This commit is contained in:
Pierre-Francois Loos 2019-04-23 15:18:28 +02:00
parent 0407609068
commit 628925e6e6

View File

@ -293,7 +293,7 @@ such that the long-range interaction of RS-DFT, \titou{$\w{}{\lr,\mu}(r_{12}) =
%\begin{equation} %\begin{equation}
% \w{}{\lr,\mu}(r_{12}) = \frac{\erf( \mu r_{12})}{r_{12}} % \w{}{\lr,\mu}(r_{12}) = \frac{\erf( \mu r_{12})}{r_{12}}
%\end{equation} %\end{equation}
coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{}{\Bas}(\br{})}(0) = \W{}{\Bas}(\br{},\br{})$ at any point $\br{}$. coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{}{\Bas}(\br{})}(0) = \W{}{\Bas}(\br{},\br{})$ at any \trashPFL{point} $\br{}$.
%================================================================= %=================================================================
%\subsection{Short-range correlation functionals} %\subsection{Short-range correlation functionals}
@ -339,7 +339,7 @@ In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof
\\ \\
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\qty{\n{\sigma}{}(\br{})},\qty{\nabla \n{\sigma}{}(\br{})},\rsmu{}{\Bas}(\br{})) \dbr{}, \int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\qty{\n{\sigma}{}(\br{})},\qty{\nabla \n{\sigma}{}(\br{})},\rsmu{}{\Bas}(\br{})) \dbr{},
\end{multline} \end{multline}
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional~\cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})$, \titou{at} $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
\begin{subequations} \begin{subequations}
\begin{gather} \begin{gather}
\label{eq:epsilon_cmdpbe} \label{eq:epsilon_cmdpbe}
@ -381,7 +381,7 @@ with
\end{gather} \end{gather}
\end{subequations} \end{subequations}
and the corresponding FC range-separation function \titou{$\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$}. and the corresponding FC range-separation function \titou{$\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$}.
It is \titou{noteworthy} that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction when $\Bas \to \infty$. It is \titou{noteworthy} that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction \titou{as} $\Bas \to \infty$.
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then \titou{approximated by} $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$. Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then \titou{approximated by} $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.