minor
This commit is contained in:
parent
0407609068
commit
628925e6e6
@ -293,7 +293,7 @@ such that the long-range interaction of RS-DFT, \titou{$\w{}{\lr,\mu}(r_{12}) =
|
|||||||
%\begin{equation}
|
%\begin{equation}
|
||||||
% \w{}{\lr,\mu}(r_{12}) = \frac{\erf( \mu r_{12})}{r_{12}}
|
% \w{}{\lr,\mu}(r_{12}) = \frac{\erf( \mu r_{12})}{r_{12}}
|
||||||
%\end{equation}
|
%\end{equation}
|
||||||
coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{}{\Bas}(\br{})}(0) = \W{}{\Bas}(\br{},\br{})$ at any point $\br{}$.
|
coincides with the effective interaction at coalescence, i.e.~$\w{}{\lr,\rsmu{}{\Bas}(\br{})}(0) = \W{}{\Bas}(\br{},\br{})$ at any \trashPFL{point} $\br{}$.
|
||||||
|
|
||||||
%=================================================================
|
%=================================================================
|
||||||
%\subsection{Short-range correlation functionals}
|
%\subsection{Short-range correlation functionals}
|
||||||
@ -339,7 +339,7 @@ In order to correct such a defect, we propose here a new Perdew-Burke-Ernzerhof
|
|||||||
\\
|
\\
|
||||||
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\qty{\n{\sigma}{}(\br{})},\qty{\nabla \n{\sigma}{}(\br{})},\rsmu{}{\Bas}(\br{})) \dbr{},
|
\int \n{}{}(\br{}) \be{\text{c,md}}{\sr,\PBE}\qty(\qty{\n{\sigma}{}(\br{})},\qty{\nabla \n{\sigma}{}(\br{})},\rsmu{}{\Bas}(\br{})) \dbr{},
|
||||||
\end{multline}
|
\end{multline}
|
||||||
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional~\cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})$ for $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
inspired by the recent functional proposed by some of the authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional, \cite{PerBurErn-PRL-96} $\e{\text{c}}{\PBE}(\qty{\n{\sigma}{}},\qty{\nabla \n{\sigma}{}})$, \titou{at} $\rsmu{}{}=0$ and the exact large-$\rsmu{}{}$ behavior, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGorBac-PRB-06} yielding
|
||||||
\begin{subequations}
|
\begin{subequations}
|
||||||
\begin{gather}
|
\begin{gather}
|
||||||
\label{eq:epsilon_cmdpbe}
|
\label{eq:epsilon_cmdpbe}
|
||||||
@ -381,7 +381,7 @@ with
|
|||||||
\end{gather}
|
\end{gather}
|
||||||
\end{subequations}
|
\end{subequations}
|
||||||
and the corresponding FC range-separation function \titou{$\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$}.
|
and the corresponding FC range-separation function \titou{$\rsmuFC{}{\Bas}(\br{}) = (\sqrt{\pi}/2) \WFC{}{\Bas}(\br{},\br{})$}.
|
||||||
It is \titou{noteworthy} that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction when $\Bas \to \infty$.
|
It is \titou{noteworthy} that, within the present definition, $\WFC{}{\Bas}(\br{1},\br{2})$ still tends to the regular Coulomb interaction \titou{as} $\Bas \to \infty$.
|
||||||
|
|
||||||
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then \titou{approximated by} $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
|
Defining $\nFC{\modZ}{\Bas}$ as the FC (i.e.~valence-only) one-electron density obtained with a method $\modZ$ \titou{in $\Bas$}, the FC contribution of the complementary functional is then \titou{approximated by} $\bE{\LDA}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$ or $\bE{\PBE}{\Bas}[\nFC{\modZ}{\Bas},\rsmuFC{}{\Bas}]$.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user