RSDFT
This commit is contained in:
parent
ee6a62a5d4
commit
7d9d9f86cf
@ -310,16 +310,29 @@ Once defined, $\rsmu{\Bas}{}(\br{})$ can be used in RS-DFT functionals to approx
|
||||
As in Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we consider here a specific class of short-range correlation functionals known as ECMD whose general definition reads \cite{TouGorSav-TCA-05}
|
||||
\begin{multline}
|
||||
\label{eq:ec_md_mu}
|
||||
\bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}}
|
||||
\bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}]
|
||||
= \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}}
|
||||
\\
|
||||
- \mel*{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]}{\hT + \hWee{}}{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]},
|
||||
- \mel*{\wf{}{\rsmu{}{}}}{\hT + \hWee{}}{\wf{}{\rsmu{}{}}},
|
||||
\end{multline}
|
||||
where $\wf{}{\rsmu{}{}}[\n{}{}(\br{})]$ is defined by the constrained minimization
|
||||
where $\wf{}{\rsmu{}{}}$ is defined by the constrained minimization
|
||||
\begin{equation}
|
||||
\label{eq:argmin}
|
||||
\wf{}{\rsmu{}{}}[\n{}{}(\br{})] = \arg \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\wf{}{}}{\hT + \hWee{\lr,\rsmu{}{}}}{\wf{}{}},
|
||||
\wf{}{\rsmu{}{}} = \arg \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\wf{}{}}{\hT + \hWee{\lr,\rsmu{}{}}}{\wf{}{}},
|
||||
\end{equation}
|
||||
with $\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \w{}{\lr,\rsmu{}{}}(r_{ij})$.
|
||||
%\begin{multline}
|
||||
% \label{eq:ec_md_mu}
|
||||
% \bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}}
|
||||
% \\
|
||||
% - \mel*{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]}{\hT + \hWee{}}{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]},
|
||||
%\end{multline}
|
||||
%where $\wf{}{\rsmu{}{}}[\n{}{}(\br{})]$ is defined by the constrained minimization
|
||||
%\begin{equation}
|
||||
%\label{eq:argmin}
|
||||
% \wf{}{\rsmu{}{}}[\n{}{}(\br{})] = \arg \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\wf{}{}}{\hT + \hWee{\lr,\rsmu{}{}}}{\wf{}{}},
|
||||
%\end{equation}
|
||||
%with $\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \w{}{\lr,\rsmu{}{}}(r_{ij})$.
|
||||
%and
|
||||
%\begin{equation}
|
||||
%\label{eq:erf}
|
||||
|
Loading…
Reference in New Issue
Block a user