minor modifs

This commit is contained in:
Emmanuel Giner 2019-04-15 15:56:34 +02:00
parent 160124cf07
commit bc9400326b

View File

@ -117,7 +117,7 @@
\begin{document}
\title{A Density-Based Basis Set Correction For Wave Function Theory}
\title{A Density-Based Basis Set Correction For Wave Function Theory: Application to Coupled Cluster}
\author{Bath\'elemy Pradines}
\affiliation{\LCT}
@ -223,7 +223,7 @@ Because the e-e cusp originates from the divergence of the Coulomb operator at $
Therefore, as we shall do later on, it feels natural to approximate $\bE{}{\Bas}[\n{}{}]$ with short-range density functionals which deal with a smooth long-range electron interaction.
Contrary to the conventional RS-DFT scheme which requires a range-separated \textit{parameter} $\rsmu{}{}$, here we use a range-separated \textit{function} $\rsmu{\Bas}{}(\br{})$ which automatically adapts to quantify the incompleteness of $\Bas$ in $\mathbb{R}^3$.
The first step of the present basis set correction consists of obtaining an effective two-electron interaction $\W{\Bas}{}(\br{1},\br{2})$ ``mimicking'' the \manu{effect of the basis set incompleteness on the }Coulomb operator \trashMG{in a finite basis $\Bas$}.
The first step of the present basis set correction consists of obtaining an effective two-electron interaction $\W{\Bas}{}(\br{1},\br{2})$ ``mimicking'' the \manu{effect of the basis set incompleteness of $\Bas$ on the }Coulomb operator \trashMG{in a finite basis $\Bas$}.
%The present definition ensures that $\W{\Bas}{}(\br{1},\br{2})$ is finite at the e-e coalescence point as long as an incomplete basis set is used, and tends to the genuine, unbounded $r_{12}^{-1}$ Coulomb interaction as $\Bas \to \infty$.
In a second step, we shall link $\W{\Bas}{}(\br{1},\br{2})$ to $\rsmu{\Bas}{}(\br{})$.
In the final step, we employ short-range density functionals \cite{TouGorSav-TCA-05} with $\rsmu{\Bas}{}(\br{})$ as range separation.
@ -265,8 +265,8 @@ Because Eq.~\eqref{eq:int_eq_wee} can be rewritten as
\iint r_{12}^{-1} \n{2}{}(\br{1},\br{2}) \dbr{1} \dbr{2} = \iint \W{\Bas}{}(\br{1},\br{2}) \n{2}{}(\br{1},\br{2}) \dbr{1} \dbr{2},
\end{equation}
it intuitively motivates $\W{\Bas}{}(\br{1},\br{2})$ as a potential candidate for an effective interaction.
Note that the divergence condition of $\W{\Bas}{}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originates from the e-e cusp.
A similar correction for the electron-nucleus cusp is currently under active development.
Note that the divergence condition of $\W{\Bas}{}(\br{1},\br{2})$ in Eq.~\eqref{eq:def_weebasis} \manu{does not affect \eqref{eq:int_eq_wee} and} ensures that one-electron systems are free of correction as the present approach must only correct the basis set incompleteness error originates from the e-e cusp.
\trashMG{A similar correction for the electron-nucleus cusp is currently under active development.}
As already discussed in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, $\W{\Bas}{}(\br{1},\br{2})$ is symmetric, \textit{a priori} non translational, nor rotational invariant if $\Bas$ does not have such symmetries.
A key quantity is the value of the effective interaction at coalescence of opposite-spin electrons
@ -306,7 +306,7 @@ coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{\B
%=================================================================
%\subsection{Short-range correlation functionals}
%=================================================================
\manu{Once defined $\rsmu{\Bas}{}(\br{})$, we can use RS-DFT functionals to approximate $\bE{}{\Bas}[\n{}{}]$, and
\manu{Once defined a range separation function $\rsmu{\Bas}{}(\br{})$, we can use RS-DFT functionals to approximate $\bE{}{\Bas}[\n{}{}]$, and
}
as in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we consider here a specific class of short-range correlation functionals known as ECMD whose general definition reads \cite{TouGorSav-TCA-05}
\begin{multline}
@ -321,7 +321,7 @@ where $\wf{}{\rsmu{}{}}$ is defined by the constrained minimization
\label{eq:argmin}
\wf{}{\rsmu{}{}} = \arg \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\wf{}{}}{\hT + \hWee{\lr,\rsmu{}{}}}{\wf{}{}},
\end{equation}
with $\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \w{}{\lr,\rsmu{}{}}(r_{ij})$.
with $\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \manu{\hat{\w{}{\lr,\rsmu{}{}}}(\hat{r}_{ij})}$.
%\begin{multline}
% \label{eq:ec_md_mu}
% \bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}}
@ -351,7 +351,7 @@ The ECMD functionals admit, for any density $\n{}{}(\br{})$, the following two l
\end{align}
\end{subequations}
where $\Ec[\n{}{}(\br{})]$ is the usual universal correlation functional defined in KS-DFT.
The choice of ECMD in the present scheme is motivated by the analogy between the definition of $\bE{}{\Bas}[\n{}{}]$ [Eq.~\eqref{eq:E_funcbasis}] and the ECMD functionals [Eq.~\eqref{eq:ec_md_mu}].
The choice of the ECMD in the present scheme is motivated by the analogy between the definition of $\bE{}{\Bas}[\n{}{}]$ [Eq.~\eqref{eq:E_funcbasis}] and the ECMD functionals [Eq.~\eqref{eq:ec_md_mu}].
Indeed, provided that $\w{}{\lr,\rsmu{\Bas}{}}(\br{1},\br{2}) = \W{\Bas}{}(\br{1},\br{2})$, then $\wf{}{\rsmu{\Bas}{}}$ and $\wf{}{\Bas}$ coincide.
%The ECMD functionals differ from the standard RS-DFT correlation functional by the fact that the reference is not the KS Slater determinant but a multi-determinantal wave function.
%This makes them particularly well adapted to the present context where one aims at correcting a general WFT method.
@ -359,7 +359,7 @@ Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by the ECMD functionals evaluate
The LDA version of the ECMD complementary functional is defined as
\begin{equation}
\label{eq:def_lda_tot}
\bE{\LDA}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\LDA}{\sr}\big(\n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{},
\bE{\LDA}{\manu{\Bas}}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\LDA}{\sr}\big(\n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{},
\end{equation}
where $\be{\LDA}{\sr}(\n{}{},\rsmu{}{})$ is the \trashMG{short-range} reduced (i.e.~per electron) ECMD of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parametrized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
@ -367,7 +367,7 @@ The short-range LDA correlation functional relies on the transferability of the
In order to correct such a defect, we propose here a new PBE ECMD functional
\begin{equation}
\label{eq:def_pbe_tot}
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}
\bE{\PBE}{\manu{\Bas}}[\n{}{}(\br{}),\rsmu{}{}(\br{})] = \int \be{\PBE}{\sr}\big(\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}(\br{})\big) \n{}{}(\br{}) \dbr{}
\end{equation}
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
\begin{subequations}
@ -379,17 +379,18 @@ inspired by the recent functional proposed by some of the authors \cite{FerGinTo
\beta(n,\nabla n,\rsmu{}{}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{\n{2}{\UEG}(\n{}{})}.
\end{gather}
\end{subequations}
The difference between the ECMD PBE functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{})) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}))$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
The difference between the ECMD \trashMG{PBE} functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe} is that we approximate here the \textit{exact} ground-state on-top pair density by its UEG version, i.e.~$\n{2}{}(\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{})) = \n{}{}(\br{})^2 g_0(\n{}{}(\br{}))$, where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
This represents a major computational saving without loss of performance as we eschew the computation of $\n{2}{}(\br{})$.
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\manu{\Bas}}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ or $\bE{\PBE}{\manu{\Bas}}[\n{\modZ}{}(\br{}),\rsmu{\Bas}{}(\br{})]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
%=================================================================
%\subsection{Valence approximation}
%=================================================================
As most WFT calculations are performed within the frozen-core (FC) approximation, it is important to define an effective interaction within a subset of spinorbitals.
We then naturally split the basis set as $\Bas = \Cor \bigcup \BasFC$, where $\Cor$ is the set of core spinorbitals, and define the FC version of the effective interaction as
\manu{I like the idea of defining the $\BasFC$ as the complementary of $\Cor$, but the line over $\Bas$ is barely visible ... :(}
We then naturally split the basis set as $\Bas = \Cor \bigcup \BasFC$, where $\Cor$ is the set of core \trashMG{spinorbitals} \manu{spatial orbitals}, and define the FC version of the effective interaction as
\begin{equation}
\W{\Bas}{\FC}(\br{1},\br{2}) =
\begin{cases}
@ -416,13 +417,13 @@ and the corresponding FC range-separation function
\end{equation}
It is worth not\manu{ic}ing that, within the present definition, $\W{\Bas}{\FC}(\br{1},\br{2})$ still \trashMG{satisfies Eq.~\eqref{eq:lim_W}} \manu{tends to the regular Coulomb interaction when $\Bas \to \infty$}.
Defining $\n{\modZ}{\FC}$ as the FC (i.e.~valence-only) one-electron density obtained with a model $\modZ$, the FC contribution of the complementary functional is then evaluated as $\bE{\LDA}{\sr}[\n{\modZ}{\FC}(\br{}),\rsmu{\Bas}{\FC}(\br{})]$ or $\bE{\PBE}{\sr}[\n{\modZ}{\FC}(\br{}),\rsmu{\Bas}{\FC}(\br{})]$.
Defining $\n{\modZ}{\FC}$ as the FC (i.e.~valence-only) one-electron density obtained with a model $\modZ$, the FC contribution of the complementary functional is then evaluated as $\bE{\LDA}{\manu{\Bas}}[\n{\modZ}{\FC}(\br{}),\rsmu{\Bas}{\FC}(\br{})]$ or $\bE{\PBE}{\manu{\Bas}}[\n{\modZ}{\FC}(\br{}),\rsmu{\Bas}{\FC}(\br{})]$.
%=================================================================
%\subsection{Computational considerations}
%=================================================================
One of the most computationally intensive task of the present approach is the evaluation of $\W{\Bas}{}(\br{})$ [see Eqs.~\eqref{eq:wcoal}] at each quadrature grid point.
Yet embarrassingly parallel, this step scales, in the general (multi-determinantal) case, as \manu{$\Ng \Nb^6$} (where $\Nb$ is the number of basis functions in $\Bas$) but is reduced to $\order*{ \Ng \Ne^2 \Nb^2}$ in the case of a single Slater determinant.
Yet embarrassingly parallel, this step scales, in the general (multi-determinantal) case, as \manu{$\Ng \Nb^6$} (where $\Nb$ is the number of basis functions in $\Bas$) but is \manu{strongly} reduced to $\order*{ \Ng \Ne^2 \Nb^2}$ in the case of a single Slater determinant, \manu{which is the case used all through this work}.
%\begin{equation}
% \label{eq:fcoal}
% \f{\Bas}{\HF}(\br{}) = \sum_{pq \in \Bas} \sum_{ij}^{\occ} \SO{p}{} \SO{q}{} \V{pq}{ij} \SO{i}{} \SO{j}{},
@ -432,7 +433,7 @@ Nevertheless, this step usually has to be performed for most correlated WFT calc
Modern integral decomposition techniques (such as density fitting \cite{Whi-JCP-73}) or atomic-orbital-based algorithms could be employed to significantly speed up this step.
%When the four-index transformation become prohibitive, by performing successive matrix multiplications, one could rewrite the equations directly in the AO basis where it scales formally as $\order{\Ng \Nb^4}$ but where one can take advantage of the sparsity atomic-orbital-based algorithms to significantly speed up the calculations.
To conclude this section, we point out that, independently of the DFT functional, the present basis set correction
To conclude this section, we point out that \manu{because of the definitions \eqref{eq:def_weebasis},\eqref{eq:mu_of_r} and the properties \eqref{eq:lim_W} and \eqref{eq:large_mu_ecmd}}, independently of the DFT functional, the present basis set correction
i) can be applied to any WFT model that provides an energy and a density,
ii) does not correct one-electron systems, and
iii) vanishes in the limit of a complete basis set, hence guaranteeing an unaltered CBS limit for a given WFT model.