starting revision

This commit is contained in:
Pierre-Francois Loos 2019-05-08 11:08:24 +02:00
parent 1a626a5b33
commit b35cb6a107
2 changed files with 27 additions and 70 deletions

View File

@ -318,20 +318,21 @@ The choice of ECMD in the present scheme is motivated by the analogy between the
Indeed, the two functionals coincide if $\wf{}{\Bas} = \wf{}{\rsmu{}{}}$. Indeed, the two functionals coincide if $\wf{}{\Bas} = \wf{}{\rsmu{}{}}$.
Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by ECMD functionals evaluated with the range-separation function $\rsmu{}{\Bas}(\br{})$. Therefore, we approximate $\bE{}{\Bas}[\n{}{}]$ by ECMD functionals evaluated with the range-separation function $\rsmu{}{\Bas}(\br{})$.
The local-density approximation (LDA) of the ECMD complementary functional is defined as %The local-density approximation (LDA) of the ECMD complementary functional is defined as
\begin{equation} %\begin{equation}
\label{eq:def_lda_tot} % \label{eq:def_lda_tot}
\bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{}, % \bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
\end{equation} %\end{equation}
where $\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$ is the ECMD short-range correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parameterized in Ref.~\onlinecite{PazMorGorBac-PRB-06}. %where $\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$ is the ECMD short-range correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parameterized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$. %The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
In order to correct such a defect, inspired by the recent functional proposed by some of the authors~\cite{FerGinTou-JCP-18}, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional %In order to correct such a defect, inspired by the recent functional proposed by some of the authors~\cite{FerGinTou-JCP-18}, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
\titou{Inspired} by the recent functional proposed by some of the authors~\cite{FerGinTou-JCP-18}, we propose here a new Perdew-Burke-Ernzerhof (PBE)-based ECMD functional
\begin{equation} \begin{equation}
\label{eq:def_pbe_tot} \label{eq:def_pbe_tot}
\bE{\PBE}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \bE{\PBE}{\Bas}[\n{}{},\rsmu{}{\Bas}] =
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{}, \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\n{}{}(\br{}),s(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
\end{equation} \end{equation}
where $s=\abs{\nabla \n{}{}}/\n{}{4/3}$ is the reduced density gradient. where \titou{$\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and} $s=\abs{\nabla \n{}{}}/\n{}{4/3}$ is the reduced density gradient.
$\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$ interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\n{}{},s,\zeta)$, at $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding $\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$ interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\n{}{},s,\zeta)$, at $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
\begin{subequations} \begin{subequations}
\begin{gather} \begin{gather}
@ -344,8 +345,9 @@ $\be{\text{c,md}}{\sr,\PBE}\qty(\n{}{},s,\zeta,\rsmu{}{})$ interpolates between
\end{subequations} \end{subequations}
The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{}),\zeta(\br{}))$, where $\n{2}{\UEG}(\n{}{},\zeta) \approx \n{}{2} (1-\zeta^2) g_0(n)$ with the parametrization of the UEG on-top pair-distribution function $g_0(n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}. The difference between the ECMD functional defined in Ref.~\onlinecite{FerGinTou-JCP-18} and the present expression \eqref{eq:epsilon_cmdpbe}-\eqref{eq:beta_cmdpbe} is that we approximate here the on-top pair density by its UEG version, i.e.~$\n{2}{\Bas}(\br{},\br{}) \approx \n{2}{\UEG}(\n{}{}(\br{}),\zeta(\br{}))$, where $\n{2}{\UEG}(\n{}{},\zeta) \approx \n{}{2} (1-\zeta^2) g_0(n)$ with the parametrization of the UEG on-top pair-distribution function $g_0(n)$ given in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$. This represents a major computational saving without loss of accuracy for weakly correlated systems as we eschew the computation of $\n{2}{\Bas}(\br{},\br{})$.
%Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
\titou{The complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.}
Depending on the functional choice, the complementary functional $\bE{}{\Bas}[\n{\modZ}{\Bas}]$ is approximated by $\bE{\LDA}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\n{\modZ}{\Bas},\rsmu{}{\Bas}]$ where $\rsmu{}{\Bas}(\br{})$ is given by Eq.~\eqref{eq:mu_of_r}.
%================================================================= %=================================================================
%\subsection{Frozen-core approximation} %\subsection{Frozen-core approximation}
@ -375,8 +377,8 @@ with
\end{subequations} \end{subequations}
and the corresponding FC range-separation function $\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$. and the corresponding FC range-separation function $\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$.
It is noteworthy that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction as $\Bas \to \infty$. It is noteworthy that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction as $\Bas \to \infty$.
%Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$. \titou{Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ in $\Bas$, the FC contribution of the complementary functional is then approximated by $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$}.
%================================================================= %=================================================================
%\subsection{Computational considerations} %\subsection{Computational considerations}

View File

@ -1,4 +1,4 @@
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1} \documentclass[aip,jcp,reprint,onecolumn,noshowkeys]{revtex4-1}
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace} \usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace}
\usepackage{mathpazo,libertine} \usepackage{mathpazo,libertine}
@ -138,6 +138,17 @@
\maketitle \maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Local-density approximation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The local-density approximation (LDA) of the ECMD complementary functional is defined as
\begin{equation}
\label{eq:def_lda_tot}
\bE{\LDA}{\Bas}[\n{}{},\rsmu{}{\Bas}] = \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\LDA}\qty(\n{}{}(\br{}),\zeta(\br{}),\rsmu{}{\Bas}(\br{})) \dbr{},
\end{equation}
where $\zeta = (\n{\uparrow}{} - \n{\downarrow}{})/\n{}{}$ is the spin polarization and $\be{\text{c,md}}{\sr,\LDA}(\n{}{},\zeta,\rsmu{}{})$ is the ECMD short-range correlation energy per electron of the uniform electron gas (UEG) \cite{LooGil-WIRES-16} parameterized in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
The short-range LDA correlation functional relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
%%% TABLE I %%% %%% TABLE I %%%
\begin{table*} \begin{table*}
\caption{ \caption{
@ -272,63 +283,7 @@
\end{squeezetable} \end{squeezetable}
\end{turnpage} \end{turnpage}
\bibliography{../G2_srDFT} \bibliography{../G2_srDFT,../G2_srDFT-control}