This commit is contained in:
eginer 2019-04-05 15:47:59 +02:00
commit 61a118bc11
4 changed files with 77026 additions and 78 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -172,6 +172,10 @@
\newcommand{\n}[2]{n_{#1}^{#2}}
\newcommand{\E}[2]{E_{#1}^{#2}}
\newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}}
\newcommand{\bEc}[1]{\Bar{E}_\text{c}^{#1}}
\newcommand{\e}[2]{\varepsilon_{#1}^{#2}}
\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}}
\newcommand{\bec}[1]{\Bar{e}^{#1}}
\newcommand{\wf}[2]{\Psi_{#1}^{#2}}
\newcommand{\W}[2]{W_{#1}^{#2}}
\newcommand{\w}[2]{w_{#1}^{#2}}
@ -390,29 +394,30 @@ Provided that the functional $\bE{}{\Bas}[\n{}{}]$ is known exactly, the only so
% \EexFCIinfty \approx \EexFCIbasis + \efuncden{\dencipsi}
%\end{equation}
However, in addition of being unknown, the functional $\bE{}{\Bas}[\n{}{}]$ is obviously \textit{not} universal as it depends on $\Bas$.
One of the consequences of the incompleteness of $\Bas$ is that $\wf{}{\Bas}$ does not have a cusp (i.e.~a discontinuous derivative) at the electron-electron (e-e) coalescence points.
As the e-e cusp originates from the divergence of the Coulomb operator at $r_{12} = 0$, a cuspless wave function could equivalently originate from a Hamiltonian with a non-divergent Coulomb interaction at $r_{12} = 0$.
Therefore, it feels natural to evaluate $\bE{}{\Bas}[\n{}{}]$ with short-range density functionals.
Contrary to conventional RS-DFT schemes which require a range-separated parameter $\rsmu{}{}$, we must know the value of $\rsmu{}{}$ at any point in space due to the spatial inhomogeneity of $\Bas$, hence defining a range-separated \textit{function} $\rsmu{}{}(\br{})$.
%Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate $\bE{}{\Bas}[\n{}{}]$ following a two-step procedure which guarantees the correct behaviour in the limit $\Bas \to \infty$ [see Eq.~\eqref{eq:limitfunc}].
%First, we choose a specific class of short-range density functionals, namely the short-range correlation functionals with multi-determinantal reference (ECMD) introduced by Toulouse \textit{et al.} \cite{TouGorSav-TCA-05} that we evaluate at $\n{\modX}{\Bas}$ alongside $\mu(\br{})$.% (see Sec.~\ref{sec:ecmd}) .
%Second, we define a real-space representation of the Coulomb operator projected in $\Bas$, which is then fitted with a long-range interaction thanks to a range-separation \textit{function} $\mu(\br{})$ defined in real space. %(see Sec.~\ref{sec:weff}).
%=================================================================
%\subsection{General scheme for the approximation of the unknown complementary functional $\efuncbasis$}
%=================================================================
However, in addition of being unknown, the functional $\bE{}{\Bas}[\n{}{}]$ is obviously \textit{not} universal as it depends on $\Bas$.
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we approximate $\bE{}{\Bas}[\n{}{}]$ following a two-step procedure which guarantees the correct behaviour in the limit $\Bas \to \infty$ [see Eq.~\eqref{eq:limitfunc}].
First, we define a real-space representation of the Coulomb operator projected in $\Bas$, which is then fitted with a long-range interaction thanks to a range-separation \textit{function} $\mu(\br{})$ defined in real space. %(see Sec.~\ref{sec:weff}).
Then, we choose a specific class of short-range density functionals, namely the short-range correlation functionals with multi-determinantal reference (ECMD) introduced by Toulouse \textit{et al.} \cite{TouGorSav-TCA-05} that we evaluate at $\n{\modX}{\Bas}$ alongside $\mu(\br{})$.% (see Sec.~\ref{sec:ecmd}) .
%=================================================================
%\subsection{Definition of a real-space representation of the coulomb operator truncated in a basis-set $\Bas$}
%\label{sec:weff}
%=================================================================
One of the consequences of the incompleteness of $\Bas$ is that $\wf{}{\Bas}$ does not have a cusp (i.e.~a discontinuous derivative) at the electron-electron (e-e) coalescence points.
As the e-e cusp originates from the divergence of the Coulomb operator at $r_{12} = 0$, a cuspless wave function could also originate from a Hamiltonian with a non-divergent Coulomb interaction.
Therefore, the impact of the incompleteness of $\Bas$ can be viewed as a removal of the divergence of the Coulomb interaction at $r_{12} = 0$.
The present paragraph briefly describes how to obtain an effective operator $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ which i) is finite at the e-e coalescence points as long as an incomplete basis set is used, and ii) tends to the genuine, unbounded $r_{12}^{-1}$ Coulomb operator in the limit of a complete basis set.
%=================================================================
\subsection{Effective Coulomb operator}
%=================================================================
%The present section briefly describes how to obtain an effective operator $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ which i) is finite at the e-e coalescence points as long as an incomplete basis set is used, and ii) tends to the genuine, unbounded $r_{12}^{-1}$ Coulomb operator in the limit of a complete basis set.
In order to compute the effective operator $\W{\wf{}{\Bas}}{}(\bx{1},\bx{2})$ defined such that
\begin{equation}
\label{eq:int_eq_wee}
@ -456,7 +461,7 @@ Also, as demonstrated in Appendix B of Ref.~\onlinecite{GinPraFerAssSavTou-JCP-1
%=================================================================
\subsubsection{Range-separation function}
\subsection{Range-separation function}
%=================================================================
To be able to approximate the complementary functional $\bE{}{\Bas}[\n{}{}]$ thanks to functionals developed in the field of RS-DFT, we fit the effective interaction with a long-range interaction having a range-separation parameter \textit{varying in space}.
More precisely, if we define the value of the interaction at coalescence as
@ -476,7 +481,7 @@ where the long-range-like interaction is defined as
Equation \eqref{eq:def_wcoal} is equivalent to the following condition
\begin{equation}
\label{eq:mu_of_r}
\rsmu{\wf{}{\Bas}}{}(\br{}) = \frac{\sqrt{\pi}}{2} \W{\wf{}{\Bas}}{}(\br{})
\rsmu{\wf{}{\Bas}}{}(\br{}) = \W{\wf{}{\Bas}}{}(\br{})
\end{equation}
%As we defined an effective interaction for the valence electrons, we also introduce a valence range-separation parameter as
%\begin{equation}
@ -486,7 +491,7 @@ Equation \eqref{eq:def_wcoal} is equivalent to the following condition
An important point to notice is that, in the limit of a complete basis set $\Bas$, as
\begin{equation}
\label{eq:lim_W}
\lim_{\Bas \rightarrow \infty}\wbasis = r_{12}^{-1} \quad \forall (\br{1},\br{2})
\lim_{\Bas \rightarrow \infty}\wbasis = r_{12}^{-1} \quad \forall (\bx{1},\bx{2})
% &\lim_{\Bas \rightarrow \infty}\wbasisval = 1/r_{12} \,\,\,\,\forall \,\, (\bfr{1},\bfr{2})\,\, ,
\end{equation}
one has $\lim_{\Bas \rightarrow \infty} \wbasiscoal{} = \infty$
@ -499,15 +504,16 @@ and therefore
\end{equation}
%=================================================================
\subsection{Complementary functional}
%=================================================================
\label{sec:ecmd}
In Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18} the authors proposed to approximate the complementary functional $\bE{}{\Bas}[\n{}{}]$ using a specific class of SR-DFT energy functionals, namely the ECMD whose general definition is \cite{TouGorSav-TCA-05}
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we propose here to approximate $\bE{}{\Bas}[\n{}{}]$ using a specific class of SR-DFT energy functionals known as ECMD whose general definition reads \cite{TouGorSav-TCA-05}
\begin{multline}
\label{eq:ec_md_mu}
\ecmubis = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}}
\bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\Psi}{\hT + \hWee{}}{\wf{}{}}
\\
- \mel*{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]}{\hT + \hWee{}}{\wf{}{\rsmu{}{}}[\n{}{}(\br{})]},
\end{multline}
@ -516,30 +522,68 @@ where $\wf{}{\rsmu{}{}}[\n{}{}(\br{})]$ is defined by the constrained minimizati
\label{eq:argmin}
\wf{}{\rsmu{}{}}[\n{}{}(\br{})] = \arg \min_{\wf{}{} \to \n{}{}(\br{})} \mel*{\wf{}{}}{\hT + \hWee{\lr,\rsmu{}{}}}{\wf{}{}},
\end{equation}
and
with
\begin{equation}
\label{eq:weemu}
\hWee{\lr,\rsmu{}{}} = \frac{1}{2} \iint \w{}{\lr,\rsmu{}{}}(r_{12}) \hn{}{(2)}(\br{1},\br{2}) \dbr{1} \dbr{2},
\hWee{\lr,\rsmu{}{}} = \sum_{i<j} \w{}{\lr,\rsmu{}{}}(r_{ij})
\end{equation}
is the long-range Coulomb operator with
and
\begin{equation}
\label{eq:erf}
\w{}{\lr,\rsmu{}{}}(r_{12}) = \frac{\erf(\rsmu{}{} r_{12})}{r_{12}},
\w{}{\lr,\rsmu{}{}}(r_{12}) = \frac{\erf(\rsmu{}{} r_{12})}{r_{12}}.
\end{equation}
and $\hn{}{(2)}(\br{1},\br{2}) =\hn{}{}(\br{1}) \hn{}{}(\br{2}) - \delta (\br{1}-\br{2}) \hn{}{}(\br{1})$ is the pair-density operator.
The ECMD functionals admit two limits as function of $\rsmu{}{}$
is the long-range part of the Coulomb operator.
The ECMD functionals admit, for any density $\n{}{}(\br{})$, the two following limiting forms:
\begin{subequations}
\begin{align}
\label{eq:large_mu_ecmd}
\lim_{\mu \rightarrow \infty} \ecmubis & = 0 \quad & \forall \n{}{}(\br{})
\lim_{\mu \to \infty} \bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] & = 0,
\\
\label{eq:small_mu_ecmd}
\lim_{\mu \to 0} \ecmubis & = \Ec[\denr] \quad & \forall \n{}{}(\br{})
\lim_{\mu \to 0} \bE{}{\sr}[\n{}{}(\br{}),\rsmu{}{}] & = \Ec[\n{}{}(\br{})],
\end{align}
\end{subequations}
where $\Ec[\n{}{}(\br{})]$ is the usual universal correlation functional defined in KS-DFT.
These functionals differ from the standard RS-DFT correlation functional by the fact that the reference is not the KS Slater determinant but a multi-determinantal wave function, which makes them much more adapted in the present context where one aims at correcting a general multi-determinant WFT model.
%--------------------------------------------
%\subsubsection{Local density approximation}
%--------------------------------------------
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we define the LDA version of ECMD as
\begin{equation}
\label{eq:def_lda_tot}
\bE{\LDA}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \int \be{\UEG}{\sr}[\n{}{}(\br{}),\rsmu{}{}] \n{}{}(\br{}) \dbr{}
\end{equation}
where $\be{\UEG}{\sr}[\n{}{}(\br{}),\rsmu{}{}]$ is the multi-determinant short-range correlation energy per particle of the uniform electron gas (UEG) for which a parametrization can be found in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
%In practice, for open-shell systems, we use the spin-resolved version of this functional (i.e., depending on both spin densities) but for simplicity we will continue to use only the notation of the spin-unpolarized case.
%--------------------------------------------
%\subsubsection{New PBE functional}
%--------------------------------------------
The short-range LDA correlation functional defined in Eq.~\eqref{eq:def_lda_tot} relies on the transferability of the physics of the UEG which is certainly valid for large $\mu$ but is known to over correlate for small $\mu$.
In order to correct such a defect, we propose here a new ECMD functional inspired by the recently proposed functional of some of the present authors \cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional $\e{\PBE}{}(\n{}{},\nabla \n{}{})$ for small $\rsmu{}{}$ and the exact large-$\rsmu{}{}$ behaviour, \cite{TouColSav-PRA-04, GoriSav-PRA-06, PazMorGori-PRB-06} yielding
\begin{subequations}
\begin{gather}
\label{eq:epsilon_cmdpbe}
\be{\PBE}{\sr}(\n{}{},\nabla \n{}{},\rsmu{}{}) = \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{1 + \beta(n,\nabla n, \rsmu{}{})\rsmu{}{3} }
\\
\label{eq:epsilon_cmdpbe}
\beta(n,\nabla n,\rsmu{}{}) = \frac{3}{2\sqrt{\pi} (1 - \sqrt{2} )} \frac{\e{\PBE}{}(\n{}{},\nabla \n{}{})}{\n{\UEG}{(2)}(\n{}{})}.
\end{gather}
\end{subequations}
The difference between the ECMD PBE functional defined in Ref.~\cite{FerGinTou-JCP-18} and the present expression is that we approximate the \textit{exact} ground-state on-top pair density of the system $\n{}{(2)}(\br{})$ by its UEG version, i.e.
\begin{equation}
\label{eq:ueg_ontop}
\n{}{(2)}(\br{}) \approx \n{\UEG}{(2)}(\br{}) = \n{}{}(\br{})^2 g_0[\n{}{}(\br{})]
\end{equation}
where $g_0(\n{}{})$ is the UEG correlation factor whose parametrization can be found in Eq.~(46) of Ref.~\onlinecite{GorSav-PRA-06}.
Therefore, the PBE complementary function reads
\begin{equation}
\label{eq:def_lda_tot}
\bE{\PBE}{\sr}[\n{}{}(\br{}),\rsmu{}{}] = \int \be{\PBE}{\sr}[\n{}{}(\br{}),\nabla \n{}{}(\br{}),\rsmu{}{}] \n{}{}(\br{}) \dbr{}
\end{equation}
The general scheme for estimating $\ecompmodel$ is the following. Consider a given approximated ECMD functional $\ecmuapprox$ labelled by ECMD-$\mathcal{X}$.
Such a functional of the density $\denr$ (and potentially its derivatives $\nabla \denr$) is defined for any value of the range-separation parameter $\mu$.
A general scheme to approximate $\ecompmodel$ is to use $\ecmuapprox$ with the $\mur$ defined in \eqref{eq:def_weebasis} and to evaluate it at the density defined by the model $\denmodel$
@ -554,62 +598,6 @@ It is important to notice that in the limit of a complete basis set, according t
\end{equation}
for whatever choice of density $\denmodel$, wave function $\wf{}{\Bas}$ used to define the interaction, and ECMD functional used to approximate the exact ECMD.
%--------------------------------------------
\subsubsection{Local density approximation}
%--------------------------------------------
Following Ref.~\onlinecite{GinPraFerAssSavTou-JCP-18}, we define the LDA version of ECMD as
\begin{equation}
\label{eq:def_lda_tot}
\bE{\LDA}{\Bas,\wf{}{\Bas}}[\n{}{}(\br{})] = \int \n{}{}(\br{}) \emuldamodel \dbr{}
\end{equation}
where $\bar{\varepsilon}^{\text{sr},\text{unif}}_{\text{c,md}}(n,\mu)$ is the multi-determinant short-range correlation energy per particle of the uniform electron gas for which a parametrization can be found in Ref.~\onlinecite{PazMorGorBac-PRB-06}.
In practice, for open-shell systems, we use the spin-resolved version of this functional (i.e., depending on both spin densities) but for simplicity we will continue to use only the notation of the spin-unpolarized case.
%--------------------------------------------
\subsubsection{New PBE functional}
%--------------------------------------------
The LDA-like functional defined in \eqref{eq:def_lda_tot} relies only on the transferability of the physics of the uniform electron gas (UEG) which is certainly valid for large values of $\mu$ but which is known to over correlate for small values of $\mu$.
In order to correct such a defect, we propose here a new ECMD functional inspired by the recently proposed functional of some of the present authors\cite{FerGinTou-JCP-18} which interpolates between the usual PBE correlation functional when $\mu \rightarrow 0$ and the exact behaviour which is known when $\mu \rightarrow \infty$.
Thanks to the study of the behaviour in the large $\mu$ limit of the various quantities appearing in the ECMD\cite{TouColSav-PRA-04,GoriSav-PRA-06,PazMorGori-PRB-06}, one can have an analytical expression of $\ecmubis$ in that regime
\begin{equation}
\label{eq:ecmd_large_mu}
\ecmubis = \frac{2\sqrt{\pi}\left(1 - \sqrt{2}\right)}{3\,\mu^3} \int \text{d}{\bf r} \,\, n^{(2)}({\bf} r)
\end{equation}
where $ n^{(2)}({\bf r}) $ is the \textit{exact} on-top pair density for the ground state of the system.
As the exact ground state on-top pair density $n^{(2)}({\bf} r)$ is not known, we propose here to approximate it by that of the UEG at the density of the system:
\begin{equation}
\label{eq:ueg_ontop}
n^{(2)}({\bf} r) \approx n^{(2)}_{\text{UEG}}(n_{\uparrow}({\bf} r) , \, n_{\downarrow}({\bf} r))
\end{equation}
where $n_{\uparrow}({\bf} r)$ and $ n_{\downarrow}({\bf} r)$ are, respectively, the up and down spin densities of the physical system at ${\bf} r$, $n^{(2)}_{\text{UEG}}(n_{\uparrow} , n_{\downarrow})$ is the UEG on-top pair density
\begin{equation}
\label{eq:ueg_ontop}
n^{(2)}_{\text{UEG}}(n_{\uparrow} , n_{\downarrow}) = 4\, n_{\uparrow} \, n_{\downarrow} \, g_0(n_{\uparrow},\, n_{\downarrow})
\end{equation}
and $g_0(n_{\uparrow} ,\, n_{\downarrow})$ is the correlation factor of the UEG whose parametrization can be found in equation (46) of \onlinecite{GorSav-PRA-06}.
As the form in \eqref{eq:ecmd_large_mu} diverges for small values of $\mu$ as $1/\mu^3$, we follow the work proposed in \cite{FerGinTou-JCP-18} and interpolate between the large-$\mu$ limit and the $\mu = 0$ limit where the $\ecmubis$ reduces to the Kohn-Sham correlation functional (see equation \eqref{eq:small_mu_ecmd}), for which we take the PBE approximation as in \cite{FerGinTou-JCP-18}.
More precisely, we propose the following expression for the
\begin{equation}
\label{eq:ecmd_large_mu}
\ecmubis = \int \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(n({\bf} r),\nabla n({\bf} r);\,\mu)
\end{equation}
with
\begin{equation}
\label{eq:epsilon_cmdpbe}
\bar{e}_{\text{c,md}}^\text{PBE}(n,\nabla n;\,\mu) = \frac{e_c^{PBE}(n,\nabla n)}{1 + \beta_{\text{c,md}\,\text{PBE}}(n,\nabla n;\,\mu)\mu^3 }
\end{equation}
\begin{equation}
\label{eq:epsilon_cmdpbe}
\beta(n,\nabla n;\,\mu) = \frac{3 e_c^{PBE}(n,\nabla n)}{2\sqrt{\pi}\left(1 - \sqrt{2}\right)n^{(2)}_{\text{UEG}}(n_{\uparrow} , n_{\downarrow})}.
\end{equation}
Therefore, we propose this approximation for the complementary functional $\ecompmodel$:
\begin{equation}
\label{eq:def_lda_tot}
\ecompmodelpbe = \int \, \text{d}{\bf r} \,\, \bar{e}_{\text{c,md}}^\text{PBE}(n({\bf r}),\nabla n({\bf r});\,\mur)
\end{equation}
%=================================================================
\subsection{Valence effective interaction}