starting revision
This commit is contained in:
parent
1a626a5b33
commit
b35cb6a107
@ -318,20 +318,21 @@ The choice of ECMD in the present scheme is motivated by the analogy between the
|
||||
Indeed, the two functionals coincide if $\wf{}{\Bas} = \wf{}{\rsmu{}{}}$.
|
||||
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by ECMD functionals evaluated with the range-separation function $\rsmu{}{\Bas}(\br{})$.
|
||||
|
||||
The local-density approximation (LDA) of the ECMD complementary functional is defined as
|
||||
\begin{equation}
|
||||
\label{eq:def_lda_tot}
|
||||
\bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
|
||||
\end{equation}
|
||||
where $\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$ is the ECMD short-range correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parameterized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
|
||||
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
||||
In order to correct such a defect, inspired by the recent functional proposed by some of the authors~\cite{FerGinTou-JCP-18}, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
|
||||
%The local-density approximation (LDA) of the ECMD complementary functional is defined as
|
||||
%\begin{equation}
|
||||
% \label{eq:def_lda_tot}
|
||||
% \bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
|
||||
%\end{equation}
|
||||
%where $\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$ is the ECMD short-range correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parameterized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
|
||||
%The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
||||
%In order to correct such a defect, inspired by the recent functional proposed by some of the authors~\cite{FerGinTou-JCP-18}, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
|
||||
\titou{Inspired} by the recent functional proposed by some of the authors~\cite{FerGinTou-JCP-18}, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
|
||||
\begin{equation}
|
||||
\label{eq:def_pbe_tot}
|
||||
\bE{\PBE}{\Bas}[\n{}{},\rsmu{}{\Bas}] =
|
||||
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
|
||||
\end{equation}
|
||||
where $s=\abs{\nabla \n{}{}}/\n{}{4/3}$ is the reduced density gradient.
|
||||
where \titou{$\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and} $s=\abs{\nabla \n{}{}}/\n{}{4/3}$ is the reduced density gradient.
|
||||
$\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$ interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\n{}{},s,\zeta)$, at $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
||||
\begin{subequations}
|
||||
\begin{gather}
|
||||
@ -344,8 +345,9 @@ $\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$ interpolates between
|
||||
\end{subequations}
|
||||
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{}),\zeta(\br{}))$, where $\n{2}{\UEG}(\n{}{},\zeta) \approx \n{}{2} (1-\zeta^2) g_0(n)$ with the parametrization of the UEG on-top pair-distribution function $g_0(n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
|
||||
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$.
|
||||
%Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||
\titou{The complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.}
|
||||
|
||||
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
|
||||
|
||||
%=================================================================
|
||||
%\subsection{Frozen-core approximation}
|
||||
@ -375,8 +377,8 @@ with
|
||||
\end{subequations}
|
||||
and the corresponding FC range-separation function $\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$.
|
||||
It is noteworthy that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction as $\Bas \to \infty$.
|
||||
|
||||
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
|
||||
%Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
|
||||
\titou{Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$}.
|
||||
|
||||
%=================================================================
|
||||
%\subsection{Computational considerations}
|
||||
|
@ -1,4 +1,4 @@
|
||||
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
|
||||
\documentclass[aip,jcp,reprint,onecolumn,noshowkeys]{revtex4-1}
|
||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace}
|
||||
\usepackage{mathpazo,libertine}
|
||||
|
||||
@ -138,6 +138,17 @@
|
||||
|
||||
\maketitle
|
||||
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
\section{Local-density approximation}
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
The local-density approximation (LDA) of the ECMD complementary functional is defined as
|
||||
\begin{equation}
|
||||
\label{eq:def_lda_tot}
|
||||
\bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
|
||||
\end{equation}
|
||||
where $\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$ is the ECMD short-range correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parameterized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
|
||||
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
||||
|
||||
%%% TABLE I %%%
|
||||
\begin{table*}
|
||||
\caption{
|
||||
@ -272,63 +283,7 @@
|
||||
\end{squeezetable}
|
||||
\end{turnpage}
|
||||
|
||||
\bibliography{../G2_srDFT}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
\bibliography{../G2_srDFT,../G2_srDFT-control}
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user