Basval$.
|
%It is worth noting that, in Eq.~\eqref{eq:fbasisval} the difference between the set of orbitals for the indices $(i,j)$, which span the full set of MOs within $\Bas$, and the $(k,l,m,n)$, which span only the valence space $\Basval$. Only with such a definition, one can show (see annex) that $\fbasisval$ fulfills \eqref{eq:expectweebval} and tends to the exact interaction $1/r_{12}$ in the limit of a complete basis set $\Bas$, whatever the choice of subset $\Basval$.
|
||||||
It is worth noting that, within the present definition, $\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})$ satisfies Eq.~\eqref{eq:lim_W}.
|
It is worth noting that, within the present definition, $\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})$ still satisfies Eq.~\eqref{eq:lim_W}.
|
||||||
|
|
||||||
We now introduce a valence-only approximation for the complementary functional which is needed to correct for frozen core WFT models.
|
%We now introduce a valence-only approximation for the complementary functional which is needed to correct for frozen core WFT models.
|
||||||
Defining the valence one-body spin density matrix as
|
%Defining the valence one-body spin density matrix as
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
\begin{aligned}
|
% \begin{aligned}
|
||||||
\onedmval[\wf{}{\Bas}] & = \elemm{\wf{}{\Bas}}{a^{\dagger}_{i,\sigma} a_{j,\sigma}}{\wf{}{\Bas}} \qquad \text{if }(i,j)\in \Basval \\
|
% \onedmval[\wf{}{\Bas}] & = \elemm{\wf{}{\Bas}}{a^{\dagger}_{i,\sigma} a_{j,\sigma}}{\wf{}{\Bas}} \qquad \text{if }(i,j)\in \Basval \\
|
||||||
& = 0 \qquad \text{in other cases}
|
% & = 0 \qquad \text{in other cases}
|
||||||
\end{aligned}
|
% \end{aligned}
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
then one can define the valence density as:
|
%then one can define the valence density as:
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
\denval_{\sigma}({\bf r}) = \sum_{i,j} \onedmval[\wf{}{\Bas}] \phi_i({\bf r}) \phi_j({\bf r})
|
% \denval_{\sigma}({\bf r}) = \sum_{i,j} \onedmval[\wf{}{\Bas}] \phi_i({\bf r}) \phi_j({\bf r})
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
Therefore, we propose the following valence-only approximations for the complementary functional
|
%Therefore, we propose the following valence-only approximations for the complementary functional
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
\label{eq:def_lda_tot}
|
% \label{eq:def_lda_tot}
|
||||||
\ecompmodelldaval = \int \, \text{d}{\bf r} \,\, \denval({\bf r}) \,\, \emuldaval\,,
|
% \ecompmodelldaval = \int \, \text{d}{\bf r} \,\, \denval({\bf r}) \,\, \emuldaval\,,
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
\begin{equation}
|
%\begin{equation}
|
||||||
\label{eq:def_lda_tot}
|
% \label{eq:def_lda_tot}
|
||||||
\ecompmodelpbeval = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(\denval({\bf r}),\nabla \denval({\bf r});\,\murval)
|
% \ecompmodelpbeval = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(\denval({\bf r}),\nabla \denval({\bf r});\,\murval)
|
||||||
\end{equation}
|
%\end{equation}
|
||||||
|
Defining $\n{\wf{}{\Bas}}{\Val}$ as the valence density, the valence part of the complementary functional $\bE{}{\Val}[\n{\wf{}{\Bas}}{\Val}]$ is then evaluate as $\bE{\LDA}{\sr}[\n{\wf{}{\Bas}}{\Val}(\br{}),\rsmu{\wf{}{\Bas}}{\Val}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\wf{}{\Bas}}{\Val}(\br{}),\rsmu{\wf{}{\Bas}}{\Val}(\br{})]$.
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
%\section{Results}
|
%\section{Results}
|
||||||
|
Loading…
Reference in New Issue
Block a user