new graph
This commit is contained in:
parent
8414bf42de
commit
57157bf151
@ -1,6 +1,6 @@
|
|||||||
exFCI 201.1 217.1 223.5 225.7 227.8
|
exFCI 201.1 217.1 223.5 225.7 227.8
|
||||||
exFCI+LDA 217.9 225.9 228.0 228.6 227.8
|
exFCI+LDA 217.9 225.9 228.0 228.6 227.8
|
||||||
exFCI+PBE 227.7 227.8 228.3 228.5 227.8
|
exFCI+PBE 227.7 227.8 228.3 228.5 227.8
|
||||||
CCSD(T) 199.9 216.3 222.8 225.0 227.8
|
CCSD(T) 199.9 216.3 222.8 225.0 227.2
|
||||||
CCSD(T)+LDA 216.3 224.8 227.2 227.8 227.8
|
CCSD(T)+LDA 216.3 224.8 227.2 227.8 227.2
|
||||||
CCSD(T)+PBE 225.9 226.7 227.5 227.8 227.8
|
CCSD(T)+PBE 225.9 226.7 227.5 227.8 227.2
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
exFCI 105.2 114.5 118.0 119.1 120.0
|
exFCI 105.2 114.5 118.0 119.1 120.0
|
||||||
exFCI+LDA 112.4 118.4 120.2 120.4 120.0
|
exFCI+LDA 112.4 118.4 120.2 120.4 120.0
|
||||||
exFCI+PBE 117.2 119.4 120.3 120.4 120.0
|
exFCI+PBE 117.2 119.4 120.3 120.4 120.0
|
||||||
CCSD(T) 103.9 113.6 117.1 118.6 120.0
|
CCSD(T) 103.9 113.6 117.1 118.6 119.6
|
||||||
CCSD(T)+LDA 110.6 117.2 119.2 119.8 120.0
|
CCSD(T)+LDA 110.6 117.2 119.2 119.8 119.6
|
||||||
CCSD(T)+PBE 115.1 118.0 119.3 119.8 120.0
|
CCSD(T)+PBE 115.1 118.0 119.3 119.8 119.6
|
||||||
|
@ -440,56 +440,20 @@ iii) vanishes in the limit of a complete basis set, hence guaranteeing an unalte
|
|||||||
\section{Results}
|
\section{Results}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%
|
%%%%%%%%%%%%%%%%%%%%%%%%
|
||||||
|
|
||||||
%%% TABLE I %%%
|
%%% FIGURE 1 %%%
|
||||||
\begin{table*}
|
\begin{figure*}
|
||||||
|
\includegraphics[width=0.33\linewidth]{C2_VXZ}
|
||||||
|
\hspace{1cm}
|
||||||
|
\includegraphics[width=0.33\linewidth]{O2_VXZ}
|
||||||
|
\\
|
||||||
|
\includegraphics[width=0.33\linewidth]{N2_VXZ}
|
||||||
|
\hspace{1cm}
|
||||||
|
\includegraphics[width=0.33\linewidth]{F2_VXZ}
|
||||||
\caption{
|
\caption{
|
||||||
\label{tab:diatomics}
|
Deviation (in \kcal) from CBS atomization energies of \ce{C2} (top left), \ce{O2} (top right), \ce{N2} (bottom left) and \ce{F2} (bottom right) obtained with various methods and basis sets.
|
||||||
Dissociation energy ($\De$) in {\kcal} of \ce{C2}, \ce{O2}, \ce{N2} and \ce{F2} computed with various methods and basis sets.
|
See {\SI} for raw data.
|
||||||
The deviations with respect to the corresponding CBS values are reported in parenthesis.
|
\label{fig:diatomics}}
|
||||||
}
|
\end{figure*}
|
||||||
\begin{ruledtabular}
|
|
||||||
\begin{tabular}{llddddd}
|
|
||||||
& & \mc{4}{c}{Dunning's basis set}
|
|
||||||
\\
|
|
||||||
\cline{3-6}
|
|
||||||
Molecule & Method & \tabc{$\X = \D$} & \tabc{$\X = \T$} & \tabc{$\X = \Q$} & \tabc{$\X = 5$} & \tabc{CBS}
|
|
||||||
\\
|
|
||||||
\hline
|
|
||||||
\ce{C2} & exFCI\fnm[1] & 132.0 (-13.7 ) & 140.3 (-5.4 ) & 143.6 (-2.1 ) & 144.7 (-1.0 ) & 145.7 \\
|
|
||||||
(cc-pVXZ) & exFCI+LDA\fnm[1] & 141.3 (-4.4 ) & 145.1 (-0.6 ) & 146.4 (+0.7 ) & 146.3 (+0.6 ) & \\
|
|
||||||
& exFCI+PBE\fnm[1] & 145.7 (+0.0 ) & 145.7 (+0.0 ) & 146.3 (+0.6 ) & 146.2 (+0.5 ) & \\
|
|
||||||
& CCSD(T)\fnm[1] & 129.2 (-16.2 ) & 139.1 (-6.3 ) & 143.0 (-2.4 ) & 144.2 (-1.2 ) & 145.4 \\
|
|
||||||
& CCSD(T)+LDA\fnm[1] & 139.1 (-6.3 ) & 143.7 (-1.7 ) & 145.9 (+0.5 ) & 145.9 (+0.5 ) & \\
|
|
||||||
& CCSD(T)+PBE\fnm[1] & 142.8 (-2.6 ) & 144.2 (-1.2 ) & 145.9 (+0.5 ) & 145.8 (+0.4 ) & \\ \\
|
|
||||||
\ce{C2} & exFCI\fnm[2] & 131.0 (-16.1 ) & 141.5 (-5.6 ) & 145.1 (-2.0 ) & 146.1 (-1.0 ) & 147.1 \\
|
|
||||||
(cc-pCVXZ) & exFCI+LDA\fnm[2] & 141.4 (-5.7 ) & 146.7 (-0.4 ) & 147.8 (+0.7 ) & 147.6 (+0.5 ) & \\
|
|
||||||
& exFCI+PBE\fnm[2] & 145.1 (-2.0 ) & 147.0 (-0.1 ) & 147.7 (+0.6 ) & 147.5 (+0.4 ) & \\ \\
|
|
||||||
\ce{N2} & exFCI\fnm[1] & 201.1 (-26.7 ) & 217.1 (-10.7 ) & 223.5 (-4.3 ) & 225.7 (-2.1 ) & 227.8 \\
|
|
||||||
(cc-pVXZ) & exFCI+LDA\fnm[1] & 217.9 (-9.9 ) & 225.9 (-1.9 ) & 228.0 (+0.2 ) & 228.6 (+0.8 ) & \\
|
|
||||||
& exFCI+PBE\fnm[1] & 227.7 (-0.1 ) & 227.8 (+0.0 ) & 228.3 (+0.5 ) & 228.5 (+0.7 ) & \\
|
|
||||||
& CCSD(T)\fnm[1] & 199.9 (-27.3 ) & 216.3 (-10.9 ) & 222.8 (-4.4 ) & 225.0 (-2.2 ) & 227.2 \\
|
|
||||||
& CCSD(T)+LDA\fnm[1] & 216.3 (-10.9 ) & 224.8 (-2.4 ) & 227.2 (-0.0 ) & 227.8 (+0.6 ) & \\
|
|
||||||
& CCSD(T)+PBE\fnm[1] & 225.9 (-1.3 ) & 226.7 (-0.5 ) & 227.5 (+0.3 ) & 227.8 (+0.6 ) & \\ \\
|
|
||||||
\ce{N2} & exFCI\fnm[2] & 202.2 (-26.6 ) & 218.5 (-10.3 ) & 224.4 (-4.4 ) & 226.6 (-2.2 ) & 228.8 \\
|
|
||||||
(cc-pCVXZ) & exFCI+LDA\fnm[2] & 218.0 (-10.8 ) & 226.8 (-2.0 ) & 229.1 (+0.3 ) & 229.4 (+0.6 ) & \\
|
|
||||||
& exFCI+PBE\fnm[2] & 226.4 (-2.4 ) & 228.2 (-0.6 ) & 229.1 (+0.3 ) & 229.2 (+0.4 ) & \\ \\
|
|
||||||
\ce{O2} & exFCI\fnm[1] & 105.2 (-14.8 ) & 114.5 (-5.5 ) & 118.0 (-2.0 ) & 119.1 (-0.9 ) & 120.0 \\
|
|
||||||
(cc-pVXZ) & exFCI+LDA\fnm[1] & 112.4 (-7.6 ) & 118.4 (-1.6 ) & 120.2 (+0.2 ) & 120.4 (+0.4 ) & \\
|
|
||||||
& exFCI+PBE\fnm[1] & 117.2 (-2.8 ) & 119.4 (-0.6 ) & 120.3 (+0.3 ) & 120.4 (+0.4 ) & \\
|
|
||||||
& CCSD(T)\fnm[1] & 103.9 (-16.1 ) & 113.6 (-6.0 ) & 117.1 (-2.5 ) & 118.6 (-1.0 ) & 119.6 \\
|
|
||||||
& CCSD(T)+LDA\fnm[1] & 110.6 (-9.0 ) & 117.2 (-2.4 ) & 119.2 (-0.4 ) & 119.8 (+0.2 ) & \\
|
|
||||||
& CCSD(T)+PBE\fnm[1] & 115.1 (-4.5 ) & 118.0 (-1.6 ) & 119.3 (-0.3 ) & 119.8 (+0.2 ) & \\ \\
|
|
||||||
\ce{F2} & exFCI\fnm[1] & 26.7 (-12.3 ) & 35.1 (-3.9 ) & 37.1 (-1.9 ) & 38.0 (-1.0 ) & 39.0 \\
|
|
||||||
(cc-pVXZ) & exFCI+LDA\fnm[1] & 30.4 (-8.6 ) & 37.2 (-1.8 ) & 38.4 (-0.6 ) & 38.9 (-0.1 ) & \\
|
|
||||||
& exFCI+PBE\fnm[1] & 33.1 (-5.9 ) & 37.9 (-1.1 ) & 38.5 (-0.5 ) & 38.9 (-0.1 ) & \\
|
|
||||||
& CCSD(T)\fnm[1] & 25.7 (-12.5 ) & 34.4 (-3.8 ) & 36.5 (-1.7 ) & 37.4 (-0.8 ) & 38.2 \\
|
|
||||||
& CCSD(T)+LDA\fnm[1] & 29.2 (-9.0 ) & 36.5 (-1.7 ) & 37.2 (-1.0 ) & 38.2 (+0.0 ) & \\
|
|
||||||
& CCSD(T)+PBE\fnm[1] & 31.5 (-6.7 ) & 37.1 (-1.1 ) & 37.8 (-0.4 ) & 38.2 (+0.0 ) & \\
|
|
||||||
\end{tabular}
|
|
||||||
\end{ruledtabular}
|
|
||||||
\fnt[1]{Frozen core calculations. Only valence spinorbitals are taken into account in the basis set correction.}
|
|
||||||
\fnt[2]{``Full'' calculation, i.e., all electrons are correlated. All spinorbitals are taken into account in the basis set correction.}
|
|
||||||
\end{table*}
|
|
||||||
|
|
||||||
%%% TABLE II %%%
|
%%% TABLE II %%%
|
||||||
\begin{table}
|
\begin{table}
|
||||||
@ -518,7 +482,7 @@ iii) vanishes in the limit of a complete basis set, hence guaranteeing an unalte
|
|||||||
\end{ruledtabular}
|
\end{ruledtabular}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
%%% FIGURE 1 %%%
|
%%% FIGURE 2 %%%
|
||||||
\begin{figure*}
|
\begin{figure*}
|
||||||
\includegraphics[width=\linewidth]{VDZ}
|
\includegraphics[width=\linewidth]{VDZ}
|
||||||
\includegraphics[width=\linewidth]{VTZ}
|
\includegraphics[width=\linewidth]{VTZ}
|
||||||
@ -532,16 +496,16 @@ iii) vanishes in the limit of a complete basis set, hence guaranteeing an unalte
|
|||||||
%\subsection{Comparison between the CIPSI and CCSD(T) models in the case of C$_2$, N$_2$, O$_2$, F$_2$}
|
%\subsection{Comparison between the CIPSI and CCSD(T) models in the case of C$_2$, N$_2$, O$_2$, F$_2$}
|
||||||
We begin our investigation of the performance of the basis set correction by computing the atomization energies of \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2} obtained with Dunning's cc-pVXZ basis sets (X $=$ D, T, Q and 5).
|
We begin our investigation of the performance of the basis set correction by computing the atomization energies of \ce{C2}, \ce{N2}, \ce{O2} and \ce{F2} obtained with Dunning's cc-pVXZ basis sets (X $=$ D, T, Q and 5).
|
||||||
In the case of \ce{C2} and \ce{N2}, we also perform calculations with the cc-pCVXZ family.
|
In the case of \ce{C2} and \ce{N2}, we also perform calculations with the cc-pCVXZ family.
|
||||||
\ce{N2}, \ce{O2} and \ce{F2} are weakly correlated systems and belong to the G2-1 set, whereas \ce{C2} already contains a non-negligible amount of strong correlation. \cite{BooCleThoAla-JCP-11}
|
\ce{N2}, \ce{O2} and \ce{F2} are weakly correlated systems and belong to the G2-1 set \cite{CurRagTruPop-JCP-91} (see below), whereas \ce{C2} already contains a non-negligible amount of strong correlation. \cite{BooCleThoAla-JCP-11}
|
||||||
In a second time, we compute the entire correlation energies of the G2-1 set \cite{CurRagTruPop-JCP-91} composed by 55 molecules with the cc-pVXZ family of basis sets.
|
In a second time, we compute the entire correlation energies of the G2-1 set \cite{CurRagTruPop-JCP-91} composed by 55 molecules with the cc-pVXZ family of basis sets.
|
||||||
This molecular set has been exhausively studied in the last 20 years (see, for example, Refs.~\onlinecite{FelPetDix-JCP-08,Gro-JCP-09,FelPet-JCP-09,NemTowNee-JCP-10,FelPetHil-JCP-11,PetTouUmr-JCP-12,FelPet-JCP-13,KesSylKohTewMar-JCP-18}).
|
This molecular set has been exhausively studied in the last 20 years (see, for example, Refs.~\onlinecite{FelPetDix-JCP-08, Gro-JCP-09, FelPet-JCP-09, NemTowNee-JCP-10, FelPetHil-JCP-11, HauKlo-JCP-12, PetTouUmr-JCP-12, FelPet-JCP-13, KesSylKohTewMar-JCP-18}).
|
||||||
%The reference values for the atomization energies are extracted from Ref.~\onlinecite{HauKlo-JCP-12} and corresponds to frozen-core non-relativistic atomization energies obtained at the CCSD(T)(F12)/cc-pVQZ-F12 level of theory corrected for higher-excitation contributions ($E_\text{CCSDT(Q)/cc-pV(D+d)Z} - E_\text{CCSD(T)/cc-pV(D+d)Z})$.
|
%The reference values for the atomization energies are extracted from Ref.~\onlinecite{HauKlo-JCP-12} and corresponds to frozen-core non-relativistic atomization energies obtained at the CCSD(T)(F12)/cc-pVQZ-F12 level of theory corrected for higher-excitation contributions ($E_\text{CCSDT(Q)/cc-pV(D+d)Z} - E_\text{CCSD(T)/cc-pV(D+d)Z})$.
|
||||||
As a method $\modY$ we employ either CCSD(T) or exFCI.
|
As a method $\modY$ we employ either CCSD(T) or exFCI.
|
||||||
Here, exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
|
Here, exFCI stands for extrapolated FCI energies computed with the CIPSI algorithm. \cite{HurMalRan-JCP-73, GinSceCaf-CJC-13, GinSceCaf-JCP-15}
|
||||||
We refer the interested reader to Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details.
|
We refer the interested reader to Refs.~\onlinecite{HolUmrSha-JCP-17, SceGarCafLoo-JCTC-18, LooSceBloGarCafJac-JCTC-18, SceBenJacCafLoo-JCP-18, LooBogSceCafJAc-JCTC-19} for more details.
|
||||||
In the case of the CCSD(T) calculations, we have $\modZ = \HF$ as we use the restricted open-shell HF (ROHF) one-electron density to compute the complementary energy.
|
In the case of the CCSD(T) calculations, we have $\modZ = \HF$ as we use the restricted open-shell HF (ROHF) one-electron density to compute the complementary energy.
|
||||||
\titou{For exFCI, we use the density of a converged variational wave function.
|
For exFCI, the one-electron density is computed from a very large CIPSI expansion containing several million determinants.
|
||||||
For the definition of the interaction, we use a single Slater determinant built in the ROHF basis for the CCSD(T) calculation, and built with the natural orbitals of the converged variational wave function for the exFCI calculations.}
|
%For the definition of the interaction, we use a single Slater determinant built in the ROHF basis for the CCSD(T) calculation, and built with the natural orbitals of the converged variational wave function for the exFCI calculations.
|
||||||
The CCSD(T) calculations have been performed with Gaussian09 with standard threshold values. \cite{g09}
|
The CCSD(T) calculations have been performed with Gaussian09 with standard threshold values. \cite{g09}
|
||||||
RS-DFT and exFCI calculations are performed with {\QP}. \cite{QP2}
|
RS-DFT and exFCI calculations are performed with {\QP}. \cite{QP2}
|
||||||
For the numerical quadrature, we employ the SG-2 grid. \cite{DasHer-JCC-17}
|
For the numerical quadrature, we employ the SG-2 grid. \cite{DasHer-JCC-17}
|
||||||
|
@ -1,26 +1,118 @@
|
|||||||
\documentclass[aip,jcp,reprint,onecolumn,noshowkeys]{revtex4-1}
|
\documentclass[aip,jcp,reprint,noshowkeys]{revtex4-1}
|
||||||
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem}
|
\usepackage{graphicx,dcolumn,bm,xcolor,microtype,multirow,amscd,amsmath,amssymb,amsfonts,physics,mhchem,longtable,xspace}
|
||||||
|
|
||||||
\usepackage{mathpazo,libertine}
|
\usepackage{mathpazo,libertine}
|
||||||
\usepackage[normalem]{ulem}
|
|
||||||
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
|
||||||
\definecolor{darkgreen}{RGB}{0, 180, 0}
|
|
||||||
\newcommand{\beurk}[1]{\textcolor{darkgreen}{#1}}
|
|
||||||
\newcommand{\trash}[1]{\textcolor{red}{\sout{#1}}}
|
|
||||||
|
|
||||||
\newcommand{\cdash}{\multicolumn{1}{c}{---}}
|
\usepackage{natbib}
|
||||||
|
\bibliographystyle{achemso}
|
||||||
|
\AtBeginDocument{\nocite{achemso-control}}
|
||||||
|
|
||||||
|
\newcommand{\alert}[1]{\textcolor{red}{#1}}
|
||||||
|
\definecolor{darkgreen}{HTML}{009900}
|
||||||
|
\usepackage[normalem]{ulem}
|
||||||
|
\newcommand{\titou}[1]{\textcolor{red}{#1}}
|
||||||
|
\newcommand{\juju}[1]{\textcolor{purple}{#1}}
|
||||||
|
\newcommand{\manu}[1]{\textcolor{darkgreen}{#1}}
|
||||||
|
\newcommand{\trashPFL}[1]{\textcolor{red}{\sout{#1}}}
|
||||||
|
\newcommand{\trashJT}[1]{\textcolor{purple}{\sout{#1}}}
|
||||||
|
\newcommand{\trashMG}[1]{\textcolor{darkgreen}{\sout{#1}}}
|
||||||
|
\newcommand{\MG}[1]{\manu{(\underline{\bf MG}: #1)}}
|
||||||
|
\newcommand{\JT}[1]{\juju{(\underline{\bf JT}: #1)}}
|
||||||
|
\newcommand{\PFL}[1]{\titou{(\underline{\bf PFL}: #1)}}
|
||||||
|
|
||||||
|
\usepackage{hyperref}
|
||||||
|
\hypersetup{
|
||||||
|
colorlinks=true,
|
||||||
|
linkcolor=blue,
|
||||||
|
filecolor=blue,
|
||||||
|
urlcolor=blue,
|
||||||
|
citecolor=blue
|
||||||
|
}
|
||||||
\newcommand{\mc}{\multicolumn}
|
\newcommand{\mc}{\multicolumn}
|
||||||
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
|
||||||
\newcommand{\fnm}{\footnotemark}
|
\newcommand{\fnm}{\footnotemark}
|
||||||
\newcommand{\fnt}{\footnotetext}
|
\newcommand{\fnt}{\footnotetext}
|
||||||
\newcommand{\mr}{\multirow}
|
\newcommand{\tabc}[1]{\multicolumn{1}{c}{#1}}
|
||||||
\newcommand{\SI}{\textcolor{blue}{supplementary material}}
|
\newcommand{\SI}{\textcolor{blue}{supporting information}}
|
||||||
\newcommand{\kcal}{kcal/mol}
|
|
||||||
|
|
||||||
\newcommand{\QP}{\textsc{quantum package}}
|
\newcommand{\QP}{\textsc{quantum package}}
|
||||||
|
|
||||||
|
% second quantized operators
|
||||||
|
\newcommand{\ai}[1]{\hat{a}_{#1}}
|
||||||
|
\newcommand{\aic}[1]{\hat{a}^{\dagger}_{#1}}
|
||||||
|
|
||||||
|
% units
|
||||||
|
\newcommand{\IneV}[1]{#1 eV}
|
||||||
|
\newcommand{\InAU}[1]{#1 a.u.}
|
||||||
|
\newcommand{\InAA}[1]{#1 \AA}
|
||||||
|
\newcommand{\kcal}{kcal/mol}
|
||||||
|
|
||||||
|
% methods
|
||||||
|
\newcommand{\D}{\text{D}}
|
||||||
|
\newcommand{\T}{\text{T}}
|
||||||
|
\newcommand{\Q}{\text{Q}}
|
||||||
|
\newcommand{\X}{\text{X}}
|
||||||
|
\newcommand{\UEG}{\text{UEG}}
|
||||||
|
\newcommand{\HF}{\text{HF}}
|
||||||
|
\newcommand{\LDA}{\text{LDA}}
|
||||||
|
\newcommand{\PBE}{\text{PBE}}
|
||||||
|
\newcommand{\FCI}{\text{FCI}}
|
||||||
|
\newcommand{\CBS}{\text{CBS}}
|
||||||
|
\newcommand{\exFCI}{\text{exFCI}}
|
||||||
|
\newcommand{\CCSDT}{\text{CCSD(T)}}
|
||||||
|
\newcommand{\lr}{\text{lr}}
|
||||||
|
\newcommand{\sr}{\text{sr}}
|
||||||
|
|
||||||
|
\newcommand{\Ne}{N}
|
||||||
|
\newcommand{\NeUp}{\Ne^{\uparrow}}
|
||||||
|
\newcommand{\NeDw}{\Ne^{\downarrow}}
|
||||||
|
\newcommand{\Nb}{N_{\Bas}}
|
||||||
|
\newcommand{\Ng}{N_\text{grid}}
|
||||||
|
\newcommand{\nocca}{n_{\text{occ}^{\alpha}}}
|
||||||
|
\newcommand{\noccb}{n_{\text{occ}^{\beta}}}
|
||||||
|
|
||||||
|
\newcommand{\n}[2]{n_{#1}^{#2}}
|
||||||
|
\newcommand{\Ec}{E_\text{c}}
|
||||||
|
\newcommand{\E}[2]{E_{#1}^{#2}}
|
||||||
|
\newcommand{\bE}[2]{\Bar{E}_{#1}^{#2}}
|
||||||
|
\newcommand{\bEc}[1]{\Bar{E}_\text{c}^{#1}}
|
||||||
|
\newcommand{\e}[2]{\varepsilon_{#1}^{#2}}
|
||||||
|
\newcommand{\be}[2]{\Bar{\varepsilon}_{#1}^{#2}}
|
||||||
|
\newcommand{\bec}[1]{\Bar{e}^{#1}}
|
||||||
|
\newcommand{\wf}[2]{\Psi_{#1}^{#2}}
|
||||||
|
\newcommand{\W}[2]{W_{#1}^{#2}}
|
||||||
|
\newcommand{\w}[2]{w_{#1}^{#2}}
|
||||||
|
\newcommand{\hn}[2]{\Hat{n}_{#1}^{#2}}
|
||||||
|
\newcommand{\rsmu}[2]{\mu_{#1}^{#2}}
|
||||||
|
\newcommand{\V}[2]{V_{#1}^{#2}}
|
||||||
|
\newcommand{\SO}[2]{\phi_{#1}(\br{#2})}
|
||||||
|
|
||||||
|
\newcommand{\modY}{Y}
|
||||||
|
\newcommand{\modZ}{Z}
|
||||||
|
|
||||||
|
% basis sets
|
||||||
|
\newcommand{\Bas}{\mathcal{B}}
|
||||||
|
\newcommand{\BasFC}{\Bar{\mathcal{B}}}
|
||||||
|
\newcommand{\FC}{\text{FC}}
|
||||||
|
\newcommand{\occ}{\text{occ}}
|
||||||
|
\newcommand{\virt}{\text{virt}}
|
||||||
|
\newcommand{\val}{\text{val}}
|
||||||
|
\newcommand{\Cor}{\mathcal{C}}
|
||||||
|
|
||||||
|
% operators
|
||||||
|
\newcommand{\hT}{\Hat{T}}
|
||||||
|
\newcommand{\hWee}[1]{\Hat{W}_\text{ee}^{#1}}
|
||||||
|
\newcommand{\updw}{\uparrow\downarrow}
|
||||||
|
\newcommand{\f}[2]{f_{#1}^{#2}}
|
||||||
|
\newcommand{\Gam}[2]{\Gamma_{#1}^{#2}}
|
||||||
|
|
||||||
|
% coordinates
|
||||||
|
\newcommand{\br}[1]{\mathbf{r}_{#1}}
|
||||||
|
\newcommand{\dbr}[1]{d\br{#1}}
|
||||||
|
|
||||||
|
\newcommand{\ra}{\rightarrow}
|
||||||
|
\newcommand{\De}{D_\text{e}}
|
||||||
|
|
||||||
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
\newcommand{\LCPQ}{Laboratoire de Chimie et Physique Quantiques (UMR 5626), Universit\'e de Toulouse, CNRS, UPS, France}
|
||||||
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Universit\'e Pierre et Marie Curie, Sorbonne Universit\'e, CNRS, Paris, France}
|
\newcommand{\LCT}{Laboratoire de Chimie Th\'eorique, Sorbonne Universit\'e, CNRS, Paris, France}
|
||||||
|
\newcommand{\ISCD}{Institut des Sciences du Calcul et des Donn\'ees, Sorbonne Universit\'e, Paris, France}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
@ -43,30 +135,68 @@
|
|||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
%%% TABLE I %%%
|
||||||
%\section{Computational details}
|
\begin{table*}
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
\caption{
|
||||||
%All the geometries have been extracted from Ref.~\onlinecite{HauJanScu-JCP-2009} and have performed at the B3LYP/6-31G(2df,p) level of theory.
|
\label{tab:diatomics}
|
||||||
%The CCSD(T) calculations have been performed with Gaussian09 with standard threshold values. \cite{g09}
|
Atomization energies (in {\kcal}) of \ce{C2}, \ce{O2}, \ce{N2} and \ce{F2} computed with various methods and basis sets.
|
||||||
%Frozen core calculations are defined as such: a \ce{He} core is frozen from \ce{B} to \ce{Mg}, while a \ce{Ne} core is frozen from \ce{Al} to \ce{Xe}.
|
The deviations with respect to the corresponding CBS values are reported in parenthesis.
|
||||||
%RS-DFT calculations are performed with {\QP}. \cite{QP2}
|
}
|
||||||
%For the quadrature grid, we employ ... radial and angular points.
|
\begin{ruledtabular}
|
||||||
%The reference values for the atomization energies are extracted from Ref.~\onlinecite{HauKlo-JCP-12} and corresponds to frozen-core non-relativistic atomization energies obtained at the CCSD(T)(F12)/cc-pVQZ-F12 level of theory corrected for higher-excitation contributions ($E_\text{CCSDT(Q)/cc-pV(D+d)Z} - E_\text{CCSD(T)/cc-pV(D+d)Z})$).
|
\begin{tabular}{llddddd}
|
||||||
|
& & \mc{4}{c}{Dunning's basis set}
|
||||||
|
\\
|
||||||
|
\cline{3-6}
|
||||||
|
Molecule & Method & \tabc{$\X = \D$} & \tabc{$\X = \T$} & \tabc{$\X = \Q$} & \tabc{$\X = 5$} & \tabc{CBS}
|
||||||
|
\\
|
||||||
|
\hline
|
||||||
|
\ce{C2} & exFCI\fnm[1] & 132.0 (-13.7 ) & 140.3 (-5.4 ) & 143.6 (-2.1 ) & 144.7 (-1.0 ) & 145.7 \\
|
||||||
|
(cc-pVXZ) & exFCI+LDA\fnm[1] & 141.3 (-4.4 ) & 145.1 (-0.6 ) & 146.4 (+0.7 ) & 146.3 (+0.6 ) & \\
|
||||||
|
& exFCI+PBE\fnm[1] & 145.7 (+0.0 ) & 145.7 (+0.0 ) & 146.3 (+0.6 ) & 146.2 (+0.5 ) & \\
|
||||||
|
& CCSD(T)\fnm[1] & 129.2 (-16.2 ) & 139.1 (-6.3 ) & 143.0 (-2.4 ) & 144.2 (-1.2 ) & 145.4 \\
|
||||||
|
& CCSD(T)+LDA\fnm[1] & 139.1 (-6.3 ) & 143.7 (-1.7 ) & 145.9 (+0.5 ) & 145.9 (+0.5 ) & \\
|
||||||
|
& CCSD(T)+PBE\fnm[1] & 142.8 (-2.6 ) & 144.2 (-1.2 ) & 145.9 (+0.5 ) & 145.8 (+0.4 ) & \\ \\
|
||||||
|
\ce{C2} & exFCI\fnm[2] & 131.0 (-16.1 ) & 141.5 (-5.6 ) & 145.1 (-2.0 ) & 146.1 (-1.0 ) & 147.1 \\
|
||||||
|
(cc-pCVXZ) & exFCI+LDA\fnm[2] & 141.4 (-5.7 ) & 146.7 (-0.4 ) & 147.8 (+0.7 ) & 147.6 (+0.5 ) & \\
|
||||||
|
& exFCI+PBE\fnm[2] & 145.1 (-2.0 ) & 147.0 (-0.1 ) & 147.7 (+0.6 ) & 147.5 (+0.4 ) & \\ \\
|
||||||
|
\ce{N2} & exFCI\fnm[1] & 201.1 (-26.7 ) & 217.1 (-10.7 ) & 223.5 (-4.3 ) & 225.7 (-2.1 ) & 227.8 \\
|
||||||
|
(cc-pVXZ) & exFCI+LDA\fnm[1] & 217.9 (-9.9 ) & 225.9 (-1.9 ) & 228.0 (+0.2 ) & 228.6 (+0.8 ) & \\
|
||||||
|
& exFCI+PBE\fnm[1] & 227.7 (-0.1 ) & 227.8 (+0.0 ) & 228.3 (+0.5 ) & 228.5 (+0.7 ) & \\
|
||||||
|
& CCSD(T)\fnm[1] & 199.9 (-27.3 ) & 216.3 (-10.9 ) & 222.8 (-4.4 ) & 225.0 (-2.2 ) & 227.2 \\
|
||||||
|
& CCSD(T)+LDA\fnm[1] & 216.3 (-10.9 ) & 224.8 (-2.4 ) & 227.2 (-0.0 ) & 227.8 (+0.6 ) & \\
|
||||||
|
& CCSD(T)+PBE\fnm[1] & 225.9 (-1.3 ) & 226.7 (-0.5 ) & 227.5 (+0.3 ) & 227.8 (+0.6 ) & \\ \\
|
||||||
|
\ce{N2} & exFCI\fnm[2] & 202.2 (-26.6 ) & 218.5 (-10.3 ) & 224.4 (-4.4 ) & 226.6 (-2.2 ) & 228.8 \\
|
||||||
|
(cc-pCVXZ) & exFCI+LDA\fnm[2] & 218.0 (-10.8 ) & 226.8 (-2.0 ) & 229.1 (+0.3 ) & 229.4 (+0.6 ) & \\
|
||||||
|
& exFCI+PBE\fnm[2] & 226.4 (-2.4 ) & 228.2 (-0.6 ) & 229.1 (+0.3 ) & 229.2 (+0.4 ) & \\ \\
|
||||||
|
\ce{O2} & exFCI\fnm[1] & 105.2 (-14.8 ) & 114.5 (-5.5 ) & 118.0 (-2.0 ) & 119.1 (-0.9 ) & 120.0 \\
|
||||||
|
(cc-pVXZ) & exFCI+LDA\fnm[1] & 112.4 (-7.6 ) & 118.4 (-1.6 ) & 120.2 (+0.2 ) & 120.4 (+0.4 ) & \\
|
||||||
|
& exFCI+PBE\fnm[1] & 117.2 (-2.8 ) & 119.4 (-0.6 ) & 120.3 (+0.3 ) & 120.4 (+0.4 ) & \\
|
||||||
|
& CCSD(T)\fnm[1] & 103.9 (-16.1 ) & 113.6 (-6.0 ) & 117.1 (-2.5 ) & 118.6 (-1.0 ) & 119.6 \\
|
||||||
|
& CCSD(T)+LDA\fnm[1] & 110.6 (-9.0 ) & 117.2 (-2.4 ) & 119.2 (-0.4 ) & 119.8 (+0.2 ) & \\
|
||||||
|
& CCSD(T)+PBE\fnm[1] & 115.1 (-4.5 ) & 118.0 (-1.6 ) & 119.3 (-0.3 ) & 119.8 (+0.2 ) & \\ \\
|
||||||
|
\ce{F2} & exFCI\fnm[1] & 26.7 (-12.3 ) & 35.1 (-3.9 ) & 37.1 (-1.9 ) & 38.0 (-1.0 ) & 39.0 \\
|
||||||
|
(cc-pVXZ) & exFCI+LDA\fnm[1] & 30.4 (-8.6 ) & 37.2 (-1.8 ) & 38.4 (-0.6 ) & 38.9 (-0.1 ) & \\
|
||||||
|
& exFCI+PBE\fnm[1] & 33.1 (-5.9 ) & 37.9 (-1.1 ) & 38.5 (-0.5 ) & 38.9 (-0.1 ) & \\
|
||||||
|
& CCSD(T)\fnm[1] & 25.7 (-12.5 ) & 34.4 (-3.8 ) & 36.5 (-1.7 ) & 37.4 (-0.8 ) & 38.2 \\
|
||||||
|
& CCSD(T)+LDA\fnm[1] & 29.2 (-9.0 ) & 36.5 (-1.7 ) & 37.2 (-1.0 ) & 38.2 (+0.0 ) & \\
|
||||||
|
& CCSD(T)+PBE\fnm[1] & 31.5 (-6.7 ) & 37.1 (-1.1 ) & 37.8 (-0.4 ) & 38.2 (+0.0 ) & \\
|
||||||
|
\end{tabular}
|
||||||
|
\end{ruledtabular}
|
||||||
|
\fnt[1]{Frozen core calculations. Only valence spinorbitals are taken into account in the basis set correction.}
|
||||||
|
\fnt[2]{``Full'' calculation, i.e., all electrons are correlated. All spinorbitals are taken into account in the basis set correction.}
|
||||||
|
\end{table*}
|
||||||
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
\section{Computational details}
|
|
||||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
||||||
|
|
||||||
\begin{turnpage}
|
\begin{turnpage}
|
||||||
\begin{squeezetable}
|
\begin{squeezetable}
|
||||||
\begin{table}
|
\begin{table}
|
||||||
\caption{
|
\caption{
|
||||||
\label{tab:AE}
|
\label{tab:AE}
|
||||||
Deviation from the reference CBS atomization energies ($\Delta \text{AE}$) in {\kcal} for various methods.}
|
Deviation from the reference CBS correlation energies (in {\kcal}) for various methods and basis sets.}
|
||||||
\begin{ruledtabular}
|
\begin{ruledtabular}
|
||||||
\begin{tabular}{lddddddddddd}
|
\begin{tabular}{lddddddddddd}
|
||||||
&
|
&
|
||||||
& \mc{10}{c}{Deviation from CBS atomization energies} \\
|
& \mc{10}{c}{Deviation from CBS correlation energies} \\
|
||||||
\cline{3-12}
|
\cline{3-12}
|
||||||
& & \mc{4}{c}{CCSD(T)} & \mc{3}{c}{CCSD(T)+LDA} & \mc{3}{c}{CCSD(T)+PBE} \\
|
& & \mc{4}{c}{CCSD(T)} & \mc{3}{c}{CCSD(T)+LDA} & \mc{3}{c}{CCSD(T)+PBE} \\
|
||||||
\cline{3-6} \cline{7-9} \cline{10-12}
|
\cline{3-6} \cline{7-9} \cline{10-12}
|
||||||
|
Loading…
Reference in New Issue
Block a user