improve sentence for n2_UEG

This commit is contained in:
Julien Toulouse 2019-04-19 20:45:36 +02:00
parent b7360ac12b
commit b3a711b9e7

View File

@ -379,7 +379,7 @@ inspired by the recent functional proposed by some of the authors \cite{FerGinTo
\beta(\{n_\sigma\},\{\nabla n_\sigma\}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\text{c}}{\PBE}(\{\n{\sigma}{}\},\{\nabla \n{\sigma}{}\})}{\n{2}{\UEG}(0,\{\n{\sigma}{}\})}. \beta(\{n_\sigma\},\{\nabla n_\sigma\}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\text{c}}{\PBE}(\{\n{\sigma}{}\},\{\nabla \n{\sigma}{}\})}{\n{2}{\UEG}(0,\{\n{\sigma}{}\})}.
\end{gather} \end{gather}
\end{subequations} \end{subequations}
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2,\Bas}{}(\br{},\br{}) \approx \n{2}{\UEG}(0,\{\n{\sigma}{}(\br{})\})$, with $\n{2}{\UEG}(0,\{n_\sigma\}) = 4 \; n_{\uparrow} \; n_{\downarrow} \; g(0,n)$ and the UEG on-top pair-distribution function $g(0,n)$, the $0$ standing for $r_{12}=0$, whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}. The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2,\Bas}{}(\br{},\br{}) \approx \n{2}{\UEG}(0,\{\n{\sigma}{}(\br{})\})$, where $0$ refers to $r_{12}=0$ and $\n{2}{\UEG}(0,\{n_\sigma\}) \approx 4 \; n_{\uparrow} \; n_{\downarrow} \; g(0,n)$ with the parametrization of the UEG on-top pair-distribution function $g(0,n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2,\Bas}{}(\br{},\br{})$. This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2,\Bas}{}(\br{},\br{})$.
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\Bas}[\n{\modZ}{},\rsmu{\Bas}{}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{},\rsmu{\Bas}{}]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}. Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{}]$ is then equal to $\bE{\LDA}{\Bas}[\n{\modZ}{},\rsmu{\Bas}{}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{},\rsmu{\Bas}{}]$ where $\rsmu{\Bas}{}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.