getting there
This commit is contained in:
parent
e142c34d2c
commit
64b9f3ae10
@ -561,14 +561,14 @@ where $\be{\UEG}{\sr}[\n{}{}(\br{}),\rsmu{}{}]$ is the multi-determinant short-r
|
|||||||
%\subsubsection{New PBE functional}
|
%\subsubsection{New PBE functional}
|
||||||
%--------------------------------------------
|
%--------------------------------------------
|
||||||
The short-range LDA correlation functional defined in Eq.~\eqref{eq:def_lda_tot} relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
The short-range LDA correlation functional defined in Eq.~\eqref{eq:def_lda_tot} relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
|
||||||
In order to correct such a defect, we propose here a new ECMD functional inspired by the recently proposed functional of some of the present authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{}{\PBE}(\n{}{},\nabla \n{}{})$ for small $\rsmu{}{}$ and the exact large-$\rsmu{}{}$ behaviour, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGori-PRB-06} yielding
|
In order to correct such a defect, we propose here a new ECMD functional inspired by the recently proposed functional of some of the present authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for small $\rsmu{}{}$ and the exact large-$\rsmu{}{}$ behaviour, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGori-PRB-06} yielding
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\label{eq:epsilon_cmdpbe}
|
\label{eq:epsilon_cmdpbe}
|
||||||
\be{\PBE}{\sr}(\n{}{},\nabla \n{}{},\rsmu{}{}) = \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{1 + \beta(n,\nabla n, \mu)\mu^3 }
|
\be{\PBE}{\sr}(\n{}{},\nabla \n{}{},\rsmu{}{}) = \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{1 + \beta(n,\nabla n, \rsmu{}{})\rsmu{}{3} }
|
||||||
\\
|
\\
|
||||||
\label{eq:epsilon_cmdpbe}
|
\label{eq:epsilon_cmdpbe}
|
||||||
\beta(n,\nabla n;\,\mu) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{\n{\UEG}{(2)}(\n{}{})}.
|
\beta(n,\nabla n,\rsmu{}{}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{\n{\UEG}{(2)}(\n{}{})}.
|
||||||
\end{gather}
|
\end{gather}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
The difference between the ECMD PBE functional defined in Ref.~\cite{FerGinTou-JCP-18} and the present expression is that we approximate the \textit{exact} ground-state on-top pair density of the system $\n{}{(2)}(\br{})$ by its UEG version, i.e.
|
The difference between the ECMD PBE functional defined in Ref.~\cite{FerGinTou-JCP-18} and the present expression is that we approximate the \textit{exact} ground-state on-top pair density of the system $\n{}{(2)}(\br{})$ by its UEG version, i.e.
|
||||||
|
Loading…
Reference in New Issue
Block a user