This commit is contained in:
Pierre-Francois Loos 2019-04-06 15:10:49 +02:00
parent eeccf20717
commit bfa23f48da

View File

@ -278,7 +278,7 @@ We refer the interested reader to Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} fo
%\subsection{Correcting the basis set error of a general WFT model} %\subsection{Correcting the basis set error of a general WFT model}
%================================================================= %=================================================================
Let us assume we have both the energy $\E{\modX}{\Bas}$ and density $\n{\modY}{\Bas}$ of a $\Nel$-electron system described by two methods $\modX$ and $\modY$ (potentially identical) in an incomplete basis set $\Bas$. Let us assume we have both the energy $\E{\modX}{\Bas}$ and density $\n{\modY}{\Bas}$ of a $\Nel$-electron system described by two methods $\modX$ and $\modY$ (potentially identical) in an incomplete basis set $\Bas$.
According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming that $\E{\modX}{\Bas}$ and $\n{\modY}{\Bas}$ are reasonable approximations of the \textit{exact} ground state energy $\E{}{}$ and density $\n{}{}$, respectively, one may write According to Eq.~(15) of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, assuming that $\E{\modX}{\Bas}$ and \alert{$\n{\modY}{\Bas}$} are reasonable approximations of the \textit{exact} ground state energy $\E{}{}$ and density $\n{}{}$, respectively, one may write
\begin{equation} \begin{equation}
\label{eq:e0basis} \label{eq:e0basis}
\E{}{} \E{}{}
@ -480,9 +480,9 @@ Although this choice is not unique, the long-range interaction we have chosen is
and ensuring that $\w{}{\lr,\rsmu{}{}}(\br{1},\br{2})$ and $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ have the same value at coalescence of same-spin electron pairs yields and ensuring that $\w{}{\lr,\rsmu{}{}}(\br{1},\br{2})$ and $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ have the same value at coalescence of same-spin electron pairs yields
\begin{equation} \begin{equation}
\label{eq:mu_of_r} \label{eq:mu_of_r}
\rsmu{\wf{}{\Bas}}{}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{}(\br{}). \rsmu{\wf{}{\Bas}}{}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{}(\bx{},\Bar{\bx{}}),
\end{equation} \end{equation}
where $(\bx{},\Bar{\bx{}})$ represents a couple of same-spin electrons at the same position $\br{}$.
%More precisely, if we define the value of the interaction at coalescence as %More precisely, if we define the value of the interaction at coalescence as
%\begin{equation} %\begin{equation}
% \label{eq:def_wcoal} % \label{eq:def_wcoal}
@ -592,7 +592,7 @@ Therefore, the PBE complementary function reads
\label{eq:def_lda_tot} \label{eq:def_lda_tot}
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}[\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})] \n{}{}(\br{}) \dbr{} \bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}[\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})] \n{}{}(\br{}) \dbr{}
\end{equation} \end{equation}
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\wf{}{\Bas}}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\wf{}{\Bas}}{}(\br{}),\rsmu{\wf{}{\Bas}}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\wf{}{\Bas}}{}(\br{}),\rsmu{\wf{}{\Bas}}{}(\br{})]$ where $\rsmu{\wf{}{\Bas}}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
%The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$. %The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$.
%Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$. %Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$.
@ -625,7 +625,7 @@ where $\hWee{\Val}$, the valence part of the Coulomb operator, has a similar exp
%\begin{equation} %\begin{equation}
% \hWee{\Val} = \frac{1}{2} \sum_{ijkl \in \Val} \vijkl \aic{k}\aic{l}\ai{j}\ai{i}, % \hWee{\Val} = \frac{1}{2} \sum_{ijkl \in \Val} \vijkl \aic{k}\aic{l}\ai{j}\ai{i},
%\end{equation} %\end{equation}
Following the spirit of Eq.~\eqref{eq:fbasis}, the function $\f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})$ can be defined as Following the spirit of Eq.~\eqref{eq:fbasis}, we have
\begin{multline} \begin{multline}
\label{eq:fbasisval} \label{eq:fbasisval}
\f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2}) \f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})
@ -633,38 +633,42 @@ Following the spirit of Eq.~\eqref{eq:fbasis}, the function $\f{\wf{}{\Bas}}{\Va
= \sum_{ij \in \Bas} \sum_{klmn \in \Val} \SO{i}{1} \SO{j}{2} \vijkl \gammaklmn{\wf{}{\Bas}} \SO{n}{2} \SO{m}{1}. = \sum_{ij \in \Bas} \sum_{klmn \in \Val} \SO{i}{1} \SO{j}{2} \vijkl \gammaklmn{\wf{}{\Bas}} \SO{n}{2} \SO{m}{1}.
\end{multline} \end{multline}
and, the valence part of the effective interaction is and, the valence part of the effective interaction is
\begin{equation} \begin{subequations}
\label{eq:def_weebasis} \begin{gather}
\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2}) = \f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})/\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2}), \W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2}) = \f{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})/\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2}),
\end{equation} \\
\rsmu{\wf{}{\Bas}}{\Val}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{\Val}(\bx{},\Bar{\bx{}}),
\end{gather}
\end{subequations}
where $\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2})$ is the two body density associated to the valence electrons. where $\n{\wf{}{\Bas},\Val}{(2)}(\bx{1},\bx{2})$ is the two body density associated to the valence electrons.
%\begin{equation} %\begin{equation}
% \twodmrdiagpsival = \sum_{klmn \in \Val} \SO{m}{1} \SO{n}{2} \gammamnkl[\wf{}{\Bas}] \SO{k}{1} \SO{l}{2} . % \twodmrdiagpsival = \sum_{klmn \in \Val} \SO{m}{1} \SO{n}{2} \gammamnkl[\wf{}{\Bas}] \SO{k}{1} \SO{l}{2} .
%\end{equation} %\end{equation}
%It is worth noting that, in Eq.~\eqref{eq:fbasisval} the difference between the set of orbitals for the indices $(i,j)$, which span the full set of MOs within $\Bas$, and the $(k,l,m,n)$, which span only the valence space $\Basval$. Only with such a definition, one can show (see annex) that $\fbasisval$ fulfills \eqref{eq:expectweebval} and tends to the exact interaction $1/r_{12}$ in the limit of a complete basis set $\Bas$, whatever the choice of subset $\Basval$. %It is worth noting that, in Eq.~\eqref{eq:fbasisval} the difference between the set of orbitals for the indices $(i,j)$, which span the full set of MOs within $\Bas$, and the $(k,l,m,n)$, which span only the valence space $\Basval$. Only with such a definition, one can show (see annex) that $\fbasisval$ fulfills \eqref{eq:expectweebval} and tends to the exact interaction $1/r_{12}$ in the limit of a complete basis set $\Bas$, whatever the choice of subset $\Basval$.
It is worth noting that, within the present definition, $\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})$ satisfies Eq.~\eqref{eq:lim_W}. It is worth noting that, within the present definition, $\W{\wf{}{\Bas}}{\Val}(\bx{1},\bx{2})$ still satisfies Eq.~\eqref{eq:lim_W}.
We now introduce a valence-only approximation for the complementary functional which is needed to correct for frozen core WFT models. %We now introduce a valence-only approximation for the complementary functional which is needed to correct for frozen core WFT models.
Defining the valence one-body spin density matrix as %Defining the valence one-body spin density matrix as
\begin{equation} %\begin{equation}
\begin{aligned} % \begin{aligned}
\onedmval[\wf{}{\Bas}] & = \elemm{\wf{}{\Bas}}{a^{\dagger}_{i,\sigma} a_{j,\sigma}}{\wf{}{\Bas}} \qquad \text{if }(i,j)\in \Basval \\ % \onedmval[\wf{}{\Bas}] & = \elemm{\wf{}{\Bas}}{a^{\dagger}_{i,\sigma} a_{j,\sigma}}{\wf{}{\Bas}} \qquad \text{if }(i,j)\in \Basval \\
& = 0 \qquad \text{in other cases} % & = 0 \qquad \text{in other cases}
\end{aligned} % \end{aligned}
\end{equation} %\end{equation}
then one can define the valence density as: %then one can define the valence density as:
\begin{equation} %\begin{equation}
\denval_{\sigma}({\bf r}) = \sum_{i,j} \onedmval[\wf{}{\Bas}] \phi_i({\bf r}) \phi_j({\bf r}) % \denval_{\sigma}({\bf r}) = \sum_{i,j} \onedmval[\wf{}{\Bas}] \phi_i({\bf r}) \phi_j({\bf r})
\end{equation} %\end{equation}
Therefore, we propose the following valence-only approximations for the complementary functional %Therefore, we propose the following valence-only approximations for the complementary functional
\begin{equation} %\begin{equation}
\label{eq:def_lda_tot} % \label{eq:def_lda_tot}
\ecompmodelldaval = \int \, \text{d}{\bf r} \,\, \denval({\bf r}) \,\, \emuldaval\,, % \ecompmodelldaval = \int \, \text{d}{\bf r} \,\, \denval({\bf r}) \,\, \emuldaval\,,
\end{equation} %\end{equation}
\begin{equation} %\begin{equation}
\label{eq:def_lda_tot} % \label{eq:def_lda_tot}
\ecompmodelpbeval = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(\denval({\bf r}),\nabla \denval({\bf r});\,\murval) % \ecompmodelpbeval = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(\denval({\bf r}),\nabla \denval({\bf r});\,\murval)
\end{equation} %\end{equation}
Defining $\n{\wf{}{\Bas}}{\Val}$ as the valence density, the valence part of the complementary functional $\bE{}{\Val}[\n{\wf{}{\Bas}}{\Val}]$ is then evaluate as $\bE{\LDA}{\sr}[\n{\wf{}{\Bas}}{\Val}(\br{}),\rsmu{\wf{}{\Bas}}{\Val}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\wf{}{\Bas}}{\Val}(\br{}),\rsmu{\wf{}{\Bas}}{\Val}(\br{})]$.
%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%
%\section{Results} %\section{Results}